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Abstract

Firewalls enforced by rules are a security measure for
verifying huge packets at gateway networks. Therefore,
they probably act as bottlenecks of the networks. In this
paper, we have presented several techniques to improve
the speed of firewall rule verification with O(1) worst-
case access time. The techniques are: policy mapping
(PMAP), sparse matrix packing firewall (SMPF), perfect
hashing firewall (PHF) and minimal perfect hashing fire-
wall (MPHF). The experimental results show that they
are as fast as IPSet, one of the most famous high-speed
firewalls at present. However, they can get rid of IPSet
limitations such as IP address classes, subnet size of each
rule set and so on. Besides, on average, SMPF, MPHF
and PFH can reduce the amount of memory usage of
PMAP by 99.9, 87.7 and 62.3 percent respectively.

Keywords: Minimal perfect hashing firewall, perfect hash-
ing firewall, policy mapping, rule verification, sparse ma-
trix packing firewall

1 Introduction

The amount of traffic currently flowing in and out over
the networks is massive (Gigabit per second: Gbps). Fire-
walls equipped at the network gateways also need to pro-
cess increasingly high-volumes of data. This may lead to
bottlenecks on the networks, because firewalls enforced by
rules must verify contents in the header of every packet.
In traditional firewalls, the packet is verified against fire-
wall rules from the top to bottom as r1, r2, · · · , rn−1 by
order. A summation of packet sending and receiving over
networks is proportional to the ability of firewall rule ver-
ification. For example, if a network infrastructure is ca-
pable to provide throughput over 1 Gbps, but the firewall
can verify packets of about 0.5 Gbps only, the rest of pack-
ets (50%) being processed will be delayed and collected
for processing in the next second. While the packets are
increasing steadily, and have not been processed, the con-

nections will be reset by the network protocol (Connec-
tion timeout), and connections are lost automatically. It
results in a waste of time without benefits, because of
applications have to retransmit new connections again
and again. In addition, the number of firewall rules is
also critical to the overall performance of firewalls. In a
large company, for example, there are about 2,000 fire-
wall rules. Each rule is checked 6 times per one packet;
therefore, the firewall rules must be matched the total of
12,000 times per one packet. In traditional firewalls as
Netfilter/IPTables [29], it verifies rules by the order, thus
the worst-case access time is O(n), where n is the number
of firewall rules.

To modify traditional firewall rule verification, Alex X.
Liu et al. [21] proposed a new concept called the firewall
rule decision state diagram (FDD) instead of verification
by the sequence. It applied to several contributions such
as the verification of distributed firewalls [12], firewall pol-
icy queries [23], diverse firewall design [22] and so on [20].
Although, FDD clearly shows the firewall rule conflict
paths, the computational complexity of rule verification is
O(nd), where n is the number of rules and d is the number
of checked fields in each firewall rule. After, Acharya and
Gouda [1] proposed a linear time algorithm that reduced
the time complexity of FDD from as O(nd) to O(nd).
Next, Hamed et al. [13] contributed an algorithm for op-
timizing unwanted rejection flows with a dynamic packet
filtering by statistical search and trees structures; more-
over, they also improved the speed of the computational
complexity of packet matching as O(n log n).

The speed of rule verification has been improving con-
tinuously. Rovniagin and Wool [28] reduced the search-
ing time of rule matching for O(log n) and consumed a
suitable memory for O(n4) by the Geometric Efficient
Matching (GEM) technique. Khummanee et al. [18] pre-
sented the single domain decision approach (SDD) to
eliminate firewall rule conflicts and the time for searching
is O(log n) by using the tree structure. The Tree-Rule
firewall running on a cloud computing was introduced by
Xiangjian et al. [14]. They showed that Tree-Rule used
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tree structure had absolutely no conflicts or redundant
rules, and they evaluated their speed of verification as
O(log n). According to the improved verification speed
against tree structures, HiPAC [3, 15] issued the sophisti-
cated HiPAC packet classification algorithm and the ad-
vanced tree structure. The result showed that HiPAC
could improve the speed of rule matching from as O(log n)
to O(log w), where w is the bit width of the packet field.
Currently, the state of the art of high-speed firewall rule
verification is IPSet [24] which is the top of high-speed
firewall open source. It applied the perfect hashing func-
tion [10] for matching the firewall rules, their experimen-
tal result is O(1). However, it has few drawbacks. First,
the rules must be grouped to be a set of rules before de-
ploying them to the perfect hashing function. Second, it
is available for the IP class C and B only, excluding A. If
anyone would like to use an IP class A, it needs to divide
the IP class A to an IP class C first. Finally, designing
rule of IPSet is not easy to understand, it needs an expert
in firewall rule relationships. According to the limitations
of the IPSet, Khummanee [19] proposed the policy map-
ping algorithm (PMAP) to solve the drawbacks of IPSet.
It is also O(1) of the matching time like IPSet; however, it
has still a problem about the memory usage. We conclude
the development on the speed of firewall rule verification
in Table 1.

In this paper, we have optimized the space complex-
ity of PMAP and compare it against other techniques
that are O(1) worst-case access time on the firewall rule
verification. The rest of the paper is organized as fol-
lows: Section 2 presents the related work, high-speed fire-
wall designs are explained in Section 3. In Section 4, we
demonstrate the performance evaluation. Finally, we give
conclusions and future work in Section 5.

