
International Journal of Network Security, Vol.19, No.1, PP.99-111, Jan. 2017 (DOI: 10.6633/IJNS.201701.19(1).11) 99

An Improvement of Fermat’s Factorization by
Considering the Last m Digits of Modulus to

Decrease Computation Time

Kritsanapong Somsuk, Kitt Tientanopajai
(Corresponding author: Kritsanapong Somsuk)

Department of Computer Engineering, Faculty of Engineering, Khon Kaen University

Khon Kaen 40002, Thailand

(Email: tonpor007@hotmail.com)

(Received Dec. 9, 2015; revised and accepted Jan. 23, 2016)

Abstract

Fermat’s Factorization Algorithm (FFA) and the algo-
rithms improved from FFA are the fast integer factoriza-
tion algorithms when these algorithms are chosen to find
two large prime factors of the balanced modulus. The
key is a process to find two perfect squares such that
their difference is equal to the modulus. However, it is
time-consuming to find these two integers because there
is only one solution but many integers are chosen in this
experiment to find the solution. In this paper, a new
improvement of FFA is proposed by leaving out some un-
related integers, which do not affect getting the correct
solution. Leaving out these integers results from analyz-
ing the last m digits of the modulus where m is a pos-
itive integer. The new faster and improved algorithm is
called Specific Fermat’s Factorization Algorithm Consid-
ered from X (SFFA-X) where X is represented as the last
m digits of the modulus. The experimental results showed
that SFFA-X can factor the modulus faster than FFA and
many modified algorithms of FFA especially when at least
2 digits of X are chosen for the implementation.

Keywords: Fermat’s factorization algorithm, integer fac-
torization, RSA

1 Introduction

Integer Factorization is one of the famous techniques for
breaking RSA [10] which is the most well-known pub-
lic key cryptosystem. In general, if the modulus is fac-
tored as prime numbers, the private key kept secret will
be recovered and then RSA is broken [7]. At present,
many integer factorization algorithms were proposed such
as [1, 2, 3, 4, 6, 8, 9, 11, 15, 18, 19]. However, the speed
of each factorization algorithm for factoring the modulus
depends on the size of the modulus and the size of prime
factors of the modulus. Nevertheless, Fermat’s Factor-

ization Algorithm (FFA) [1, 18] discovered by Pierre de
Fermat, is the efficient factorization algorithm whenever
it is used to factor the balanced modulus that the differ-
ence between two large prime factors is very small [18]. In
addition, to find the two large prime factors of the modu-
lus, FFA will rewrite the modulus as the difference of the
perfect squares. Although, many factorization algorithms
improved from FFA [6, 13, 14, 16, 17, 18] were introduced,
they are still time-consuming to factor the modulus.

Assume n is represented as the modulus which is equal
to the product of two prime numbers and all prime num-
bers can be chosen to be a prime factor of n except 2 and
5. In this paper, an efficient technique to speed up FFA
is proposed. This technique will consider the last m dig-
its of n before choosing one of the new proposed specific
algorithms for the implementation. The advantage of the
specific algorithms is the removing unrelated iterations of
the computation. In addition, the specific algorithms for
the last m + 1 digits of n can factor n faster than the
specific algorithms for the last m digits of n because the
details of n are better known and more iterations of the
computation are left.

In fact, the numbers of the specific algorithms for the
last m digits of n are based on values of m. The numbers
of these algorithms are 4 ∗ 10m−1. For example, if m is
equal to 1, there are 4 specific algorithms as follows: the
algorithm for the last digit of n is 1, 3, 7 or 9. Another
example assumes m is equal to 2 then there are 40 specific
algorithms as follows: the algorithm for the last 2 digits
of n is 01, 03, 07, 09, 11, · · · , 97 or 99. The new fast and
proposed algorithm is called Specific Fermat’s Factoriza-
tion Algorithm Considered from X (SFFA-X), where X
is represented as the last m digits of n. For example, the
specific algorithm for the last 2 digits of n = 1287901 is
called SFFA-01, the specific algorithm for the last 2 digits
of n = 737 is called SFFA-37 and the specific algorithm
for last 3 digits of n = 136313 is called SFFA-313.
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2 Priliminary

2.1 Fermat’s Factorization Algorithm:
FFA

FFA is one of some integer factorization algorithms which
can factor all composite integers. The speed of FFA de-
pends on the difference between two large prime factors
of n: n = p ∗ q, where p and q are prime numbers and p is
larger than q, and the size of n. However, this algorithm
is appropriate with the small result of the subtraction be-
tween p and q. The key of FFA is that n is rewritten as
the difference of perfect squares as follows:

n = (
p + q

2
)2 − (

p− q

2
)2 (1)

In fact, FFA can be distinguished as 2 different algorithms
as follows. For the first algorithm, is called FFA-1, assign
x = p+q

2 and y = p−q
2 then,

n = x2 − y2. (2)

However, assign the initial value of x is equal to d
√
ne,

then the process to factor n by using FFA-1 is to find the
integer of y, y =

√
x2 − n . If the integer of y is found,

the values of p and q can be computed from p = x + y
and q = x−y. On the other hand, the value of x must be
increased by 1 when y is not an integer to compute the
new value of y.

Algorithm 1 FFA-1

1: Begin
2: Initialize the value of x = d

√
ne

3: y =
√
x2 − n

4: while y is not an integer do
5: x = x + 1
6: y2 = x2 − n
7: y =

√
y2

8: end while
9: p = x + y

10: q = x− y
11: End

In Algorithm 1, it implies that the total iterations for
computing x and y are same; their total iterations are
(p + q)/2 − d

√
ne . However, FFA-1 must take time to

compute the square root of integer for all iterations. At
present, many modified factorization algorithms modified
from FFA-1 were proposed to decrease computation time.
The key of some algorithms which will be mentioned in
Section 2.2 to 2.5 is to remove some of unrelated steps in
the main loop.

The process of the second algorithm, is called FFA-2,
is different from FFA-1. This algorithm does not compute
the square root of integer as follows: From Equation (1),
we have

4n = u2 − v2

where u = p+q and v = p−q, therefore, the aim of FFA-2
is to find the corrected values of u and v, respectively.

However, the initial values of u and v are 2d
√
ne and

0, respectively. Assign r = u2 − v2 − 4n, then two prime
factors of n, p = u+v

2 and q = u−v
2 , are found whenever

the value of r which is equal to 0 is found. However, two
conditions of r are considered when r is not equal to 0 as
follows:

Condition 1 (r > 0):
The value of v is too small but the value of r is too
large. Therefore, v must be increased. On the other
hand r must be decreased:

r = r − (4v + 4) (3)

v = v + 2.

