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Abstract

At Eurocrypt’99, Paillier presented a public-key cryp-
tosystem based on a novel computational problem. It
has interested many researchers because of its additively
homomorphic property. In this paper, we show that there
is a big difference between the original Paillier’s encryp-
tion and some variants. The Paillier’s encryption can
be naturally converted into a signature scheme but these
variants miss the feature. In particular, we simplify the
alternative decryption procedure of Bresson-Catalano-
Pointcheval encryption scheme proposed at Asiacrypt’03.
The new version is more applicable to cloud computing
because of its double trapdoor decryption mechanism and
its flexibility to be integrated into other cryptographic
schemes. It captures a new feature that its two groups of
secret keys can be distributed to different users so as to
enhance the robustness of key management.

Keywords: Additively homomorphic encryption, double
trapdoor decryption, Paillier’s cryptosystem, robustness
of key management

1 Introduction

Homomorphic encryption is a useful cryptographic prim-
itive because it can translate an operation on ciphertexts
into an operation on underlying plaintexts.

The property is very important for many applications,
such as e-voting, threshold cryptosystems, watermarking
and secret sharing schemes. For example, if an additively
homomorphic encryption is used in an e-voting scheme,
one can obtain an encryption of the sum of all ballots from
their encryption. Consequently, it becomes possible that
a single decryption will reveal the result of the election.
That is, it is unnecessary to decrypt all ciphertexts one
by one.

At Eurocrypt’99, Paillier [21] proposed a public-key

cryptosystem based on a novel computational problem.
It encrypts a message m by

E(m, r) = gmrn mod n2,

where n = pq is an RSA modulus, g is a public param-
eter such that n | ordn2(g), and r is a random pad. The
encryption function E(m, r) has the additively homomor-
phic property, i.e.,

E(m1, r1)E(m2, r2) = E(m1 +m2, r1r2).

More powerful, who knows the trapdoor of the encryption
function can recover not only the message m but also the
random pad r. This is another appreciated property for
many applications. Due to this property, the Paillier’s en-
cryption scheme can be naturally transformed into a one-
way trapdoor permutation and a digital signature scheme.

In 1984, Goldwasser and Micali [13] proposed the first
probabilistic encryption scheme which was also homo-
morphic. It has been improved [19, 20]. In 1999, Pail-
lier [21] presented a novel additively homomorphic en-
cryption which was more powerful because it can recover
the random pad r as well as the message m. At PKC’01,
Damg̊ard and Jurik [9] put forth a generalization of Pail-
lier’s encryption using computations modulo ni(i ≥ 2)
and taking a special base g = n+ 1.

They [10] also investigated the applications of the gen-
eralization. The elliptic curve variant of Paillier’s cryp-
tosystem is due to Galbraith [11].

In 2001, Choi et al. [7] revisited the Paillier’s encryp-
tion by taking a special base g such that gλ = 1 + n
mod n2, where λ = lcm(p − 1, q − 1). Shortly after that,
Sakurai and Takagi [22] pointed out that the variant can-
not resist a chosen ciphertext attack which can factor the
modulus n by only one query to the decryption oracle.

At Eurocrypt’06, Schoenmakers and Tuyls [23] have
considered the problem of converting a given Paillier’s en-
cryption of a value x ∈ Zn into Paillier’s encryption of the
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bits of x. At Eurocrypt’13, Joye and Libert [15] obtained
another generalization based on 2k-th power residue prob-
lem. In 2013, Boneh et al. [1] considered the problem of
private database queries using Paillier’s homomorphic en-
cryption. At Asiacrypt’ 14, Catalano et al. [5] presented
an instantiation of publicly verifiable delegation of compu-
tation on outsourced ciphertext which supports Paillier’s
encryption. In 2015, Castagnos and Laguillaumie [4] de-
signed a linearly homomorphic encryption scheme whose
security relies on the hardness of the decisional Diffie-
Hellman problem. Their scheme is somehow similar to
the one of [2]. The Gentry’s fully homomorphic encryp-
tion scheme [12] relies on hard problems related to lat-
tices, which actually allows to evaluate any function on
messages given their ciphertexts. But Paillier’s cryptosys-
tem based on the problem of factoring RSA integers is still
more competitive for applications that need only to add
ciphertexts. Recently, Hsien et al. have investigated the
possible usage of homomorphic encryption in client-server
scenario [6, 14, 16, 17, 18]. Note that a misapplication of
a homomorphic encryption for numerical calculations can
give rise to errors like the ones in [24] (see [3] for details).