Table 1: History of the speed of rule verification

No. Article’s Name Time

1 FDD[22] O(nd)

2 Linear-Time[1] O(n ∗ d)

3 IPTables[29] O(n)

4 Dynamic Opt[13] O(n log n)

5 GEM[28], SDD[18], Tree-Rule[14] O(log n)

6 HiPAC[3] O(log w)

7 IPSet[24], PMAP[19] O(1)

Sort by lowest (No. 1) to highest speed

2 Related Work

2.1 Firewall Basic

Basically, a firewall rule consists of six parts: Source IP
address (SIP ), Destination IP address (DIP ), Source
Port (SP), Destination Port (DP), Protocol (Pro) and
Action (Act). The first five parts are called the predicate,
and the last part is called the action. Every packet flow-
ing in the networks is matched against SIP , DIP , SP,

DP and Pro of a firewall rule (rn, n ∈ Z+) by order. If
a packet matches all parts of the predicate (∀pxi ∈ rni , x
and n ∈ Z+, i ∈ {SIP,DIP, · · · , Act}), an action is oper-
ated by an Act part (accept or deny). A packet evaluated
to be acceptable (accept: a) is forwarded to a destina-
tion IP address defined in its header field (DIP ). On the
other hand, an unacceptable packet (discard or deny: d)
is automatically dropped [19]. According to Table 2, rule
No. 1 (r1) represents that the firewall allows source IP
addresses ranging from 0.0.0.10 to 0.0.0.30 (21 hosts) onto
destination IP addresses in the range between 0.0.0.20 and
0.0.0.30 (11 hosts), any source ports (* ∈ {0, 1, · · · , 65, 535
}), a destination port number 80, and TCP or UDP pro-
tocol can pass through the firewall (Act → a). In con-
trast, rule No. 3 (r3) drops every packet from source IP
addresses ranging from 0.0.0.1 to 0.0.0.40 onto destina-
tion IP addresses in the range of 0.0.0.25 to 0.0.0.35, any
source port (*), a destination port number 80, and both
protocols. Moreover, firewalls have an option that allows
an administrator to set the final rule. This rule is to drop
all packets that are not explicitly allowed (r1 − rn−1) at
the bottom of the rule list (rn) [31].

Table 2: Firewall rule examples

No. SIP DIP SP DP Pro Act

r1 0.0.0.10-30 0.0.0.20-30 * 80 * a
r2 0.0.0.1-15 0.0.0.50-60 * 25-30 * a
r3 0.0.0.1-40 0.0.0.25-35 * 80 * d
r4 0.0.0.15-45 0.0.0.1-100 * 60-90 * d
rn−1 ... ... ... ... ... ...
rn * * * * * d

*(SIP,DIP ) = 0 - 232 − 1, *(SP,DP ) = 0 - 216 − 1, *(Pro) =
TCP and UDP, a = accept, d = deny

2.2 Minimal and Perfect Hashing

The firewall problem adapted with tree structures is to
speed up of searching, because of the trees have a limit of
the worse-case runtime as O(log n) only. In this section,
we represent the data structures that can be searched
in O(1) time, this concept is referred to as hashing. A
hash table is a collection of stored data items. Let U
be universal keys = {0, 1, · · · ,m − 1}, where m ∈ N0. T
denotes a hash table T [0, 1, · · · ,m−1], in which each po-
sition, or slot, corresponds to a key ki, where i ∈ N1, in
the universal U . Initially, the hash table contains no val-
ues, thus every slot is empty (NULL) as shown in Figure 1.
Mapping between an value and a slot where that value be-
longs in the hash table is called the hash function (h).
The hash function (h) computes the slot from the key ki.
In other words, h maps the universe U of keys into the
slot of hash table T [0, 1, · · · ,m− 1], denotes as h : U →
{0, 1, · · · ,m − 1}, where the |m| of the hash table T is
commonly more less than |U |. The function (h) hashes
an value with the key ki to slot h(ki) of T , we say that
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h(ki) is the hash value of the key ki. Figure 1 illus-
trates the basic concept of hashing. The hash function
can reduce the size of |U | to size m.

The first simply hash function, sometimes referred to
as the ”remainder method”, divides an key ki by the table
size (|T |), returning remainder as its hash value h(ki) =
(ki % |T |). Assume that we have the set of keys and values
(ki:’valuei’) of the ASCII code = {65:’A’, 72:’H’, 71:’G’,
74:’J’, 85:’U’}, and |T | = 10. Thus, the results of the hash
values for our example: 5 (65 % 10), 2, 1, 4 and 5 respec-
tively. Note that 5 of the 10 slots are now occupied. This
is referred to as the load factor , and is normally denoted
by λ = number of values

table size . For this example, λ = 5
10 = 0.5.

Once the hash values have been executed, we can insert
each value into the hash table at the assigned position as
shown in Figure 2. This h works well when each value is
mapped to a unique position in T . However, in this ex-
ample, there are two keys hashed to the same slot (h(k1)
= h(k5) = 5). We refer this situation to as a collision
(also called a ”clash”). We need to select a systematic
approach for replacing the second value (h(k5) = h(85))
in the hash table by without overlapping with the oth-
ers. Fortunately, effective techniques are unfolded in sev-
eral data structures and algorithm books [7, 30]. In this
section, we present the simplest technique to resolve the
collision, called ’chaining’ only.