From Equation (3), the value of 4v + 4 is from: (v +
2)2 − v2 = 4v + 4. Because, v = p − q is always an
even number, the value of v can be increased by 2.

Condition 2 (r < 0):
The values of u and r are too small. Therefore, they
have to be increased:

r = r + (4u + 4) (4)

u = u + 2

From Equation (4), the value of 4u+ 4 is from: (u+
2)2 − u2 = 4u + 4 Because, u = p + q is always an
even number like the value of v, the value of u can
be increased by 2. Therefore, the algorithm of FFA-
2 for finding two prime factors of n, p and q, is as
follows.

Algorithm 2 FFA-2

1: Begin
2: Initialize the value of u = 2d

√
ne and v = 0

3: r = u2 − v2 − 4n
4: while r is not equal to zero do
5: if r is more than zero then
6: r = r − (4v + 4)
7: v = v + 2
8: else
9: r = r + (4u + 4)

10: u = u + 2
11: end if
12: end while

13: p =
u + v

2

14: q =
u− v

2
15: End

In Algorithm 2, it implies that the value of u is always
increased by 2 whenever the value of r is less than 0.
On the other hand, the value of v is always increased
by 2 whenever the value of r is more than 0. In
general, Algorithm 2 shows that the total iterations
for computing u and v are different, total iterations
of u and v are (p + q)− 2d

√
ne and p− q in order.
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2.2 Modified Fermat Factorization Ver-
sion 2: MFFV2

MFFV2 [14] does not compute the value of y, Step 6 (or
Line 7) of FFA-1, whenever the least significant digit of
y2 is 2, 3, 7 or 8 because y is not certainly an integer.
That means the computation time is decreased, although
the iterations in the loop are still stable.

2.3 Modified Fermat Factorization Ver-
sion 3: MFFV3

In 2014, MFFV3 [16] was proposed by using Difference’s
Least Significant Digit Table (DLSDT) for removing some
values of y2 and y, Step 5 - 6 of FFA-1, from the computa-
tion. DLSDT will show the result of the least significant
digit of y2 without the computation of y2 directly. That
means it does not take time to compute y2 and y when
the least significant digit of y2 is equal to 2, 3, 7 or 8.
Furthermore, the information in DLSDT implies that the
sequence of 10 iterations in the loop of FFA-1, MFFV3
can remove the 4 steps for computing y2 and y when the
least significant digit of n is 1 or 9. However, this algo-
rithm becomes removing the 6 steps to compute y2 and y
when the least significant digit of n is 3 or 7.

2.4 Modified Fermat Factorization Ver-
sion 4: MFFV4

MFFV4 [13] can remove more steps for computing y2 and
y when compared with MFFV3. This algorithm uses the
new table called Y2MOD20 for analyzing the result of
y2 modulo 20 without computing y2 directly. From the
mathematical theorem, the result of perfect square mod-
ulo 20 is always equal to 0, 1, 4, 5, 9 or 16 [9]. Therefore,
if the result of y2 modulo 20 is not equal to 0, 1, 4, 5, 9
or 16, then y2 is not certainly a perfect square. However,
for MFFV4, the value of n is divided into 8 cases. Each
case is from the result of n modulo 20 which is 1, 3, 7,
9, 11, 13, 17 or 19. In addition, the sequence of 10 iter-
ations in the loop of FFA-1, MFFV4 can remove 7 steps
to compute y2 and y when the result of n modulo 20 is
1, 9, 11 or 19. Nevertheless, this algorithm can remove
8 steps when the result of n modulo 20 is 3, 7, 13 or 17.
Furthermore, the experiment showed that MFFV4 is the
fastest improved Fermat’s factorization algorithm when
compared to FFA-1, MFFV2 and MFFV3.

2.5 Possible Prime Modified Fermat Fac-
torization: P 2MFF

The concept of P2MFF [17] is different from all improved
Fermat’s factorization algorithms which had been men-
tioned. In general, this algorithm will be divided into 2
sub algorithms. Each algorithm is arised from the result
of n modulo 6. If the result is equal to 5, the form of n is
6k - 1 and the form of x must be always 3k1, k and k1 are

any integers. That means all iterations of the computa-
tion are from the result of x%3 = 0. On the other hand,
if the result of n modulo 6 is equal to 1, the form of n is
6k+1 and the form of x must not be 3k1. That means all
iterations of the computation are from the result of x%3
= 1 or 2.

3 The Proposed Method

Notation: Assume z, z1,z2 ∈ Z+ and z1 ≥ z2

1) LSG1(z) = LSG(z) is the last digit of z
2) LSG(z1 + z2) = LSG(LSG(z1) + LSG(z2))
3) LSG(z1 − z2) = LSG(LSG(z1) − LSG(z2)+10)
4) LSG(z1 ∗ z2) = LSG(LSG(z1) ∗ LSG(z2))
5) LSGm(z) is the last m digits of z,m > 1
6) LSGm(z1 + z2) = LSGm(LSGm(z1) + LSGm(z2))
7) LSGm(z1 − z2) = LSGm(LSGm(z1) − LSGm(z2) + 10m)
8) LSGm(z1 ∗ z2) = LSGm(LSGm(z1) ∗ LSGm(z2))

For the notation above, if the result of LSG(z1) −
LSG(z2) or LSGm(z1) − LSGm(z2) is a negative integer,
it will be increased by 10 or 10m respectively for changing
the result to be the positive integer.

Example 1.

LSG(31) = 1

LSG(17 + 21) = LSG(LSG(17) + LSG(21))

= LSG(7 + 1) = LSG(8) = 8

LSG(38− 15) = LSG(LSG(38)− LSG(15) + 10)

= LSG(8− 5 + 10) = LSG(13) = 3

LSG(32− 15) = LSG(LSG(32)− LSG(15) + 10)

= LSG(2− 5 + 10) = LSG(7) = 7

LSG(5 ∗ 14) = LSG(LSG(5) ∗ LSG(14))

= LSG(5 ∗ 4) = LSG(20) = 0.

