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Abstract

Internet worms can propagate across networks horren-
dously, reduce network security remarkably, and cause
economic losses heavily. How to quickly eliminate the
Internet worms using partial immunization becomes a
big issue for sustaining Internet infrastructure smoothly.
This paper addresses this issue by presenting a novel
worm attack model through incorporating a saturated
incidence rate and a partial immunization rate, named
SVEIR model. Using the basic reproduction number, we
derive the global stability of the infection-free equilibrium
and local stability of the unique endemic equilibrium. Nu-
merical methods are employed to solve and simulate the
developed system and also verify the proposed SVEIR
model. Simulation results show that the partial immu-
nization is highly effective for eliminating worms.

Keywords: Internet worm, partial immunization, propa-
gation model, saturated incidence, stability

1 Introduction

Internet worms are malicious codes which can replicate
themselves and propagate across the Internet. Code red
worm, Slammer worm, Blaster worm, Witty worm, and
Conficker worm are a few examples of Internet worms,
which have caused heavy economic losses and tremendous
social panic. Especially, with the advent and development
of the Internet of Things (IoT), the threat of Internet
worms will become increasingly serious for network secu-
rity. Combating worms effectively is an urgent task con-
fronted with defenders. Based on the similarity between

a malicious worm and a biological virus, a few mathe-
matical models representing worm propagation have been
presented to depict the propagation of worms in the past
decade years [4, 9, 13]. Appropriate mathematical mod-
els can provide a qualitative assessment for worms’ attack.
Many numerous models and tools are proposed to address
the dynamic attacking behaviour of worms and effectively
counterattack them in different conditions, e.g., time de-
lay [15, 18], quarantine [19, 20], antivirus software [21],
etc. All the previous models are based on the SIR clas-
sical epidemic model [7]. The SIR has some drawbacks
because it assumes that a susceptible host becomes infec-
tious immediately after contact with an infected one. Ac-
tually, many worms own an exposed period during which
susceptible hosts are infected but not yet contagious. To
overcome this drawback, a new model, named as SEIR
model [1], is introduced. An exposed class is added into
the SEIR model.

Immunization is one of the commonly used methods
for controlling and eliminating worms propagation [5, 6].
However, these models assumed that the vaccine hosts ob-
tained the immunization fully. This is not consistent with
the reality. For worms’ horrendous propagation speed,
users or network administrators can not immunize the
whole host population in real networks. Thus, partial im-
munization as a fungible and feasible method for eliminat-
ing worms has been used for predicting and controlling in-
fectious diseases [2, 12]. In many worm propagation mod-
els [5, 14], bilinear infection rate βSI is used, where, S and
I denote the number of susceptible hosts and infectious
hosts, respectively. The saturated infection rate βSI

1+ηI was

firstly introduced by Capasso and Seior [3], where βI
1+ηI
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tends to a saturation level when I becomes large, 1
1+ηI

measures the inhibition effect from the behavioral change
of susceptible hosts when their number increases or from
the crowding effect of the infected hosts. The saturated
infection rate βSI

1+ηI is more reasonable than the linear rate
βSI. This is due to the fact that it takes the behavioral
change and the effect of the infected hosts into consider-
ation.

In this paper, we propose an SVEIR model based on
the SEIR model. Contrary to existing models, the pro-
posed SVEIR model is armed with the partial immuniza-
tion and saturated infection. This paper will argue that
SVEIR model is appropriate for measuring the effects of
security countermeasures on worm propagation. Using
the basic reproduction number, we derive global stability
of the infection-free equilibrium and local stability of the
unique endemic equilibrium.

The rest of this paper is organized as follows. Section 2
formulates the extended SVEIR model, which takes two
important factors: Partial immunization and a saturated
incidence rate, and obtains the basic reproduction num-
ber. Section 3 proves the stabilities of the equilibria. Sec-
tion 4 covers the numerical analysis and the simulations.
Section 5 summarizes the paper with some future direc-
tions.

2 A Mathematical Formulation
for SVEIR Model

This section will examine the SVEIR model with a mathe-
matical formulation. The SVEIR model extends the clas-
sical SEIR model through incorporating a saturated in-
cidence rate and a partial immunization rate. The total
host population N is divided into five groups and a host
at any time t can potentially be in one of the following
groups: Susceptible, vaccinated, exposed, infectious, re-
covered, with sizes denoted by S, V , E, I, R, respectively.
The total number of population N at time t is given by
N(t) = S(t) + V (t) + E(t) + I(t) + R(t). The dynamic
transition of the hosts is shown in Figure 1.