U
(Universal of keys)

(Actual keys)
K

k1

k2

k3

k4

0

VALUE

VALUE

NULL

VALUE

VALUE

NULL

NULL

NULL

NULL

T

m - 1

NULL

h(k3)

h(k4)

h(k2)

k5

h(k1)=h(k5)

Figure 1: Using hash function (h) maps actual keys with
values to hash-table slots

In the chaining approach, we put all values that hash
to the same slot in T into the chain of the link list as Fig-
ure 2. The slot h(ki) = 5 contains a pointer to the head
of the link list where all values hashed by h(ki) = 5 are
stored, the tail of the link list always contains NULL. Un-
fortunately, the worst-case searching time is proportional
to the length of the link list, that is O(n), where n <= k,
k = |K|. There are several effective techniques that solve
the collision, such as open addressing, liner probing, and
so on [7, 30]; however, these topics are beyond this paper.

The remainder method is a single hash function or
fixed hash function. To yield an average retrieval time
where the fixed hash function is Θ(n) in which all keys
are hashed to the same slot, means a high collision rate.
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Figure 2: Five hash values h(k1), · · · , h(k5) in hash table

The effective technique used to improve the vulnerable
fixed hash is to choose a hash function at random from
a family of hash functions instead of the fixed hash func-
tion. This technique, called universal hashing , has an
affect on a good average access time, and guarantees a
low number of collisions.

Let U be the set of universe keys and H be a finite
collection of hashing functions mapping U into the range
of integer M = {0, 1, · · · ,m − 1}. Then H is called a
universal family if ∀x, y ∈ U, x 6= y : |{h ∈ H : h(x) =

h(y)}| =
|H|
m

. In the other words, the probability of a

collision for any two different keys x and y hashed by a

hashing function randomly which is chosen from H =
1

m
.

Choosing the randomness hashing function family and the
uniform hashing are shown in [7]. We can see that the
universal hashing is the best situation for the average −
case performance; however, the universal hashing can also
improve worst − case performance when the set of keys
is static (i.e. the set of keys are known). It is possible to
compute the effective hashing function that can find any
key in one probe (O(1)) in the hash table and guarantees
that it has no collisions at all. Such hash functions are
called perfect hashing .

Let S be a set of keys, we say that a hash function h:
U → M = {0, 1, · · · ,m − 1} is a perfect hash function
for S if h is injection on S, that is, there are no collisions
among the keys in S if ∀x, y ∈ S, x 6= y, h(x) 6= h(y) [10].
The Figure 3 (a) illustrates a perfect hash function con-
cept with no collision. Any ki ∈ S can be retrieved
from the hash table T by hash function h only once (sin-
gle probe). If n = (m − 1), then the hash table size
(|T |) is equal to the key size (|S|). We say that h is
minimal perfect hash function of S as shown in Fig-
ure 3 (b). The minimal perfect hash functions are de-
signed to totally avoid the wasted space and time prob-
lem. They are also widely applied for several applications
where keys are static sets, such as words in natural lan-
guages, reserved words in programming languages, data
mining and also network security.
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Figure 3: (a) Perfect hash function, and (b) Minimal perfect hash function

2.3 Sparse Matrix and Storage Formats

A sparse matrix is a matrix where the majority of el-
ements have zero. In other words, the matrix which has
a very few nonzero elements. Let A be a matrix and
A ∈ Rmxn, where m,n ∈ N0. We say that A is sparse
if its number of nonzero entries is O(min{m,n}) [8, 26].
The following is example of a sparse matrix as shown in
Figure 4.

11 0 0 0 0 

0 22 23 0 0

0 32 33 34 0

0 0 0 44 0

0 0 0 0 55

∈ R
m=5, n=5 �Rm

n

A =

(0,0)

(4,4)

Figure 4: A sparse matrix (m = rows, n = columns)
contains only 8 nonzero elements.

The sparse matrices are involved a large number of
applications, especially in science and engineering. Ba-
sically, the sparse matrices are represented in the two-
dimensional array. Thus, the capacity of memory allo-
cated for a matrix is m x n x s, where s is the size of
the data type (bytes) required to store the value. In the
following sparse matrix A above, there are 5 rows (m)
and 5 columns (n). We need to store the integer val-
ues, and then the memory consumption of A is 5 x 5 x
2 = 50 bytes; therefore, the space complexity is O(m x
n). Representing the sparse matrices in array structures,
each element in the array is presented by Ai,j to access
an address stored the data of the matrices. In general, i
indicates to the row index, and j means the column in-
dex. To perform any operations on a sparse matrix, such
as multiplying the elements, the time complexity will be
O(n2), where n = m, because the operations that are ex-
ecuted on matrices need to operate in two nested loops.
However, provided that the operation has known the in-

dex of i and j to access an element in the matrix, the
worst-case access time will be O(1).