The objective of this paper is to propose the new mod-
ified algorithm improved from FFA-2. The key is that the
algorithm of FFA-2 will be divided into many sub algo-
rithms based on the last m digits of n. These algorithms
are called Specific Fermat’s Factorization Algorithm Con-
sidered from X (SFFA-X) where X is represented as the
last m digits of n. SFFA-X can leave out some values of
u and v which are not the expected values. Nevertheless,
if LSGm(n) is considered, numbers of SFFA-X for last m
digits of n are based on the values of m that is equal to
4 ∗ 10m−1.

In fact, the set of the possible values of u and v for
SFFA-X are from the following definition: (Assign a, b,
pt and qt ∈ Z+ and n is represented as the modulus).

S = {(a, b, pt, qt, n) | a = LSGm(pt),

b = LSGm(qt) and LSGm(ab) = LSGm(n)}
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From the set of S, if the last m digits of the multiplica-
tion result between the last m digits of pt, a = LSGm(pt),
and the last m digits of qt, b= LSGm(qt), is equal to the
last m digits of n, LSGm(n) = LSGm(ab), then, the val-
ues of LSGm(u) and LSGm(v) can be computed from
LSGm(a + b) and LSGm(a− b) or LSGm(b− a), respec-
tively.

In general, all possible values of LSGm(u) and
LSGm(v) can be found by considering the both follow-
ing theorems.

Theorem 1. Assign a and b are any positive odd inte-
gers, where LSGm(a) = amam−1 · · · a2a1, LSGm(b) =
bmbm−1 · · · b2b1 and m > 1, that the result of LSGm(ab)
is equal to LSGm(n). If a1 is equal to b1, then the results
of LSGm((a + 10m−1)(b + 9(10m−1))) and LSGm((a +
9(10m−1))(b + 10m−1)) are also equal to LSGm(n).

Proof. Assign: LSGm(ab) = cmcm−1 · · · c2c1, LSGm(a +
b) = LSGm(u), LSGm(a − b) = LSGm(v1), LSGm(b −
a) = LSGm(v2) and ci = di%10, where i = 1, 2, · · · ,m.

From the multiplication technique, we have

d1 = a1b1

d2 = a2b1 + a1b2 + bd1
10
c

dm = amb1 + am−1b2 + · · ·+ a1bm + bdm−1

10
c

Case 1: Assign LSGm(a + 10m−1) = emem−1 · · · e2e1,
LSGm(b+9(10m−1)) = fmfm−1 · · · f2f1, LSGm((a+
10m−1)(b + 9(10m−1))) = gmgm−1 · · · g2g1 and gi =
hi%10. Because LSG(m−1)(a) = LSG(m−1)(a +
10m−1) and LSG(m−1)(b) = LSG(m−1)(b +
9(10m−1)), hence ej = aj , fj = bj and hj = dj
where j = 1, 2, · · · ,m − 2,m − 1. In addition,
em = (am+1)%10 and fm = (bm+9)%10. Therefore,
From the multiplication technique, we have

gm = (emf1 + em−1f2 + · · ·+ e1fm + bhm−1

10
c)%10

= ((am + 1)b1 + am−1b2 + · · ·+ a1(bm + 9)

+bdm−1

10
c)%10

= (amb1 + am−1b2 + · · ·+ a1bm + bdm−1

10
c

+(b1 + 9a1))%10.

Because a1 = b1, that means (b1 + 9a1)%10 =
0. Hence, gm = (amb1 + am−1b2 + · · · + a1bm +

bdm−1

10 c)%10 = cm.

Moreover, gj is also equal to cj because aj and bj are
always equal to ej and fj , respectively. Therefore,
LSGm((a+10m−1)(b+9(10m−1))) is always equal to
LSGm(ab) that means it is also equal to LSGm(n).

However, this case implies that for any pair of a and
b that a1 and b1 are fixed, there is only one value of
LSGm(u), LSGm((a + 10m−1) + (b + 9(10m−1))) =
LSGm(a + b + 10m) = LSGm(a + b) = LSGm(u).

On the other hand, the value of LSGm(v1) is al-
ways decreased by 8(10)m−1, LSGm((a + 10m−1) −
(b + 9(10m−1))) = LSGm(v1 − 8(10)m−1), and the
value of LSGm(v2) is always increased by 8(10)m−1,
LSGm((b+ 9(10m−1))− (a+ 10m−1)) = LSGm(v2 +
8(10m−1)), where v1 and v2 are represented as the
possible values of v.

Case 2: Assign LSGm(a + 9(10m−1))=emem−1 · · · e2e1,
LSGm(b + 10m−1)= fmfm−1 · · · f2f1, LSGm((a +
9(10m−1))(b + 10m−1)) = gmgm−1 · · · g2g1 and gi =
hi%10.

Because LSG(m−1)(a) = LSG(m−1)(a + 9(10m−1))
and LSG(m−1)(b) = LSG(m−1)(b + 10m−1), hence
ej = aj , fj = bj and hj = dj where j = 1, 2, · · · ,m−
2,m − 1. In addition, em = (am + 9)%10 and fm =
(bm + 1)%10.

From the multiplication technique, we have

gm = (emf1 + em−1f2 + · · ·+ e1fm + bhm−1

10
c)%10

= ((am + 9)b1 + am−1b2 + · · ·+ a1(bm + 1)

+bdm−1

10
c)%10

= (amb1 + am−1b2 + · · ·+ a1bm + bdm−1

10
c

+(a1 + 9b1))%10.

Because a1 = b1, that means (a1 + 9b1)%10 =
0. Hence, gm = (amb1 + am−1b2 + · + a1bm +

bdm−1

10 c)%10 = cm.

Moreover, gj is also equal to cj because aj and bj are
always equal to ej and fj , respectively. Therefore,
LSGm((a+9(10m−1))(b+10m−1)) is always equal to
LSGm(ab). That means it is also equal to LSGm(n).

However, this case implies that there is only one value
of LSGm(u), LSGm((a+ 9(10m−1)) + (b+ 10m−1) =
LSGm(a + b) = LSGm(u). On the other hand, the
value of LSGm(v1) is always increased by 8(10)m−1,
LSGm((a+ 9(10m−1))− (b+ 10m−1)) = LSGm(v1 +
8(10)m−1), and the value of LSGm(v2) is always
decreased by 8(10)m−1, LSGm((b + 10m−1) − (a +
9(10m−1))) = LSGm(v2 − 8(10m−1)), when v1 and
v2 are represented as the possible values of v.