In this paper, we revisit the Paillier’s cryptosystem
and reaffirm that the Paillier’s encryption can be natu-
rally converted into a signature scheme but some variants
miss the feature. Our presentation of the cryptosystem
and some variants is so plain and heuristic that it be-
comes possible to investigate the further applications of
these schemes in different scenarios. In particular, we
simplify the alternative decryption procedure of Bresson-
Catalano-Pointcheval encryption scheme. Our new pro-
posal is more applicable to cloud computing because of its
double trapdoor decryption mechanism and its flexibility
to be integrated into other cryptographic schemes.

It captures a new feature that its two groups of secret
parameters can be allocated to different users so as to
enhance the robustness of key management.

2 Paillier’s Encryption Scheme

Let n = pq be an RSA modulus and φ(n) be the Euler’s
totient function. Set λ = lcm(p−1, q−1). Hence, |Z∗

n2 | =
φ(n2) = nφ(n) and for any w ∈ Z∗

n2

wλ = 1 mod n, wnλ = 1 mod n2

which are due to Carmichael’s theorem.

Definition 1. A number z is said to be a n-th residue
modulo n2 if there exists a number y ∈ Z∗

n2 such that
z = yn mod n2.

The set of n-th residues is a multiplicative subgroup of
Z∗
n2 of order φ(n). Each n-th residue has exactly n roots,

among which exactly one is strictly smaller than n.
Let g be some element of Z∗

n2 and define the following
integer-valued function

Eg : Zn × Z∗
n 7−→ Z∗

n2

(x, y) 7−→ gx · yn mod n2.

Lemma 1. If n | ordn2(g), then Eg is bijective.

Proof. Since the two groups Zn × Z∗
n and Z∗

n2 have the
same number of elements nφ(n), it suffices to prove that
Eg is injective.

Suppose that gx1yn1 = gx2yn2 mod n2, where x1, x2 ∈
Zn, y1, y2 ∈ Z∗

n. It comes gx2−x1(y2/y1)n = 1 mod n2,
which implies

gλ(x2−x1)(y2/y1)λn = gλ(x2−x1)

= 1 mod n2.

Thus ordn2(g) |λ(x2 − x1).
Since n | ordn2(g), we have n |λ(x2 − x1). In view of

that (n, λ) = 1, we obtain x2 = x1 mod n. Since x1, x2 ∈
Zn, it comes x1 = x2. Thus, (y2/y1)n = 1 mod n2, which
leads to the unique solution y2/y1 = 1 over Z∗

n. This
means x1 = x2 and y1 = y2. Therefore, Eg is bijective.

By the above lemma, for a given w ∈ Z∗
n2 , there exists

a pair (x, y) such that w = gxyn mod n2.

Problem 1. Given an RSA modulus n = pq, c, g ∈ Z∗
n2 ,

compute x ∈ Z∗
n such that

gxyn = c mod n2,

where n | ordn2(g) and y is some element of Z∗
n2 .

Theorem 1. If λ is known and ( g
λ−1mod n2

n , n) = 1, then
one can solve Problem 1 by computing

x =

(
cλ − 1 mod n2

n

)(
gλ − 1 mod n2

n

)−1

mod n.

Proof. By the definition of λ, we have

cλ = 1 mod n, gλ = 1 mod n.

Set

cλ = an+ 1 mod n2, gλ = bn+ 1 mod n2,

i.e.,

a =
cλ − 1 mod n2

n
, b =

gλ − 1 mod n2

n
.

Since n | ordn2(g), Eg is bijective. There exists a pair
(x, y) ∈ Zn × Z∗

n such that c = gxyn mod n2. Hence,
cλ = (gxyn)λ mod n2. Since ynλ = 1 mod n2, it comes
cλ = (gλ)x mod n2. Thus,

an+ 1 = (bn+ 1)x = xbn+ 1 mod n2

this is due to n2 |
(
x
i

)
(bn)i, i ≥ 2. Therefore, an = xbn

mod n2. That means a = xbmod n. Since (b, n) = 1, it
gives x = ab−1 mod n.
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Remark 1. Paillier called the Problem 1 as Composite
Residuosity Class Problem (see Definition 8 in [21]). In
view of that the trapdoor λ plays a key role in comput-
ing the exponent x with respect to the base g, we would
like to call the Problem 1 as Trapdoored Partial Discrete
Logarithm Problem.

Conjecture 1. If the trapdoor λ is unknown, there ex-
ists no probabilistic polynomial time algorithm that solves
Problem 1.