Sparse matrix storage formats. Reduction of space
and time complexity of a sparse matrix can be re-
alized by collecting only the nonzero elements. The
data structures for supporting this approach will be
more complex to access the individual elements, and
will be able to be restored to the original matrix
properly [27, 33]. There are two groups of storage
formats for storing sparse matrices: the first group
is designed for efficiently modification, such as DOK
(Dictionary of keys), LIL (List of lists), COO (Coor-
dinate list) and so forth, and the second group is for
access and matrix operations, such as CSR (Com-
pressed Sparse Row) or CSC (Compressed Sparse
Column). In this paper, we have showed the CSR
format only, because of CSR is the most general for-
mat and widely used for implementing and referring.
CSR places a set of nonzero (nz) of the matrix rows
to contiguous memory spaces (array) which have the
memory size to be |nz|. Suppose that we have a
nonsymmetric sparse matrix A ∈ Rm=5,x n=5 in Fig-
ure 4, and we then create three arrays for storing its:
one of floating-point numbers (val), and two for in-
tegers (col ind and row ptr) as shown in Figure 5.
The total size the arrays are: val = |nz| = 8, col ind
= |nz| = 8 and row ptr = m + 1 = 6 respectively.
The val maintains only nonzero elements of matrix A
by collecting in row order. The col ind array stores
the column indexes of the elements in the val ar-
ray, that is, if val(k) = Ai,j , then col ind(k) = j
as well. Last, row ptr keeps the starting location of
each row stored in val, that is, if val(k) = Ai,j , then
row prt(i) ≤ k < row prt(i + 1). This storage for-
mat can save the space capacity to store the sparse
matrix A from n2 to 2 x |nz| + m + 1. In this exam-
ple, it can be reduced from 50 bytes (5 x 5 x 2 bytes)
to 44 bytes ((2 x 8 + 5 + 1) x 2 bytes). The time
complexity of CSR to operate any operations such as
the matrix-vector multiplication is O(n x m), where



International Journal of Network Security, Vol.19, No.1, PP.72-84, Jan. 2017 (DOI: 10.6633/IJNS.201701.19(1).08) 76

n = |val|, m = |row ptr|.

11 22 23 32 33 34 44 55

0 1 2 1 2 3 3 4

0

210 3

row number

4

val

col_ind

row_ptr 1 3 6 7 8

Figure 5: The CSR format for matrix A is specified by
the arrays val, col ind and row ptr

Sparse matrix compression. To improve the memory
space of the sparse matrix storage formats, Horowitz
et al. [16] showed a simple and effective sparse matrix
compression, called the nonzero-term method (NM).
NM stores nonzero elements of a sparse matrix into
a (row index, column index, value) format, for ex-
ample, (1,2,4) means the row = 1, column = 2 and
nonzero value = 4. Although, NM is easily for imple-
mentation, it takes the linear searching time against
the nonzero elements. Ziegler’s method (ZM) [32] is
widely famous technique that applies shift-left and
merging instructions to compress the nonzero values.
In addition, rehash method (RM) [6] is to accomplish
the sparse binary-matrix compression. This method
is only applied with the binary number. Ji-Han Jiang
et al. [17] extended the rehash method of RM by
using the random hash function. Aiyoub Farzaneh
et al. [9] contributed the Compressed Sparse Vector
(CSV), which reduces the storage value of large non-
symmetric sparse matrices more than CSR.

3 High-speed Firewall Structures

In this section, we depict the design of high-speed firewall
structures. The high-speed firewalls in this paper mean
firewalls that can match a packet against the predefined
firewall rule with O(1) worst-case access time. We repre-
sent four high-speed firewall structures: the policy map-
ping firewall (PMAP) [19], sparse matrix packing firewall
(SMPF), perfect hashing firewall (PHF) and minimal per-
fect hashing firewall (MPHF) successively.

3.1 Key Contributions

We make four major contributions as follows:

1) Firstly, we optimize the memory space of the policy
mapping (PMAP) proposed in [19] by applying the
sparse matrix compression approaches, called SMPF;

2) Propose new techniques that are adapted from per-
fect hashing and minimal perfect hashing to improve
the high-speed firewall rule verification, called PHF
and MPHF;

3) Evaluate and compare the performance of all pro-
posed techniques including PMAP, SMPF, PHF,
MPHF, and also IPSet;

4) And finally, conclude the comparison results in sev-
eral aspects.

3.2 High-speed Firewall Designing

There are six milestones to design high-speed firewalls:

Step 1. Designs a firewall rule user interface, in this step
we choose the Rule-Base firewall (traditional style),
because of it is popularly used nowadays as shown in
Figure 6 in the Step 1;

Step 2. Builds a decision state diagram structure (DSD)
from the rule list in the Step 1 by using the firewall
decision state diagram algorithm (FDSD);

Step 3. Maps the DSD from the Step 2 to the array
structures by the policy mapping algorithm (PMAP);

Step 3.1. Packs the array structures from the Step 3 to
SMPF by the sparse matrix compression technique;

Step 4. Creates keys and values from DSD to build the
perfect hashing firewall (PHF);

Step 4,1. Compacts the perfect hashing tables from
the Step 4 to the minimal perfect hashing firewall
(MPHF).

According to the steps of high-speed firewall design, we
thoroughly describe each step like this:

Step 1: Designing the firewall user interface.
Nowadays, almost all firewall user interfaces are
Rule-Base or Rule-List. The interfaces are displayed
in a tuple format compounded from SIP , DIP , SP ,
DP , Pro and Act as {192.168.1.0-255, *.*.*.*, 1234,
80, *, a}. They have been influenced by the na-
ture of reading and writing from left-to-right and
top-to-bottom. Other user interface aspects, sev-
eral researchers tried to suggest new firewall inter-
faces like [23] or [14]; however, they were not popu-
lar. Therefore, we still use the Rule-Base interface to
make firewall rules in the Step 1. In order to easily
describe firewall structures, we have presented easy
firewall rules that consist of five fields: SIP , DIP ,
DP , Pro and Act as shown in Table 3. We also trans-
form both SIP and DIP from the IPv4 addressing
format to the positive decimal format by the equa-
tion to as octate4 x 224 + octate3 x 216 + octate2 x 28

+ octate1 x 20. An IP address 0.0.0.10, for example,
is transformed to 04 x 224 + 03 x 216 + 02 x 28 +
101 x 20 = 10.