Theorem 2. Assign a and b are any positive odd inte-
gers, where LSGm(a) = amam−1 · · · a2a1, LSGm(b) =
bmbm−1 · · · b2b1 and m > 1, that the result of LSGm(ab)
is equal to LSGm(n). If a1 is not equal to b1 and there
are various pairs of positive odd integers, k1 and k2,
which are equal or smaller than 9 and not equal to 5
that the result of (a1k2 + b1k1)%10 = 0, then the result
of LSGm((a + 10m−1k1)(b + 10m−1k2)) is also equal to
LSGm(n).
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Proof. Assign: LSGm(ab) = cmcm−1 · · · c2c1, LSGm(a +
10m−1k1) = xmxm−1 · · ·x2x1, LSGm(b + 10m−1k2) =
ymym−1 · · · y2y1, LSGm((a + 10m−1k1)(b + 10m−1k2)) =
zmzm−1 · · · z2z1, LSGm(a+b) = LSGm(u), LSGm(a−b)
= LSGm(v1), LSGm(b − a) = LSGm(v2), ci = di% 10
and zi = wi%10, where i = 1, 2, 3, · · · ,m.

From the multiplication technique, we have cm =
(amb1 + am−1b2 + · · ·+ a1bm + bdm−1

10 c)%10.

Because LSG(m−1)(a) = LSG(m−1)(a+ 10m−1k1) and
LSG(m−1)(b)= LSG(m−1)(b + 10m−1k2), then xj =
aj , yj = bj and wj = dj where j = 1, 2, · · · ,m− 2,m− 1
. In addition, xm = (am + k1)%10 and ym = (bm + k2)
% 10. Therefore, zm = (xmy1 + xm−1y2 + · · · + x1ym +
bwm−1

10 c)%10 = ((am+k1)b1+am−1b2+· · ·+a1(bm+k2)+

bdm−1

10 c)%10 = (amb1 + am−1b2 + · · · + a1bm + bdm−1

10 c +
(a1k2 + b1k1))%10.

Because the result of (a1k2 + b1k1)%10 is equal to 0,

zm = (amb1 + am−1b2 + · · ·+ a1bm + bdm−1

10 c)%10 = cm.

Moreover, zj is also equal to cj because aj and bj
are always equal to xj and yj , respectively. Therefore,
LSGm((a + 10m−1k1)(b + 10m−1k2)) is always equal to
LSGm(ab) and LSGm(n) whenever the result of (a1k2 +
b1k1)%10 is equal to 0.

However, this theory implies that for any pair of a and
b that a1 and b1 are fixed, the value of LSGm(u) is always
increased by 10m−1k, where k = k1 + k2, as follows:

LSGm((a + 10m−1k1) + (b + 10m−1k2))

= LSGm(a + b + 10m−1k1 + 10m−1k2)

= LSGm(a + b + 10m−1(k1 + k2))

= LSGm(a + b + 10m−1k)

= LSGm(u + 10m−1k)

On the other hand, the value of LSGm(v1) is always
increased by 10m−1l, where l = ((k1 − k2) + 10) % 10 is
always a positive integer, as follows:

LSGm((a + 10m−1k1)− (b + 10m−1k2))

= LSGm(a− b + 10m−1k1 − 10m−1k2)

= LSGm(a− b + 10m−1(k1 − k2))

= LSGm(a− b + 10m−1(((k1 − k2) + 10)%10))

= LSGm(a− b + 10m−1l)

= LSGm(v1 + 10m−1l).

And the value of LSGm(v2) is always increased by
10m−1h, where h = ((k2 − k1) + 10) % 10 is always a
positive integer, as follows:

LSGm((b + 10m−1k2)− (a + 10m−1k1))

= LSGm(b− a + 10m−1k2 − 10m−1k1)

= LSGm(b− a + 10m−1(k2 − k1))

= LSGm(b− a + 10m−1(((k2 − k1) + 10)%10))

= LSGm(b− a + 10m−1h)

= LSGm(v2 + 10m−1h).

Therefore, we can conclude that the values of
LSGm(u), LSGm(v1) and LSGm(v2) are always in-
creased by 10m−1k, 10m−1l and 10m−1h, respectively,
where k, l and h are any positive integers and v1 and v2
are represented as the possible values of v.

Notation: If k1 and k2 are an even number or equal
to 5, some values of LSGm(u) and LSGm(v) cannot be
computed because we cannot find some pairs of LSGm(a)
and LSGm(b) that LSGm(ab) = LSGm(n).

From both of two theorems above, assume a and
b are represented as any positive odd integers which
the last digit is not equal to 5 and all pairs of
LSG(m−1)(a) and LSG(m−1)(b) that LSG(m−1)(ab) is
equal to LSG(m−1)(n) are known. All values of LSGm(u)
and LSGm(v) will be found whenever only one pair
of LSGm(a) and LSGm(b) that LSGm(ab) is equal to
LSGm(n) for each pair of LSG(m−1)(a) and LSG(m−1)(b)
is found. In deep, all the other pairs of LSGm(a)
and LSGm(b) are computed by using Theorem 1 when
LSG(a) is equal to LSG(b) or using Theorem 2 when
LSG(a) is not equal to LSG(b), until the repeated solu-
tion is found.

Due to all pairs of LSG(a) and LSG(b) that LSG(ab) is
equal to LSG(n) cannot be computed by using Theorem 1
and Theorem 2, therefore these pairs must be considered
directly. Table 1 shows all possible pairs of LSG(a) and
LSG(b) for all possible values of LSG(n).

Generally, Table 1 shows the following information:

1) If LSG(n) equals to 1, there are 3 possible pairs of
(LSG(a), LSG(b)), 3 values of LSG(u) and 3 values
of LSG(v).

2) If LSG(n) equals to 3, there are 2 possible pairs of
(LSG(a), LSG(b)), 2 values of LSG(u) and 2 values
of LSG(v).

3) If LSG(n) equals to 7, there are 2 possible pairs of
(LSG(a), LSG(b)), 2 values of LSG(u) and 2 values
of LSG(v).

4) If LSG(n) equals to 9, there are 3 possible pairs of
(LSG(a), LSG(b)), 3 values of LSG(u) and 3 values
of LSG(v).

Assume all pairs of (LSG(m−1)(a), LSG(m−1)(b)) that
the last m−1 digits of their multiplication which is equal
to LSG(m−1)(n) are known. To complete the speed up for
factoring n by improving FFA-2, the algorithm of SFFA-
X is divided into 3 algorithms.