In Figure 1, Π is the constant recruitment rate of the
host population, µ is the natural death rate of the popula-
tion, and α is the death rate for worm attack of infectious
hosts. Let β be the transmission rate of worm attack when
susceptible hosts contact with infected ones. p is the frac-
tion of recruited hosts which are vaccinated. γ is the rate
at which vaccine wanes. The emergence of this scenario is
due to worm variants. η is the parameter measuring the
inhibitory effect. βSI

1+ηI is the saturated infection rate. ω
is the rate at which exposed hosts become infectious, and
δ is the recovered rate of infected hosts. The vaccinated
hosts which contact infected ones before obtaining immu-
nization have the infection probability with a transmission
rate σβ (0 ≤ σ ≤ 1). σ = 0 means that the vaccinated
hosts obtain the full immunization, which σ = 1 means
that vaccine loses efficacy in work fully. Taking some real
factors into account, we assume that the vaccinated hosts

can obtain partial immunization, i.e. 0 < σ < 1.
Based on the above assumptions, the SVEIR worm

propagation model with partial immunization in the host
population is described by the following system of differ-
ential equations:

S
′
(t) = (1− p)Π− βSI

1+ηI − µS + γV,

V
′
(t) = pΠ− σβV I − (µ+ γ)V,

E
′
(t) = βSI

1+ηI + σβV I − (µ+ ω)E,

I
′
(t) = ωE − (µ+ α+ δ)I,

R
′
(t) = δI − µR.

(1)

Since the state R does not appear explicitly in the first
four equations in (1), the dynamics of (1) is the same as
the following system:

S
′
(t) = (1− p)Π− βSI

1+ηI − µS + γV,

V
′
(t) = pΠ− σβV I − (µ+ γ)V,

E
′
(t) = βSI

1+ηI + σβV I − (µ+ ω)E,

I
′
(t) = ωE − (µ+ α+ δ)I.

(2)

Summing equations in (2), we obtain (S+V +E+I)
′

=
Π−µ(S+V +E+I)−(α+δ)I ≤ Π−µ(S+V +E+I). Then
it follows that lim supt→∞[S(t)+V (t)+E(t)+I(t)] ≤ Π/µ,
thus the set

Ω = {(S, V,E, I) ∈ R4 : S + V + E + I ≤ Π/µ}

is positively invariant for (2). Therefore, we will study
the global stability of (2) on the set Ω.

It is easily seen that the model (2) always has an
infection-free equilibrium, P0 = (S0, V0, 0, 0, 0), where

S0 = Π(µ+γ−pµ)
µ(µ+γ) , V0 = pΠ

µ+γ . Let x = (E, I, V, S)T , then

the Model (2) can be represented as

dx

dt
= F(x)− V(x),

where

F(x) =


βSI
1+ηI + σβV I

0
0
0



V(x) =


(µ+ ω)E

(µ+ α+ δ)I − ωE
σβV I + (µ+ γ)V − pΠ

βSI
1+ηI + µS − (1− p)Π− γV


Differentiating F(x) and V(x) with respect to E, I, V, S

and computing them at the infection-free equilibrium

P0 = (Π(µ+γ−pµ)
µ(µ+γ) , pΠ

µ+γ , 0, 0), respectively, we obtain

DF(P0) =


0 βS0 + σβV0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
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Figure 1: State transition diagram of the SVEIR model

DV(P0) =


µ+ ω 0 0 0
−ω µ+ α+ δ 0 0
0 σβV0 µ+ γ 0
0 −βS0 −γ µ


Thus, the spectral radius of the next generation matrix

FV−1 can be written as,

ρ(FV−1) =
ωβ(S0 + σV0)

(µ+ ω)(µ+ α+ δ)
.

According to Theorem 2 in [17], the basic reproduction
number of the Model (2) is

R0 =
ωβ(S0 + σV0)

(µ+ ω)(µ+ α+ δ)

=
ωβΠ(µ+γ−pµ

µ(µ+γ) + σp
µ+γ )

(µ+ ω)(µ+ α+ δ)
. (3)

3 Stability Analysis for Equilibri-
ums

The endemic equilibrium P ∗(S∗, V ∗, E∗, I∗) of the
Model (2) can be obtained by the following Equations (4)

(1− p)Π− βSI
1+ηI − µS + γV = 0,

pΠ− σβV I − (µ+ γ)V = 0,
βSI
1+ηI + σβV I − (µ+ ω)E = 0,

ωE − (µ+ α+ δ)I = 0.