Step 2: Building the DSD.
The decision state diagram (DSD) is built from the
firewall decision state diagram algorithm (FDSD)
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Figure 6: Steps of high-speed firewall designing

Table 3: Easy firewall rules for building DSD

No. SIP DIP DP Pro Act

r1 10 - 30 20 - 30 80 * a
r2 1 - 15 50 - 60 25 - 30 * a
r3 1 - 40 25 - 35 80 * d
r4 15 - 45 1 - 100 60 - 90 * d

proposed by Khummanee et al. [19]. It has several
roles, for example, it makes sure that the firewall de-
cision paths are not any confusion, and eliminates
decision paths duplicated in firewall rules. The de-
tails on how to build the DSD is described in [19].
In this paper, we only show the final decision state
diagram which was created from firewall rules in Ta-
ble 3 successfully as shown in Figure 7. Referring to
the DSD in Figure 7, suppose that there is a packet
arriving from somewhere to our networks. It consists
of DP = 25, DIP = 0.0.0.55, SIP = 0.0.0.10 and
Pro = TCP. Thus, the firewall makes a decision to
allow this packet into the networks because it follows
the 1st state decision path of the DSD diagram (25
∈ {25-30}, 55 ∈ {50-60}, 10 ∈ {1-15} and TCP ∈
{TCP, UDP} → a). Another example, if a packet
is composed of DP = 80, DIP = 0.0.0.10, SIP =
0.0.0.45 and Pro = TCP. This packet thereby will be
dropped by the 3rd path of DSD.

Step 3: Mapping DSD to array structures.
In this step, we map the DSD from the Step 2 to
arrays. The DSD has four levels are DP , DIP , SIP
and Pro respectively. The DP level (the 1st level) in
Figure 7 is mapped to one dimension array, named
S0-S1 as shown in Figure 8. The algorithm for map-
ping DSD to array structures is illustrated in [19].
The memory size of S0-S1 equals to 65,536 elements.
Each element has 16-bits integer; therefore, the to-
tal of memory size of the S0-S1 array is ≈ 131 kilo-
byte (KB). The 2nd level (DIP ) is transformed to
the three-dimensional array of two cubes namely S1-
S2upper and S1-S2lower. The S1-S2upper is used to
store octate3 (x-axis) and octate4 (y-axis), and the

S1-S2lower collects octate1 (x-axis) and octate2 (y-
axis) of DIP . The z-axis of both three-dimensional
arrays is referred to the decision state path (state
path number) of DSD. The 3rd level (SIP ) is as sim-
ilar as DIP . The algorithm converts SIP level to S2-
S3 arrays, that is, S2-S3upper maintains octate3 and
octate4, and S2-S3lower collects octate1 and octate2.
The total of maximum memory usage of both S1-S2
and S2-S3 is ≈ 16.97 GB (x-axis size × y-axis size
× data size × state path size = 256 × 256 × 16 ×
65,536 bit) to deal with 65,536 state paths of the fire-
wall rule. The final state level of DSD (4th) is Pro, it
is mapped to two dimensional array, namely S3-S4.
The total size of S3-S4 is about ≈ 33.55 MB. The x-
axis of S3-S4 array is used to store the decision (Act)
of the firewall rule state path, and y-axis points to
the firewall rule state path.

For example, the 4st state path of DSD diagram in
Figure 7, DP is equal to {80-80}, it means a des-
tination port number 80. Thus, S0-S1[80] is set to
be 3 (the state path in DIP level). DIP is sub-
set of {20-30}, it indicates the range of destination
IP addresses between 0.0.0.20 and 0.0.0.30. Conse-
quently, S1-S2[0][0][3]upper is equal to ′X ′ (X = don’t
care term), S1-S2[20-30][0][3]lower are assigned to be
4 (state path of SIP level). Likewise, the SIP is
subset of source IP addresses ranging from 0.0.0.1 to
0.0.0.9 (SIP ∈ {1-9}). Therefore, S2-S3[0][0][4]upper
is stored ′X ′, and S2-S3[1-9][0][4]lower keep the pos-
itive integers (the number 4) that point to an array
stored protocols in S3-S4. Lastly, the 4th state path
of Pro level is the subset of both TCP and UDP,
so S3-S4[4][6] (TCP) and S3-S4[4][17] (UDP) are as-
signed to be ′d′ (deny) as shown in Figure 8. The sum
of all memory space used to support the number of
65,536 rules is about 17 GB.

Step 3.1: Packing array data structures.
Notice that the stored values in array data struc-
tures in Figure 8 after finishing the Step 3 are simi-
lar to the sparse matrices discussed in Section 2.3.
Furthermore, the total memory size of the arrays
is not optimal yet. To optimize the memory us-
age of arrays, we have applied the sparse matrix
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compression techniques to reduce them (also opti-
mize PMAP), referred to as Sparse Matrix Pack-
ing Firewall (SMPF). The concepts of the sparse
matrix packing are adapted from [5, 2]; however,
they have limitations for directly deploying with the
firewall rule. For example, they only support two-
dimensional arrays, and do not appropriate for fire-
wall’s array data structures which are the three-
dimensional array. Besides, they are tested on the
small sparse matrices, but sparse matrices for the
firewall rules are very large. Generic sparse matri-
ces can freely swap any positions of rows, but the
rows in sparse matrices of firewall rule cannot arbi-
trarily change because the matching may be wrong
as a result. In order for the sparse matrix to be able
to perfectly handle firewall rule structures, we have
improved the mechanisms to store and pack sparse
matrices as shown in Algorithm 1, referred to as the
Sparse Matrix Packing (SMP).