First is the main algorithm. This algorithm is used to
find two prime factors, p and q.

Moreover, it implies that some unrelated values of
U and V which their last m digits are not in the sets
of LSGm(u) and LSGm(v) are left out from the com-
putation. Leaving out values of U and V is from



International Journal of Network Security, Vol.19, No.1, PP.99-111, Jan. 2017 (DOI: 10.6633/IJNS.201701.19(1).11) 104

Table 1: All possible values of LSG(u), LSG(v) and pairs of LSG(a) and LSG(b) when considered from LSG(n)

LSG(n)
Pair of

(LSG(a),LSG(b))
LSG(LSG(a)+LSG(b))

(LSG(u))

LSG(LSG(a)-LSG(b)) or
LSG(LSG(b)-LSG(a))

(LSG(v))

1
(1, 1)
(3, 7)
(9, 9)

2
0
8

0
6 or 4

0

3
(1, 3)
(7, 9)

4
6

8 or 2
8 or 2

7
(1, 7)
(3, 9)

8
2

4 or 6
4 or 6

9
(1, 9)
(3, 3)
(7, 7)

0
6
4

2 or 8
0
0

Algorithm 3 FFA-X

1: Begin
2: Compute all members of LSGm(u), LSGm(v), disu

and disv by using Algorithm 4. In deep, disu is the set
of the subtraction results between two adjacent values
of LSGm(u) and disv is the set of the subtraction
results between two adjacent values of LSGm(v).

3: Find the initial values of U and V that LSGm(U) and
LSGm(V ) must equal to one of all possible values of
LSGm(u) and LSGm(v), in order. In addition, U and
V are started at 2d

√
ne and 0 respectively.

4: Assign i is the index of disu that the initial value is
based on the values of LSGm(U) and the position in
LSGm(u) and disu.

5: Assign j which is always started at 0 is the index of
disv.

6: r = U2 − V 2 − 4n
7: while r is not equal to zero do
8: if r is more than zero then
9: r = r − (2 ∗ V ∗ disv(j) + disv(j)2)

10: V = V + disv(j)
11: j = j + 1 // j becomes to zero whenever j is

equal to the size of disv
12: else
13: r = r + (2 ∗ U ∗ disu(i) + disu(i)2)
14: U = U + disu(i)
15: i = i+1, // i becomes to zero whenever i is equal

to the size of disu
16: end if
17: end while
18: p = U+V

2

19: q = U−V
2

20: End

choosing only the pairs of (LSGm(a), LSGm(b)) which
LSGm(LSGm(a)*LSGm(b)) = LSGm(ab) is equal to
LSGm(n).

Second is the algorithm for finding all members of
LSGm(u), LSGm(v), disu and disv before returning
these variables to Step 1 of Algorithm 3.

Algorithm 4 Finding LSGm(u), LSGm(v), disu and
disv
1: Begin
2: Assign each pair of (LSG(m−1)(a), LSG(m−1)(b)) is a

group.
3: For each group, find a pair of (LSGm(a), LSGm(b))

using Algorithm 5 and then leave out a pair of
(LSG(m−1)(a), LSG(m−1)(b)) from the group.

4: For each group, find all pairs of (LSGm(a), LSGm(b))
by using theorem 1 whenever LSG(a) is equal to
LSG(b). However, theorem 2 is used for the other
case.

5: Compute all possible values of LSGm(u) and
LSGm(v). However, all repeated values of LSGm(u)
and LSGm(v) will be left out from the sets.

6: Sort the members of LSGm(u) and LSGm(v) from
the minimum to the maximum.

7: Find disu, the set of the subtraction results between
two adjacent values of LSGm(u). Nevertheless, the
last member of disu is the subtraction between the
minimum and the maximum of LSGm(u). In addi-
tion, the result of the last member must be also in-
creased by 10m for changing as the positive integer.

8: Find disv, the set of the subtraction results between
two adjacent values of LSGm(v). Nevertheless, the
last member of disv is the subtraction between the
minimum and the maximum of LSGm(v). Moreover,
this result must be increased by 10m.

9: End

However, the results from this algorithm can be applied
with all values of LSGm(n) which LSGm(u), LSGm(v),
disu and disv had been computed. Therefore, only the
first time of the computation will be computed to find all
pairs of (LSGm(a), LSGm(b)) to compute all members of
these four variables.

Furthermore, if disu or disv have the repeated pat-
terns, we can leave out them from the sets.

Example 2. Assume, all members of LSG2(u) and
LSG2(v) of SFFA-03 are known. Finding disu and disv
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of SFFA-03:

1) LSG2(u) = {04, 16, 24, 36, 44, 56, 64, 76, 84, 96}.
Therefore, disu = {12, 8, 12, 8, 12, 8, 12, 8, 12, 8}.
Because, disu has the repeated patterns, then, we can
reassign disu = {12, 8}.

2) LSG2(v) = {02, 18, 22, 38, 42, 58, 62, 78, 82, 98}.
Therefore, disv = {16, 4, 16, 4, 16, 4, 16, 4, 16, 4}.
Because, disv has the repeated patterns, then, we can
reassign disv = {16, 4}.

In deep, if the value of all members of disu (or disv)
is same, these members can be reduced to be only one
member of the set. For example, if disv ={20, 20, 20,
20}, we can reduce as disv = 20 and j will be left out
from the algorithm because the value of all members in
disv is same.

The last algorithm is for computing the pair of
(LSGm(a), LSGm(b)) when a pair of (LSG(m−1)(a),
LSG(m−1)(b)) is known. The idea of this algorithm is
to find only the value of LSGm(b) while LSGm(a) is
always equal to 0LSG(m−1)(a). For example, assume
LSG3(a) = 841, then LSG4(a) = 0841.

Algorithm 5 Finding Pair of LSGm(a) and LSGm(b)

1: Begin
2: x = LSG(m−1)(a)*LSG(m−1)(b)

3: nm = bn%10m

10m−1
c

4: xm = bx%10m

10m−1
c

5: a1 = LSG(m−1)(a) % 10
6: Assign i = 0
7: j = (i ∗ a1 + xm)%10
8: while j is not equal to nm do
9: i = i + 1

10: j = (i ∗ a1 + xm)%10
11: end while
12: LSGm(a) = 0LSG(m−1)(a)
13: LSGm(b) = LSG(m−1)(b) +i ∗ 10m−1

14: End

Example 3. Assign LSG3(a) = 233 and LSG3(b) = 897,
LSG3(ab) = 001. Find a pair of (LSG4(a), LSG4(b)) that
LSG4(ab) = 2001 by using Algorithm 5.