(4)

From the fourth equation of the Model (4), we can ob-

tain E = (µ+α+δ)I
ω . Substituting E into the third equa-

tion of the Model (4), we can obtain V = (µ+ω)(µ+α+δ)
ωσβ −

βS
(1+ηI)σβ . According to the second equation of the

Model (4), we obtain I = pΠ−(µ+γ)V
σβV .

Substituting V and I into the first equation of
Model (4) with the foregoing obtained values, we obtain

the following equation

(1− p)Π−
βS pΠ−(µ+γ)V

σβV

1 + ηI
− µS + γA1,

where, A1 = (µ+ω)(µ+α+δ)
ωσβ − βS

(1+ηI)σβ .

By a simple computation, we have

Π−µS− pΠ(µ+ ω)(µ+ α+ δ)
ωβS
1+ηI − (µ+ ω)(µ+ α+ δ)

+
µS

σ(1 + ηI)
+A2 = 0,

where, A2 = γ(µ+ω)(µ+α+δ)
ωσβ . Supposing

F (S) = Π− µS − pΠ(µ+ ω)(µ+ α+ δ)
ωβS
1+ηI − (µ+ ω)(µ+ α+ δ)

+
µS

σ(1 + ηI)
+
γ(µ+ ω)(µ+ α+ δ)

ωσβ
.

For S = 0, F (0) = (1−p)Π+ γ(µ+ω)(µ+α+δ)
ωσβ . It is easily

seen that F (0) > 0.

F
′
(S) = −µ−

pΠωβ(µ+ ω)(µ+ α+ δ) 1
1+ηI

( ωβS1+ηI − (µ+ ω)(µ+ α+ δ))2
+

µ

σ(1 + ηI)

< −µ+
pΠωβ 1

1+ηI

ωβS
1+ηI − (µ+ ω)(µ+ α+ δ)

+
µ

σ(1 + ηI)

= −µ+ (
µ

σ
− pβΠ

(µ+ω)(µ+α+δ)
ω − βS

1+ηI

)
1

1 + ηI

< 0.

Therefore, the sign of F
′
(S) is negative. On the other

hand, if R0 > 1, ωβ(S0 + σV0) = ωβ(S0 + σpΠ
µ+γ ) > (µ +
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ω)(µ+ α+ δ).

F (S0) = Π− µS0 −
pΠ(µ+ ω)(µ+ α+ δ)

ωβS0

1+ηI − (µ+ ω)(µ+ α+ δ)

+
µS0

σ(1 + ηI)
+
γ(µ+ ω)(µ+ α+ δ)

ωσβ

< Π− µS0 −
(µ+ γ)(µ+ ω)(µ+ α+ δ)

ωβσ

+
µS0

σ(1 + ηI)
+
γ(µ+ ω)(µ+ α+ δ)

ωσβ

< Π− µS0 −
µS0

σ(1 + ηI)
− µpΠ

µ+ γ
+

µS0

σ(1 + ηI)

= Π− µS0 −
µpΠ

µ+ γ
= 0.

If S > S0, F (S) < 0. As a result, the equation
F (S) = 0 only has a root S∗ which always exists in (0, S0).
When R0 ≤ 1, the System (2) only has an infection-free
equilibrium P0(S0, V0, 0, 0). When R0 > 1, the System (2)
has the unique endemic equilibrium P ∗(S∗, V ∗, E∗, I∗)
except for the infection-free equilibrium P0.

3.1 Infection-free Equilibrium and its
Stability

It can be easily obtained that the Model (2)
has an infection-free equilibrium given by P0 =

(Π(µ+γ−pµ)
µ(µ+γ) , pΠ

µ+γ , 0, 0). The infection-free equilibrium cor-

responds to the model condition of non-worm breakout.

Proposition 1. The infection-free equilibrium P0 is lo-
cally asymptotically stable in the set Ω if R0 < 1 and
unstable if R0 > 1.

Proof. According to P0 = (Π(µ+γ−pµ)
µ(µ+γ) , pΠ

µ+γ , 0, 0), the Ja-

cobian matrix at the infection-free equilibrium P0 of the
Model (2) is

J(P0) =


−µ γ 0 −βS0

0 −µ− γ 0 −σβV0

0 0 −µ− ω βS0 + σβV0

0 0 ω −µ− α− δ


Therefore, the corresponding characteristic equation is

described by

(λ+ µ)(λ+ µ+ γ)

·[(λ+ µ+ ω)(λ+ µ+ α+ δ)− ω(βS0 + σβV0)]

= 0. (5)

From the characteristic Equation (5), we know that it
always has two negative eigenvalues λ1 = −µ, and λ2 =
−µ−γ. The other eigenvalues are decided by the following
equation

(λ+ µ+ ω)(λ+ µ+ α+ δ)− ω(βS0 + σβV0) = 0. (6)

By the simple computation, Equation (6) is equal to

λ2+(2µ+ω+α+δ)λ+(µ+ω)(µ+α+δ)−ω(βS0+σβV0) = 0.