Algorithm 1 Sparse matrix packing algorithm (SMP)

1: Input: S1-S2upper,lower, S2-S3upper,lower, and S3-S4
2: Output: RLTS1−S2upper,lower

, RLTS2−S3upper,lower
,

RLTS3−S4 and 1-DS1−S2,S2−S3,S3−S4

3: set size = 256, path = N (size = array size, N ∈ N1)
4: create 1-DS1−S2,S2−S3upper

,1-DS1−S2,S2−S3lower
=[ ]

5: create RLTS1−S2,S2−S3upper,lower
= [path][size]

6: create 1-DS3−S4 = [ ], RLTS3−S4 = [path]
7: set pc, rc = 1 (pc=page count,rc=row count)
8: while path ≤ pc do
9: while rc ≤ size do

10: read data from S1-S2[rc][*][pc]upper
11: append data to 1-DS1−S2upper

consecutively
12: add 1st index of data to RLT[pc][rc]S1−S2upper

13: read data from S1-S2[rc][*][pc]lower

14: append data to 1-DS1−S2lower
consecutively

15: add 1st index of data to RLT[pc][rc]S1−S2lower

16: read data from S2-S3[rc][*][pc]upper
17: append data to 1-DS2−S3upper

consecutively
18: add 1st index of data to RLT[pc][rc]S2−S3upper

19: read data from S2-S3[rc][*][pc]lower

20: append data to 1-DS2−S3lower
consecutively

21: add 1st index of data to RLT[pc][rc]S2−S3lower

22: read data from S3-S4[rc][pc]
23: append data to 1-DS3−S4 consecutively
24: add 1st index of data to RLT[pc][rc]S3−S4

25: rc++
26: end while
27: pc++
28: end while
29: End

The SMP starts with: (1) reading 3-D or 2-D sparse
matrices from array data structures of the firewall rule as
shown in Figure 8, (2) packing them to 1-D arrays, and
(3) recording the indexes pointed to the packed 3-D or
2-D data in RowLookupTable (RLT ) used later to ac-

cess the 1-D array during retrieval. The 1-D array stores
non-zero items of the packed 3-D or 2-D array while the
RLT is held at the starting position of each row stored in
1-D array. Packing begins by separating the 3-D or 2-D
array into the tuples or records. This process is shown
in Figure 9. In Figure 9 (a), suppose that the page num-
ber 4 (the stat path number 4 in SIP level of DSD) of
the 3-D array is first packed into the 1-D array. The 1st

packed record is S2-S3[0][*]lower (S2-S3[row][column], *
= all columns), 2nd packed record is S2-S3[1][*]lower, and
final packed record is S2-S3[255][*]lower respectively. The
page number 4 of S2-S3lower has only a single row that
has non-zero items between the location 1 and 45. These
non-zero items are placed into the first location of 1-D
array, this process is shown in Figure 9 (b). To retrieve
the non-zero items in 1-D array later, the RLT marks
how they were packed by recording the integer position
for each row of the original 2-D arrays into the RLT. For
example, the value -1 in the 4th row ([4]) of RLT table
indicates to the 1st row in the page no. 4 of S2-S3lower

array (S2-S3[0][*][4]lower) because that is the offset for re-
placing the non-zero items ranging from 1 to 45 (starting
free slot in 1-D array - starting non-zero item list → 0 -
1 = -1). As a result, the starting free slot of 1-D array is
shifted from the position 0 to 44 immediately. The next
non-zero items allocated in the page no. 5 ([5]), there
are ranging from the position 1 to 45. The packing pro-
cess places them to 1-D array in the position 45 which is
currently pointed to the starting free slot index, then the
index is updated to the location 90 (45 + 45). The offset
of the page no. 5 in 5th row in RLT is also recorded to
44 (starting free slot - starting non-item list → 45 - 1 =
44). The last example of the packing process, the list of
non-zero items in page no. 6, is arrayed from 15 to 45 (30
positions). This list is allocated in the position 90 to 120
in the 1-D array, the starting free slot index is updated to
121, and the offset in RLT of this list (6th row) is set to
75 (90 - 15). On the other hand, the rows that have not
non-zero items are set to the blank record in RLT table
like the 1st, 2nd, 3rd row and so forth. To retrieve any
non-zero items in the 1-D array, we use the formula as
following:

Offset = RLT[Page No.][Row No.];

Index = Offset + Column;

Non-zero item = 1-D[Index]

For example, suppose that we would like to retrieve
the non-zero item of the S2-S3lower array by the row =
0, column = 41 and page no. 5 in 1-D array. Thus, we
compute the position of this item as Offset = RTL[5][0] =
44, Index = Offset + Column = 44 + 41 = 85, and then
the non-zero item = 1-D[85]S2−S3lower

= 9 as shown in
Figure 9. The SMP algorithm matches the firewall rules
against any packeti shows in Algorithm 2.