In this example, LSG4(ab) = 2001 can be represented
as the value of LSG4(n).

x = 233 ∗ 897 = 209, 001

n4 = b2001%104

103
c = 2

x4 = b209, 001%104

103
c = 9

a1 = 233%10 = 3

where i = 0, j = (0 ∗ 3 + 9)%10 = 9, j is not equal to 2.
i = 1, j = (1 ∗ 3 + 9)%10 = 2, j is equal to 2.

Then, LSG4(a) = 0233 and LSG4(b) = LSG3(b) +
i ∗ 103 = 897 + 1000 = 1897. However, for some values
of n, the implementation of SFFA-X should be divided
into 2 groups, based on the relation between LSG(a) and
LSG(b). In fact, there are 2 cases of SFFA-X as follows:

Case 1: The algorithm is always divided into 2 groups
whenever there may be the pairs of a and b that
LSG(a) is equal to LSG(b).

Group 1: The algorithm for all pairs of a and b that
LSG(a) is equal to LSG(b), the value of LSG(v)
is always equal to 0.

Group 2: The algorithm for all pairs of a and b that
LSG(a) is not equal to LSG(b), the value of
LSG(u) is always equal to 0.

Case 2: There is only one group whenever there is no
pairs of a and b that LSG(a) is equal to LSG(b),
both of LSG(u) and LSG(v) are not always equal to
0.

For the case of n that must be divided into 2 groups,
there is only one solution in only one group. Therefore,
the process is ended when the corrected solution in one
out of two groups is found.

Example 4. Factoring n = 1287901 using SFFA-X with
m = 2.
This example is assigned to use SFFA-X with m = 2
to find two prime factors of n. Because LSG2(n) =
01, therefore SFFA-01 is the algorithm used for the
implementation. However, all steps to find two prime
factors of n = 1287901 using SFFA-01 are as follows:
Assumption: All pairs of (LSG(a), LSG(b)) that
LSG(ab) is equal to LSG(n) = 1 are known.

Algorithm 3:

Step 1: Find all of LSG2(u), LSG2(v), disu and disv
by using Algorithm 4.
Algorithm 4:

Step 1: Group 1: (1, 1); Group 2: (3, 7); Group 3:
(9, 9).

Step 2: Group 1: (01, 01); Group 2: (03, 67);
Group 3: (09, 89). This process is computed
by using Algorithm 5.

Step 3:

Group 1: (01, 01), (11, 91), (21, 81), (31,
71), (41, 61), (51, 51);

Group 2: (03, 67), (13, 77), (23, 87), (33,
97), (43, 07), (53, 17), (63, 27), (73, 37),
(83, 47), (93, 57). In this case, one of all
possible pairs of (k1, k2) which are (1, 1),
(3, 3), (7, 7) or (9, 9) is chosen.

Group 3: (09, 89), (19, 79), (29, 69), (39,
59), (49, 49), (99, 99).
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Steps 4 - 5: Because there are some pairs of a and
b that LSG(a) is equal to LSG(b), SFFA-01
must be divided into 2 group. Group 1 is from
the combining between Group 1 and Group 3,
LSG(a) is equal to LSG(b). The other is that
LSG(a) is not equal to LSG(b). Therefore,

Group 1: LSG2(u) = {02, 98}; LSG2(v) =
{00, 20, 40, 60, 80}.

Group 2: LSG2(u) = {10, 30, 50, 70, 90}.
LSG2(v) = {36, 64}.

Steps 6-7 Group 1: disu = {96, 4} and disv =
{20, 20, 20, 20, 20} = 20, do not assign j. Group
2: disu = {20, 20, 20, 20, 20} = 20, do not as-
sign i, and disv = {28, 72}.

End of Algorithm 4.

Steps 2-4: Find the initial value of U , V , i and j for
each group. First, compute U = 2d

√
ne = 2270.

Group 1: Because LSG2(U) = 70 is not a member
in the set of LSG2(u), U must be changed as
2298, the nearest value which is more than 2270.
That means the initial value of i must be equal
to 1. However, the initial value of V is 0 because
the minimum value of LSG2(v) is 0.

Group 2: Because LSG2(U) = 70 is already a
member in the set of LSG2(u), U = 2270 can
be used as the initial value. However, the vari-
able, i, is not used in this group. In addition,
the initial value of V is 36 because the minimum
value of LSG2(v) is 36.

Step 5:

Group 1: r = 22982 − 02 − 4(1287901) = 129200.

Group 2: r = 22702 − 362 − 4(1287901) = 0.

In Step 5, the expected solution is found in Group 2,
r = 0. Therefore, the process in the loop, Steps 6 -
16, will not be implemented. However, the two prime
factors can be computed from p = U+V

2 = 2270+36
2 =

1153 and p = U−V
2 = 2270−36

2 = 1117.

Moreover, for the value of n in Example 3, assume
SFFA-901, m = 3, is chosen to factor n instead of
using SFFA-01. All pairs of (LSG2(a), LSG2(b))
which are found in this example will be used in Step
1 of SFFA-901 in order to find all pairs of (LSG3(a),
LSG3(b)) that LSG3(LSG3(a)*LSG3(b)) is equal to
LSG3(n) = 901.

Example 5. Factoring n = 133901 using SFFA-X with
m = 2.
This example is assigned LSG2(n) = 01. That means
SFFA-01 is chosen for this example. Because LSG2(u),
LSG2(v), disu and disv of SFFA-01 had been already
computed in Example 4, it is not time-consuming to
calculate them again and we can start the process at Step

2 of Algorithm 3.

Algorithm 3:

Steps 2 - 4: Find the initial value of U, V, i and j for
each group. First, compute U = 2d

√
ne = 732.

Group 1: Because LSG2(U) = 32 is not a member
in the set of LSG2(u), U must be changed as
798. That means the initial value of i must be
equal to 1. However, the initial value of V is 0
because the minimum value of LSG2(v) is 0.

Group 2: Because LSG2(U) = 32 is a not member
in the set of LSG2(u), U must be changed as
750. However, the variable, i, is not used in this
group. In addition, the initial value of V must
be 36 because the minimum value of LSG2(v) is
36.

Step 5:

Group 1: r = 7982 − 02 − 4(133901) = 101200.