Based on the above results, at Eurocrypt’99 Paillier
proposed his cryptosystem. The cryptosystem includes a
probabilistic encryption scheme, a one-way trapdoor per-
mutation and a digital signature scheme. We now describe
the encryption scheme as follows.

Table 1: Paillier’s encryption scheme

Setup Pick an RSA modulus n = pq.
Set λ = lcm(p− 1, q − 1).
Select g ∈ Z∗

n2 such that n | ordn2(g).
Publish n, g and keep λ in secret.

Enc. For m ∈ Zn, pick r ∈ Zn,
compute the ciphertext

c = gmrn mod n2.

Dec. m =
(
cλ−1mod n2

n

)
/
(
gλ−1mod n2

n

)
mod n

3 A Hybrid Computational Prob-
lem

We now consider another computational problem which
is a hybrid of partial discrete logarithm problem and n-th
residuosity problem.

Problem 2. Given an RSA modulus n = pq, c, g ∈ Z∗
n2 ,

compute (x, y) ∈ Zn × Z∗
n such that

gxyn = c mod n2

where n | ordn2(g).

Notice that the solvability of Problem 2 directly implies
that of Problem 1. We shall prove that the inverse holds,
too.

If the trapdoor λ is known, Paillier proposed a method
to solve the hybrid computational problem. He pointed
out that x, y can be computed by

x =

(
cλ − 1 mod n2

n

)(
gλ − 1 mod n2

n

)−1

mod n,

y = (cg−x)1/n mod λ mod n.

The idea behind his method can be described as fol-
lows. By the existence of (x, y), it is easy to find that

gxyn = c mod n2

=⇒ gxyn = c mod n⇐⇒ yn = cg−x mod n

⇐⇒ (yn)1/n mod λ = (cg−x)1/n mod λ mod n

⇐⇒ y = (cg−x)1/n mod λ mod n

By the uniqueness of (x, y) ∈ Zn × Z∗
n, we conclude that

it is properly computed.

Theorem 2. If λ is known and ( g
λ−1mod n2

n , n) = 1, then
one can solve Problem 2 by computing

x =

(
cλ − 1 mod n2

n

)(
gλ − 1 mod n2

n

)−1

mod n,

y = (cg−x)s mod n,

where s is the integer with the least absolute value such
that λ |ns− 1.

Proof. Since (n, λ) = 1, it is easy to compute the integer
s with the least absolute value such that λ |ns − 1. By
Theorem 1, we conclude that x is properly computed. By
the existence of y and yn = cg−x mod n2, we have

(cg−x)λ = ynλ = 1 mod n2

Now, suppose that ns − 1 = λφ and (cg−x)s = `n + y
mod n2 for some integers φ, `. Hence, it comes

gx
(
(cg−x)s − `n

)n
= gx(cg−x)(cg−x)ns−1 = c(cg−x)λφ

= c((cg−x)λ)φ = c · 1φ = c mod n2

This completes the proof.

Note that the values s and
(
gλ−1mod n2

n

)−1

mod n

have no relation to the ciphertext c. They can be com-
puted and stored previously.

Conjecture 2. If λ is unknown, there exists no proba-
bilistic polynomial time algorithm that solves Problem 2.

4 The Paillier’s One-way Trap-
door Permutation and The Dig-
ital Signature Scheme

In [21], Paillier has put forth a one-way trapdoor per-
mutation and the digital signature scheme based on his
computational method. We now relate them as follows.

5 Some Variants of Paillier’s En-
cryption Scheme

5.1 Descriptons of Some Variants

In the same article [21], Paillier has pointed out that there
was an efficient variant of his original encryption scheme.
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Table 2: Paillier’s signature scheme

Setup See Table 1.

Sign

For a message m, compute

s1 ← ρ
(
H(m)λ−1mod n2

n

)
mod n.

s2 ← ((H(m)g−s1)s mod n
The signature is (m; s1, s2).

Verify H(m)
?
= gs1sn2 mod n2

Table 3: Paillier’s one-way trapdoor permutation

Setup Set n = pq, λ = lcm(p− 1, q − 1).
Select g ∈ Z∗

n2 such that n | ordn2(g).

Compute ρ =
(
gλ−1mod n2

n

)−1

mod n,

and s which is the integer with the least
absolute value such that λ |ns− 1.
Publish n, g and keep λ, ρ, s in secret.