Step 4: Building the perfect hashing firewall.
IPSet [24] running on IPTables [29] and Netfilter was
successfully applied the perfect hash function to im-
prove the speed of firewall rule verification. It offers
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Algorithm 2 Sparse matrix matching

1: Input: S0-S1, RLTS1−S2up,lo
, RLTS2−S3up,lo

,
RLTS3−S4 and 1-DS1−S2,S2−S3,S3−S4, packet pi

2: Output: a = accept or d = deny
3: get DP , DIP , SIP , Pro ← pi
4: split DIPoct1 , DIPoct2 , DIPoct3 , DIPoct4 ← DIP
5: split SIPoct1 , SIPoct2 , SIPoct3 , SIPoct4 ← SIP
6: page ← S0-S1[DIP ]
7: offset ← RTL[page][DIPoct2 ]S1−S2lower

8: index← offset + DIPoct1 , p1← 1-D[index]S1−S2lower

9: offset ← RTL[page][DIPoct4 ]S1−S2upper

10: index← offset + DIPoct3 , p2← 1-D[index]S1−S2upper

11: page ← get value from p1 or p2 that is not ’X’
12: offset ← RTL[page][SIPoct2 ]S1−S2lower

13: index ← offset + SIPoct1 , p1 ← 1-D[index]S2−S3lower

14: offset ← RTL[page][SIPoct4 ]S1−S2upper

15: index ← offset + SIPoct3 , p2 ← 1-D[index]S2−S3upper

16: page ← get value from p1 or p2 that is not ’X’
17: offset ← RTL[page]S3−S4, index ← offset + Pro
18: result ← 1-D[index]S3−S4

19: if result == ′a′ then
20: print ′accept′

21: else
22: print ′deny′ (result == ’d’)
23: end if
24: End

several features of the keys which are used for re-
ferring to the hashing table, for instance, the key
is combined by the IP address against port num-
ber (IP:Port) or IP address and port and IP address
(IP:Port:IP) or etc. In this section, we have showed
how to apply the perfect hash function as same as
IPSet, but we have chosen the different key aspect
by acquiring the key from DSD instead. With the

acquisition of keys from DSD, we have picked the re-
markable features which are combined to the unique
key. The 3rd state path of DSD diagram in Figure 7,
for example, we have jointed the port number (DP ),
destination IP address (DIP ) and source IP address
(SIP ) to be the key such as ′801015′ (DP = 80, DIP
= 10, SIP = 15). Yielding to the number of keys in
each state path can be computed from the number
of DPs × DIPs × SIPs; therefore, the 3rd state
path in Figure 7 is 1 × 19 × 30 = 570 keys (′80115′,
′80216′, ′80317′, · · · , ′801945′). Notice that the num-
ber of keys which will be hashed by a perfect function
(h) are huge. IPSet also faces such problem; as a re-
sult, it requires a set of rules that do not exceed over
the subnet of IP class C only. To avoid this problem,
we have reduced the number of keys by choosing for
each state path where the action (Act) is an accepta-
tion (a) only. For example, we have only chosen the
1st and 5th state path from all paths in Figure 7 to
be the keys.

The keys got from the DSD will be hashed by the per-
fect hash function h for referring to any address stor-
ing a value. We have applied the hashing algorithm
from [4, 11] as shown in Algorithm 3, the algorithm
uses two levels of hash functions. The first function is
h1(0, key), it gets a position in an intermediate array,
named G. The second function is h2(d, key), it hashes
the key and the information got from G to search the
unique position for the key as shown in Figure 10.
For example, both of ′801235′ and ′256811′ key are
hashed to the same position (1234) in the interme-
diate table (G) by using function h1. However, the
second hash function h2 hashes the keys again by
combining the same position against old keys, and
puts hashing results into different slots in value table
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(V) so no collision occurs. To avoid the collision from
hashing, we use the FNV [25] hash function (Algo-
rithm 4) which guarantees the very low collision rate.
To look up a value in hash table G and V, we first
get the DP , DIP and SIP field from a packet, and
compound them to the key. For example, suppose
that a packeti consists of DP = 80, DIP = 200,
SIP = 100 and Pro = TCP, so the compounded key
is ′80200100′. We can compute a position stored the
value from the key by Algorithm 5.

Algorithm 3 Perfect hash function (double hash h1, h2)

1: Input: dictionary (dict) of key and value (’key’:value)
2: Output: G, V (G=intermediate, V=values table)
3: set size � |dict|
4: create bucket[size][], G[size], V[size]
5: while keyi ← read dict until NULL do
6: p ← FNV-hash(0, keyi) mod size
7: bucket[p].append(keyi) #put all keys to buckets
8: end while
9: while key ← read bucket[d][*] until NULL do

10: if |key| == 1 then
11: put 0 → G[d] (d ∈ N0)
12: put value from dict(key) → V[d]
13: end if
14: end while
15: while keys ← read bucket[d][*] until NULL do
16: if |keys| > 1 then
17: d = 1
18: while key ← read keys until NULL do
19: p ← FNV-hash(d, key) mod size
20: if put d → G[p] then collision then
21: p ← rehash(d++, key) until no collision
22: end if
23: V[p] ← read value from dict(key), G[p] ← d
24: end while
25: end if
26: end while
27: End

Step 4.1: Building the minimal perfect hashing firewall.
The perfect hashing is a method which guarantees
no collision upon building a hash table. It is only

Algorithm 4 The FNV algorithm

1: Input: d, key
2: Output: d
3: if Input has both d and key then
4: while c ← read a char from key until NULL do
5: d ← ((d ∗ 0x01000193) ˆ ord(c)) & 0xffffffff
6: end while
7: else
8: d ← 0x01000193
9: end if

10: End

Algorithm 5 Look up the value in hash table G, V

1: Input: G, V and a key
2: Output: a value
3: d = G[FNV-hash(0, key) mod len(G)]
4: if d == 0 then
5: return V[FNV-hash(0, key) mod len(G)]
6: else
7: if d > 0 then
8: return V[FNV-hash(d, key) mod len(G)]
9: else