Group 2: r = 7502 − 362 − 4(133901) = 25600.

Steps 6 - 16: Process in loop:

Iteration 1:

Group 1: (r > 0, V = 0) :

r = r − (2 ∗ V ∗ disv + disv2) = 100800

V = V + disv = 20.

Group 2: (r > 0, V = 36, j = 0) :

r = r − (2 ∗ V ∗ disv(0) + disv(0)2) = 22800.

V = V + disv(0) = 64, j = 1.

Iteration 2:

Group 1: (r > 0, V = 20) :

r = r − (2 ∗ V ∗ disv + disv2) = 99600.

V = V + disv = 40.

Group 2: (r > 0, V = 64, j = 1) :

r = r − (2 ∗ V ∗ disv(1) + disv(1)2) = 8400.

V = V + disv(1) = 136, j = 0.

Iteration 3:

Group 1: (r > 0, V = 40) :

r = r − (2 ∗ V ∗ disv + disv2) = 97600.

V = V + disv = 60.

Group 2: (r > 0, V = 136, j = 0) :

r = r − (2 ∗ V ∗ disv(0) + disv(0)2) = 0.

V = V + disv(0) = 164.

Because the expected value of r which is equal to 0
is found in Group 2 of the 3rd iteration, the process is
stopped and then two prime factors can be computed from
p = U+V

2 = 750+164
2 = 457 and q = U−V

2 = 750−164
2 =

293.
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4 Results and Discussion

In this work, the computer specifications for the imple-
mentation are Intel(R) Core(TM) i3 CPU M380 2.53
GHz, 4.00 GB RAM Memory, and Microsoft Windows 8.1
Pro Operating System. Java Programming Language is
chosen to develop the algorithms. Moreover, we use Big-
Integer class which is the class of Java as the data type
because this class can be represented as the unlimited
data type. The experiment is distinguished as 4 parts.
Each bits size in each experiment is the average result
of 50 values of n chosen randomly. In addition, for Fig-
ure 1 and Figure 2, only the difference of bits size between
two prime factors equal to 2 is chosen. However, all al-
gorithms of SFFA-X in these experiments are started at
Step 2 of Algorithm 3 because the process of Step 1 is
always implemented only the first time of SFFA-X, when
X is fixed.

The experiment in Figure 3 is for the same size of two
prime factors of n and the values of n that SFFA-X must
be divided into 2 groups, LSG4(n) = 0001 is the repre-
sentative of this experiment. That means only 4 algo-
rithms of SFFA-X in which X is equal to 1, 01, 001 and
0001 are chosen for the implementation. The experiment
shows that SFFA-0001 is the fastest algorithm. Never-
theless, the average computation time of FFA-2, SFFA-1,
SFFA-01, SFFA-001, SFFA-0001, MFFV4 and P2MFF
are about 30.27, 17.17, 4.09, 2.05, 1.82, 5.78 and 15.15
seconds respectively. Furthermore, the information in this
figure implies that SFFA-X begins to factor n faster than
MFFV4 when X which is equal to 01 is chosen.

The difference between the experiment in Figure 3 and
Figure 1 is that the size of two large prime factors in
Figure 1 is different while the other in Figure 3 is same.
Therefore, all algorithms of SFFA-X for this experiment
are still SFFA-1, SFFA-01, SFFA-001 and SFFA-0001.
However, the experiment in Figure 1 shows that SFFA-
0001 is still the fastest integer factorization algorithm.
Nevertheless, the average computation time of FFA-2,
SFFA-1, SFFA-01, SFFA-001, SFFA-0001, MFFV4 and
P2MFF are about 243.2, 135.76, 29.4, 19.02, 10.73, 227.4
and 341.9 seconds respectively. Furthermore, this fig-
ure implies that SFFA-X begins to factor n faster than
MFFV4 when X is equal to 1 is chosen.

Whereas, SFFA-X in Figure 4 will not be divided into
2 groups because all values of LSG4(n) in this experi-
ment is 0003. However, the size of two prime factors of
n is same. That means only 4 algorithms of SFFA-X in
which X is equal to 3, 03, 003 and 0003 are chosen to
implement. The experiment shows that SFFA-0003 is the
fastest algorithm. Nevertheless, the average computation
time of FFA-2, SFFA-3, SFFA-03, SFFA-003, SFFA-0003,
MFFV4 and P2MFF are about 26.4, 9.35, 3.38, 3.2, 1.16,
4.78 and 13.08 seconds respectively. Furthermore, the in-
formation in this figure implies that SFFA-X begins to
factor n faster than MFFV4 when X which is equal to 03
is chosen.

The experiment in Figure 2 is similar to the other in

Figure 1 but LSG4(n) in Figure 2 is equal to 0003. There-
fore, all algorithms of SFFA-X for this experiment are
SFFA-3, SFFA-03, SFFA-003 and SFFA-0003. The exper-
imental in Figure 2 shows that SFFA-0003 is the fastest
integer factorization algorithm. Nevertheless, the average
computation time of FFA-2, SFFA-3, SFFA-03, SFFA-
003, SFFA-0003, MFFV4 and P2MFF are about 270.17,
109.7, 49.38, 43.56, 26.5, 167.25 and 448.28 seconds re-
spectively. Furthermore, this figure implies that SFFA-X
begins to factor n faster than MFFV4 when X which is
equal to 3 is chosen.

Moreover, if we consider the information in Figure 3
and Figure 4, the average computation time of SFFA-
0001 and SFFA-0003 are faster than MFFV4 by about
68.56% and 75.75%, respectively. On the other hand, if
the information in Figure 1 and Figure 2 is considered,
the average computation time of SFFA-0001 and SFFA-
0003 becomes faster than MFFV4 by about 95.28% and
84.15%, respectively.

These results imply that SFFA-X is the better choice
to factor n when compared with MFFV4 especially when
bits size of X is large and the size of two large prime
factors is different. The reason is as follows.

Due to MFFV4 and SFFA-X are modified chronolog-
ically from FFA-1 and FFA-2, we will compare the it-
erations of the computation between FFA-1 and FFA-2
instead of their improvements.

The total iterations in the loop of u, in FFA-2, are
(p + q) − 2d

√
ne. However, the increment value of u is

always 2, but the increment value of x, in FFA-1, is always
1. That means the total iterations of u are equal to the
total iterations of x which are equal to (p+ q)/2−d

√
ne .