Enc. Given m ∈ Zn2 , set m = m1 + nm2.
The ciphertext is c← gm1mn

2 mod n2.

Dec. m1 ← ρ
(
cλ−1mod n2

n

)
mod n,

m2 ← (cg−m1)s mod n.
m← m1 + nm2.

Shortly afterwards, other variants came out [2, 7, 8, 9].
We list some variants in Table 4.

Correctness of Variant 1. The variant takes x =
m, y = gr in Problem 2. Since each n-th residue has
exactly n roots, among which exactly one is strictly
smaller than n, and ordn2(g) = αn, we have gα = 1
mod n. Otherwise, suppose gα = sn + tmod n2 for
some integers 0 ≤ s < n and t (2 ≤ t < n). It leads
to

1 = gαn = (sn+ t)n = tn mod n2

which means t = 1. It is a contradiction. Thus,
gα = sn+ 1 mod n2. By

cα = (gm(gr)n)α = (gα)m

= (sn+ 1)m = smn+ 1 mod n2

we have

cα−1 mod n2

n
gα−1 mod n2

n

=
sm

s
= m mod n.

Correctness of Variant 2. The variant takes g = 1 +
n, x = m, y = r in Problem 2. It is easy to find that

cκ − 1 mod n2

n
=

((1 + n)mrn)τλ − 1 mod n2

n

=
(1 + n)mτλ − 1 mod n2

n

=
nmτλ mod n2

n
=
nm

n
= m

Correctness of Variant 3. The variant takes x =
m, y = r in Problem 2. It is easy to check that

cλ − 1 mod n2

n
=

(gmrn)λ − 1 mod n2

n

=
(gλ)m − 1 mod n2

n

=
(1 + n)m − 1 mod n2

n
= m

Correctness of Variant 4. It is easy to see that

c
(cd mod n)e

− 1 mod n2

n

=

(1+n)mre

(((1+n)mre)d mod n)e
− 1 mod n2

n

=
(1+n)mre

re − 1 mod n2

n
= m

5.2 The Bresson-Catalano-Pointcheval
Encryption Scheme Revisited

The Bresson-Catalano-Pointcheval encryption scheme has
not directly specified that n | ordn2(g). But it is easy to
find that such a picked g satisfies the condition with high
probability. In view of that the condition is necessary to
recover x in Problem 1 (see the proof of Theorem 1), we
shall directly specify it in the Setup phase.

The random pad r is chosen by the sender and is
blinded as

A = gr mod n2, B = hr(1 +mn) mod n2.

We have

A = gr · 1n mod n2,

it here takes x = r, y = 1 in Problem 1. Thus one know-
ing the trapdoor λ can recover r using Paillier’s compu-
tational method. Note that although B could be viewed
as

B = (1 + n)mhr mod n2.

It does not fall into the class of Problem 1. One cannot
recover r from B whether the trapdoor is known or not.

After r is retrieved, one can recover m = B/hr−1mod n2

n
directly. Obviously, the original computational method
incurs more cost.

Based on the observation, we now present a new revi-
sion of the scheme (see Table 5).

We stress that the new alternative decryption method
does not invoke the secret parameter a, which means the
secret parameters a, λ, ρ can be divided into two groups,
{a} and {λ, ρ}. The two groups of secret parameters can
be allocated to different users so as to enhance the robust-
ness of key management. The new version is more flexible
to be integrated into other cryptographic schemes.
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Table 4: Some variants of Paillier’s encryption scheme

n = pq is an RSA modulus, λ = lcm(p− 1, q − 1).

Variant 1 g ∈ Z∗
n2 , ordn2(g) = αn. PK: n, g; SK: α.

(Paillier) m ∈ Zn, r ∈ Zn, c = gm+rn mod n2.

m =
(
cα−1mod n2

n

)
/
(
gα−1mod n2

n

)
mod n

Variant 2 κ = τλ, τ = λ−1 mod n. PK: n; SK: κ.

(Damg̊ard-Jurik) m ∈ Zn, r ∈ Zn, c = (1 +mn)rn mod n2.

m = cκ−1mod n2

n

Variant 3 gλ = 1 + nmod n2. PK: n, g; SK: λ.

(Choi-Choi-Won) m ∈ Zn, r ∈ Zn, c = gmrn mod n2.

m = cλ−1mod n2

n

Variant 4 e < n, d = e−1 mod φ(n). PK: n, e; SK: d.

(Catalano-Gennaro m ∈ Zn, r ∈ Zn, c = (1 +mn)re mod n2.