10: print ”Not found”
11: end if
12: end if
13: End

possible to build it when we have known all of the
keys in advance. Besides, the space for storing val-
ues of perfect hashing is usually more than the total
size of values (|storage| � |values|) because it can
reduce the percentage of collision rate. One effec-
tive method for reducing the size of memory space is
the Minimal Perfect Hashing (MPH). MPH en-
sures that the hashing table contains one key per one
slot only, and also has no free slots. In this section,
we have optimized the memory space of the perfect
hashing described in previous section by customizing
Algorithm 3 in the line of code 3 from set size �
|dict| to be set size = |dict| instead. This code de-
termines the size of the memory to be fitted with the
number of keys. The rest of the codes are as same as
Algorithm 3.

3.3 High-speed Firewall Implementation

In this section, we detail about implementing high-speed
firewalls. The tested environments of this paper are sim-
ilar to [19], but they are slightly different as follows:

Hardware and Software Development Tools.
The high-speed firewalls are developed on the Intel
64-bits processor, Core i7, 2GHz, installed memory
(RAM) 8 GB. For the developing software, we chose
Python language (version 3.4 for 64 bits), Numpy and
Psutil to implement firewalls running on MS Win-
dows 8 operating system.
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Firewall Rule and Packet Generator.
In each test case, the firewall rule generator generates
the randomness rules from 1,000, 2,000, 3,000, 4,000,
5,000 and 10,000, and the random packets for 10,000
packets per round by the packet generator software.
We have experimented about 30 times per each algo-
rithm, and calculated the average of speed and space
for each algorithm.

4 The Performance Evaluation

All proposed firewalls are high-speed. Therefore, they
can match any rules against packeti by very low constant
time; in other words, they take O(1) worst-case access
time. However, their memory and time consumption for
constructing rule structures are not equal depending on
the complexity of firewall rule data structures. Thus, this
paper we aim to compare the amount of memory space
used for storing rule structures and the processing time
for building them. In case of the computation time, there
are three kinds: the time for building the decision state di-
agram (DSD), constructing rule structures, and matching
firewall rule as shown in Table 4. The space complexity
and percentage of memory space optimized are shown in
Table 5.

The speed of firewall rule verification of all techniques
is similar, for example, in Table 4, the average of time
verifying of all approaches is quite stable at about 0.031
seconds on average. Notice that while processing the Path
No. 10,000, the PMAP consumes the verifying time more
than another algorithms by about 0.124 seconds because
the main memory is not enough (running memory > avail-
able memory) for supporting PMAP running. As a result,
the Python interpreter needs to allocate an extra memory
from the virtual memory (usually the hard disk drive) to
accomplish PMAP process. According to the construct-
ing time, MPHF spends the most time on the firewall
rule construction ≈ 3,983 seconds at the number of state
paths (Path No.) = 5,000. Moreover, it cannot be ex-
ecuted successfully at the Path No. 10,000 because it
takes too much constructing time, and Python interpreter
sometimes crashes. The reason that it is slow is repeated
searching of a free slot in a limited hash table to place
the value. In contrast, PMAP is the fastest technique to
build the rule data structures; on the other hand, it also
consumes the most of memory usage. SMPF and PHF
take the average amount of rule constructing time in the
same trend by the linear manner.

In case of the memory optimization, SMPF is the best
high-speed firewall to consume the minimal space stored
structural rules, it can highly reduce the percentage of
memory usage of PMAP by around 99.9 percent on av-
erage. While MPHF is able to optimize the memory of
PMAP by about 87.7%, and PHF by about 62.3% respec-
tively, as shown in the column of packing results of Ta-
ble 5. The Keys column in Table 5 is presented the num-
ber of hashed keys by the perfect hash function of PHF

and MPHF. To process the number of the state paths at
10,000, PHF and MPHF must hash the number of keys
≈ 83.4 million.

5 Conclusions and Future Work

In this paper, we have proposed several techniques to im-
prove the high-speed firewalls that can access the data in
O(1) worst-case access time, namely PMAP, SMPF, PHF
and MPHF. They are as fast as IPSet [24] but different
in the limitations as following:

Limitations: IPSet needs to be set up a group of rules
in the network class C only before running, and each
group is not bigger than 65,536 rules per a set. It
does not support the IP network class A, but we can
partition them to subnets before deploying to IPSet.
It is not easy to understand, the administrator must
have a lot of skills about the set of rules. PMAP con-
sumes a lot of memory to build the rule data struc-
tures, it only supports a maximum number of 65,536
rules. SMPF supports the same number of firewall
rules like PMAP, and the firewall structure is quite
complicated. PHF encounters a lot of keys effecting
the firewall’s performance, it should solve this prob-
lem like IPSet. MPHF has drawbacks like PHF, but
the big problem is the time to construct firewall rules
data structures.

We have concluded the overall performance and limi-
tations of high-speed firewalls in Table 6.

Table 6: The overall performance of high-speed firewalls

Name Space
Time complexity

Structural
Verify Construct

PMAP Fair O(1) Fastest More

SMPF Best O(1) Fast Most

PHF Good O(1) Faster Much

MPHF Better O(1) Slow Much

IPSET Good O(1) Faster Much

Space = Space complexity, Verify = Verification time, Con-
struct = Construction time, and Structural = Structural
complexity
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