(7)

If R0 < 1, (µ+ω)(µ+α+δ)−ω(βS0 +σβV0) > 0, thus
two roots of Equation (7) are negative. The infection-
free equilibrium P0 to be locally asymptotically stable is
that λi < 0, for i = 1, 2, 3, 4, which meets the sufficient
condition of the stability theory [16]. When R0 > 1, (µ+
ω)(µ+α+δ)−ω(βS0+σβV0) < 0, which means that J(P0)
has a positive root and a negative root. Therefore, the
infection-free equilibrium P0 is an unstable saddle point.
This completes the proof.

Proposition 2. When R0 ≤ 1, the infection-free equilib-
rium P0 is globally asymptotically stable in the set Ω.

Proof. To prove the infection-free equilibrium P0 is glob-
ally asymptotically stable, we construct the following Lya-
punov function: L(E, I) = ωE + (µ+ ω)I.

Its derivative along the solutions to the Model (2) is

L
′
(t) = ωE

′
+ (µ+ ω)I

′

=
ωβSI

1 + ηI
+ ωσβV I − ω(µ+ ω)E + (µ+ ω)ωE

−(µ+ ω)(µ+ α+ δ)I

=
ωβSI

1 + ηI
+ ωσβV I − (µ+ ω)(µ+ α+ δ)I

≤ (ωβS + ωσβV − (µ+ ω)(µ+ α+ δ))I

=
ωβ(S0 + σV0)

R0
(
R0(S + σV )

S0 + σV0
− 1)I

≤ 0.

Furthermore, L
′

= 0 if and only if I = 0. Thus, the
largest compact invariant set in {(S, V,E, I)|L′ = 0} is
the singleton P0. When R0 ≤ 1, the global stability of P0

satisfies LaSalle’s invariance principle [8]. LaSalle’s invari-
ance principle [8] hints that P0 is globally asymptotically
stable in the set Ω. This completes the proof.

3.2 Endemic Equilibrium and Its Stabil-
ity

From the aforementioned computation, we know that the
Model (2) has the unique endemic equilibrium P ∗. The
endemic equilibrium P ∗ means that the worm does not
die out when it appears. Finally, every class of the model
reach its stable state. S∗, V ∗, E∗, I∗ and R∗ are not
equal to zero. Next, we investigate the local stability of
the endemic equilibrium P ∗ = (S∗, V ∗, E∗, I∗).

Proposition 3. When R0 > 1, the endemic equilibrium
P ∗ is locally asymptotically stable in the region Ω.
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Proof. The Jacobian matrix of (2) at the endemic equi-
librium P ∗ is

J(P ∗) =


−B1 γ 0 − βS∗

(1+ηI∗)2

0 −B2 0 −σβV ∗
βI∗

1+ηI∗ σβI∗ −(µ+ ω) B3

0 0 ω −(µ+ α+ δ)


where,

B1 =
βI∗

1 + ηI∗
+ µ,

B2 = σβI∗ + (µ+ γ),

B3 =
βS∗

(1 + ηI∗)2
+ σβV ∗.

Thus, the corresponding characteristic equation can be
described as

λ4 + C1λ
3 + C2λ

2 + C3λ+ C4 = 0, (8)

where,

C1 = 4µ+ α+ ω + δ + γ + σβI∗ +
βI∗

1 + ηI∗

> 0,

C2 = (µ+ ω)(µ+ α+ δ) +B2(2µ+ ω + α+ δ)

+B1(σβI∗ + 3µ+ γ + ω + α+ δ)

> 0,

C3 = B2(µ+ ω)(µ+ α+ δ) + βωµ
S∗

(1 + ηI∗)2

+B1[(µ+ ω)(µ+ α+ δ) +B2(2µ+ ω + α+ δ)]

≥ (µ+ ω)(µ+ α+ δ)(σβI∗ + 2µ+ γ +
βI∗

1 + ηI∗
)

+B1B2(2µ+ ω + α+ δ)

> 0,

C4 = B1B2(µ+ α+ δ) + γωµσβV ∗

+βωµ
S∗

(1 + ηI∗)2
B2

≥ B1B2(µ+ ω)(µ+ α+ δ) + γωµσβV ∗

> 0.