-Howgrave-Nguyen)
m =

c

(cd mod n)e
−1mod n2

n

Table 5: The Bresson-Catalano-Pointcheval encryption scheme revisited

The original The revisited

n = pq, λ = lcm(p− 1, q − 1). n = pq, λ = lcm(p− 1, q − 1).

Setup

α ∈ Z∗
n2 , a < nλ/2, g ∈ Z∗

n2 , n | ordn2(g).

g = α2 mod n2, h = ga mod n2. a ∈ Z∗
n, h = ga mod n2.

ρ =
(
gλ−1mod n2

n

)−1

mod n. ρ =
(
gλ−1mod n2

n

)−1

mod n.

τ = λ−1 mod n.

PK: n, g, h; SK: a, λ, ρ, τ . PK: n, g, h; SK: a, λ, ρ.

Enc.

For m ∈ Zn, pick r ∈ Zn,

It is the same as the original.
compute A = gr mod n2,

B = hr(1 +mn) mod n2.

The ciphertext is c = (A,B).

Dec. 1 m = B/Aa−1mod n2

n It is the same as the original.

Dec. 2

r = ρ
(
Aλ−1mod n2

n

)
mod n. r = ρ

(
Aλ−1mod n2

n

)
mod n.

γ = armod n.

m =
( B
gγ )

λ−1mod n2

n · τ mod n, m = B/hr−1mod n2

n
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Table 6: Comparisons of Paillier’s encryption and some variants

The original

c = gmrn mod n2. n | ordn2(g), x = m, y = r.

Verification w.r.t. (m, s1, s2): H(m)
?
= gs1sn2 mod n2. True.

Variant 1

c = gm(gr)n = gm+rn mod n2.

ordn2(g) = αn, x = m, y = gr is a special random pad.

Verification w.r.t. (m, s1, s2): H(m)
?
= gs1+s2n mod n2. False.

Variant 2

c = (1 + n)mrn = (1 +mn)rn mod n2.

g = 1 + n, ordn2(g) = n, x = m, y = r

Verification w.r.t. (m, s1, s2): H(m)
?
= (1 + s1n)sn2 mod n2. False.

Variant 3 c = gmrn mod n2. gλ = 1 + n, x = m, y = r

It can not resist a chosen ciphertext attack.

Variant 4

c = (1 +mn)re mod n2, g = 1 + n, ed = 1 mod φ(n).

Verification w.r.t. (m, s1, s2): H(m)
?
= (1 + s1n)se2 mod n2. False.

Variant 5 (A,B) = (gr mod n2, (1 +mn)hr mod n2)

(Bresson-Catalano

-Pointcheval) Verification w.r.t. (m, s1, s2): H(m)
?
= (1 + s1n)hs2 mod n2. False.

5.3 Comparisons

The Paillier’s encryption scheme can be naturally con-
verted into a signature scheme because it can retrieve the
random pad r as well as the message m. This is due to
that it only requires n | ordn2(g). But in the Variant 1,
one cannot retrieve r ∈ Z∗

n, instead gr mod n2. Though
the Variant 3 is very similar to the original Paillier’s en-
cryption scheme, it is insecure against a chosen ciphertext
attack [22]. The others, Variant 2, Variant 4 and Variant
5 cannot be converted into signature schemes. See Table 6
for details.

By the way, the claim that some variants are more
efficient than the original Paillier’s encryption scheme is
somewhat misleading. Actually, in Paillier’s encryption
scheme the computation(

gλ − 1 mod n2

n

)−1

mod n

has no relation to the ciphertext c. It can be computed
and stored previously. The dominated computation in the
decryption procedure is that

cλ − 1 mod n2

n
,

while the corresponding computation in Variant 4 is

m =

c
(cd mod n)e

− 1 mod n2

n
,

and that in Variant 5 is

m =
B/Aa − 1 mod n2

n
.

We find these decryptions require almost the same com-
putational cost.

6 Conclusion

We revisit the Paillier’s cryptosystem and present an
efficient alternative decryption procedure for Bresson-
Catalano-Pointcheval encryption scheme.

We reaffirm that the original Paillier’s encryption
scheme has a special property that it naturally implies a
signature scheme, while those variants miss this feature.

We would like to stress that although a homomorphic
encryption allows anyone to perform some computations
on encrypted data, despite not having the secret decryp-
tion key, the computations are constrained to the under-
lying domain (finite fields or rings). A misapplication of
a homomorphic encryption for numerical calculations can
give rise to errors.
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