Nevertheless, the total iterations in the loop of v, in FFA-
2, are p− q and are more than the total iterations in the
loop of y, in FFA-1, the reason are as follows: Assume A
and B are represented as the total iterations in the loop
of y and v, respectively. Then,

A = (p + q)− 2d
√
ne

≈ (p + q)− 2
√
n

= (p + q)− 2
√
p
√
q

= (
√
p−√q)2

= (
√
p−√q)(

√
p−√q) (5)

B = p− q

=
√
p
2 −√q2

= (
√
p−√q)(

√
p +
√
q) (6)

From Equations (5) and (6), all possible results are di-
vided into 2 conditions:

Condition 1: (p is close to q)
It is obvious that the iterations of FFA-2 are greater
than FFA-1. Therefore, the condition of SFFA-X
which is faster than MFFV4 is that the digits of X
in this case must be large enough, the digits of X in
Figure 3 and Figure 4 must be at least 2.

Condition 2: (p is far from q)
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Figure 1: Average computation time for factoring LSG4(n) = 0001 and the size of p and q is different

Figure 2: Average computation time for factoring LSG4(n) = 0003 and the size of p and q is different

Figure 3: Average computation time for factoring LSG4(n) = 0001 and the size of p and q is same
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Figure 4: Average computation time for factoring LSG4(n) = 0003 and the size of p and q is same

If p is very larger than q, then q may be left out from
the equation to estimate total iterations. That means
the iterations of FFA-1 are close to FFA-2. However,
FFA-1 is time-consuming to compute the square root
of integer while FFA-2 does not to do. This reason
indicates that FFA-2 is certainly faster than FFA-1.
That means most of SFFA-X can factor n faster than
MFFV4 although the size of X is smaller than the
other in Condition 1, the digit of X in Figure 1 and
Figure 2 is only 1.

From both of two conditions above, we concluded that
most of SFFA-X can factor n faster than MFFV4 espe-
cially when the size of X is large enough.

Moreover, total iterations of SFFA-X can be found
from the following equation:

t = (j ∗ b A− ux∑j−1
i=0 disu(i)

c+ cu)

+(k ∗ bB − LSGm(v0)∑k−1
i=0 disv(i)

c+ cv).

Where,

1) t = total iterations of SFFA-X in main loop;

2) A = (p + q)− 2d
√
ne;

3) B = p− q;

4) ux = the increment value of 2d
√
ne to get the initial

value of U ;

5) j = size of disu;

6) k = size of disv;

7) LSGm(v0) = the minimum value of LSGm(v);

8) cu is the remainder iterations that are more than 1
but less than size of disu when there is the remainder
of A−ux∑j−1

i=0 disu(i)
. However, cu is equal to 0 when there

is not the remainder;

9) cv is the remainder iterations that are more than 1
but less than size of disv when there is the remainder
of B−LSGm(v0)∑k−1

i=0 disv(i)
. However, cv is equal to 0 when there

is not the remainder.

However cu and cv can be found by using Algorithm 6
and Algorithm 7 respectively.

Algorithm 6 Calculating cu
1: Begin
2: size disu = size of disu that the repeated patterns

are removed
3: count u = the index of LSGm(u) that is equal to the

initial value of LSGm(U)
4: count u = count u%size disu
5: s u =

∑j−1
i=0 disu(i)

6: r u = (A− ux)%s u
7: while r u is not equal to zero do
8: r u = r u− disu(count u)
9: count u = count u + 1

10: if count u is equal to size disu then
11: count u = 0
12: end if
13: end while
14: cu = count u
15: End

In addition, for some value of n that SFFA-X must
be divided into 2 group, t is computed by using only all
parameters in the solution group.

Example 6. Find total iterations in Example 5.
Because the solution group is in Group 2, we have to

use parameters in this group as follows:

1) A = (457 + 293)− 732 = 18;

2) B = 457− 293 = 164;

3) j = 1, size of disu;
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Algorithm 7 Calculating cv
1: Begin
2: count v = 0
3: s v =

∑k−1
i=0 disv(i)

4: r v = (B−LSGm(v0))%s v
5: while r v is not equal to zero do
6: r v = r v − disv(count v)
7: count v = count v + 1
8: end while
9: cv = count v

10: End

4)
∑0

i=0 disu(i) = disu = 20;

5) k = 2, size of disv;

6)
∑1

i=0 disv(i) = disv(0) + disv(1) = 28 + 72 = 100;

7) ux = 18, the initial value of U is 750, then U −
2d
√
ne = 750− 732 = 18;

8) LSG2(v0) = 36;

9)
A− ux∑j−1
i=0 disu(i)

=
18− 18

20
= 0, the remainder is 0,

then cu = 0;

10)
B − LSG2(v0)∑k−1

i=0 disu(i)
=

164− 36

100
= 1, the remainder is 28

(r v = 28), then cv can be computed by using Algo-
rithm 7 as follows:

a. count v = 0, s v = 100, r v = 28;

b. r v = r v − disv(0) = 28− 28 = 0;

c. count v = count v + 1 = 1.

Because r v = 0, then cv = count v = 1. Therefore,
total iterations in main loop is

t = ((1)(0) + 0) + ((2)(1) + 1) = 3.

In general, both of j∑j−1
i=0 disu(i)

and k∑k−1
i=0 (i)

are always

less than 1
2 . Therefore, t is always less than total itera-

tions of FFA-2 that is equal to A+B
2 . Furthermore, t can

be decreased when the value of m is larger because the
values of j∑j−1

i=0 disu(i)
and k∑k−1

i=0 (i)
are certainly smaller.

5 Conclusion

The aim of this paper is to propose a new technique to
speed up the 2nd method of Fermat’s Factorization Al-
gorithm (FFA-2) by considering the last m digits of n to
leave out some values of u and v which are not in the con-
dition. This technique is called Specific Fermat’s Factor-
ization Algorithm Considered from X (SFFA-X) where X
is the last m digits of n. Furthermore, the concept of this
technique implies that the computation time of SFFA-X
will be reduced more whenever the bigger size of m is

considered because more details of u and v are known.
Therefore, the unrelated values of u and v are increased
and they should be left out from the computation.

Moreover, SFFA-X can be also applied with Estimated
Prime Factor (EPF) [18] using the technique of continued
fractions [5, 12] to estimate the new initial values of U and
V to reduce more iterations of the computation. However,
the applying SFFA-X with EPF can be used to factor only
the unbalanced modulus in order to get the high accuracy.
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