Through a simple computation, we obtain that H1 =
C1 > 0, H2 = C1C2 − C3 > 0,H3 = C3H2 − C2

1C4 > 0,
H4 = C4H3 > 0.

According to the theorem of Routh-Hurwitz [10], we
obtain that all the roots of the Equation (8) have negative
real parts. As a result, the endemic equilibrium P ∗ is
locally asymptotically stable.

4 Numerical Simulations

This section develops numerical experimental steps to an-
alyze the stability of the proposed model and evaluates
the effects of the implemented countermeasures. It is very
difficult to use realistic parameters or real-world traffic
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Figure 2: Globally asymptotically stable infection-free
equilibrium

traces for our research, because many parameters used
in previous models are assumed according to their hy-
pothesis. To obtain the spread of worms in a large-scale
network, N = 1, 000, 000 hosts are selected as the pop-
ulation size. According to the real Slammer worm, the
average scan rate is s = 4, 000 per second [11]. The infec-
tion rate of the Slammer worm is β = s/232 = 9.3×10−7.
We take proper values of Π and µ so that Π/µ = N , im-
plying that the total number of hosts remain unchanged.
Therefore, we set Π = 100 and µ = 0.0001. The par-
tial immunization rate is set to σ = 0.4. The transition
rate ω from E to I is 0.02. The transition rate δ from
I to R is 0.01. At the beginning, the number of suscep-
tible, vaccinated, exposed, infected, and recovered hosts
are S(0) = 999, 985, V (0) = 10, E(0) = 0, I(0) = 5, and
R(0) = 0, respectively.

Other parameters in these simulations are given as fol-
lows: η = 2, p = 0.2, α = 0.0001, and γ = 0.05. The
results are based on the average of at least 10 simulation
runs. Using the above parameters, we can obtain the ba-
sic reproduction number R0 = 0.908 < 1. The worm will
gradually die out according to Proposition 1 and 2. Fig-
ure 2 illustrates the number of susceptible, infected and
recovered hosts when R0 is 0.908, respectively. From Fig-
ure 2, we can clearly see that the tendency of the worm
propagation is depressive, which is consistent with Propo-
sition 1 and 2. Finally, all infected hosts vanish and the
population, in the long term, is in a recovered state.

In the second experiment, we change some related pa-
rameters about R0 to guarantee R0 > 1. When p = 0.4
and δ = 0.003, we have R0 = 9.847 > 1. Other param-
eters remain unchanged. The results are shown in Fig-
ure 3. As can be seen from Figure 3, the number of sus-
ceptible, infected and recovered hosts eventually become
positive values between 0 and Π/µ, which indicates that
the worm does not disappear, if worms initially present.
Finally, these three states reach their equilibrium points
P ∗(38094, 83543, 835428). This is fully consistent with
the conclusions of Proposition 3. The unique endemic
equilibrium P ∗ is globally asymptotically stable.

To demonstrate that the effect of the partial immu-
nization rate on the number of infected hosts, we set
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Figure 3: Locally asymptotically stable endemic equilib-
rium
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Figure 4: Effect of the partial immunization rate

the partial immunization rate σ to different values, with
other parameters remaining the same. Figure 4 shows
the effect of changing the partial immunization rate (σ =
0, 0.1, 0.3, 0.5, 0.7, respectively) on worm propagations.
From Figure 4, no hosts are infected when σ = 0. σ = 0
means that all hosts gain full immunization. However, in
real-world networks, it is very difficult to implement full
immunization. As expected, a smaller partial immuniza-
tion rate results in slowing down the worm propagation
speed, more importantly, and decreasing the total number
of infected hosts. Once the vaccine has been studied, com-
puter users should immunize their computers as quickly
as possible, which can guarantee to reach a smaller partial
immunization rate σ.

5 Conclusion

This paper presented a novel dynamic SVEIR model with
a saturated incidence rate and a partial immunization
rate for the propagation of worms. More specifically, this
paper investigated the global dynamic behavior of the
SVEIR model, which is determined by the basic repro-
duction number. The theoretical analysis demonstrated
that when the basic reproduction number is smaller than
or equal to one, the SVEIR model has a infection-free
equilibrium, and is globally asymptotically stable. That
is to say, it implies that the worm dies out eventually.

When the basic reproduction number is larger than one,
the SVEIR model has a unique endemic equilibrium which
is locally stable. Moreover, it implies that worms are
able to pervade across networks. The simulation results
are consistent with theoretical analysis. Our proposed
SVEIR model will be highly useful to analyze the avail-
ability and efficiency of partial immunization. The partial
immunization will be efficient if the partial immunization
rate is very small.
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