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Abstract

In order to deploy security protocols in practice, it is
highly important that they be implemented in a secure
manner. In this study, we first introduce a model for
code generation from abstract security protocol specifica-
tions. Then, we present the development of an automatic
generator called CV2JAVA, which is able to translate a
security protocol abstract specified in Blanchet calculus
in the computational model into an implementation writ-
ten in JAVA. Finally, we also use the automatic generator
CV2JAVA and CryptoVerif to generate the Secure Shell
Version 2(SSHV2) security protocol implementation writ-
ten in JAVA from the SSHV2 security protocol implemen-
tation written in Blanchet calculus proved in the compu-
tational model.

Keywords: Code generation, code security, protocol secu-
rity, security protocol

1 Introduction

Over the last twenty years, researchers including devel-
opers and users have worked a great deal on the analy-
sis and verification of security protocol abstract specifica-
tions [10, 17]. However, we know that the final objective
is to have the security protocol implemented using pro-
gramming languages, for example, the Java language, to
put it into practice in the information system. Hence, we
need to research the methods for generating the codes for
security protocols because proof of the security properties
of security protocol abstract specifications is not enough
to instill confidence in developers and users with regard

to the degree of security during execution. In addition,
even if we prove the security properties of security pro-
tocol abstract specifications, their implementation proce-
dures may be error prone and insecure. Therefore, it is
essential to analyze and prove the security properties of
security protocol implementations.

Generally, there are two major approaches to imple-
ment security protocols. One approach is suitable for the
legacy codes of security protocols. This approach can be
divided into two types. One type is mainly based on the
technologies of program analysis and verification, for ex-
ample, logic and type theory, which are directly used to
automatically verify cryptographic security. In addition,
it also depends on adding many annotations and predi-
cates/assertions to the security protocol implementations.
The other type is model extraction, which first extracts
the security protocol abstract specification from security
protocol implementations and then uses the security pro-
tocol analyzer to analyze or prove the cryptographic secu-
rity of security protocol implementations. The drawback
of this approach is that it is difficult to implement cor-
rectly.

The other approach is code generation, which is suit-
able for obtaining new implementations of some security
protocols. If we have developed the security protocol ab-
stract specification and verified its security properties, we
can use the code generation method to obtain the secure
security protocol implementations written in program-
ming languages. In the code generation method, the first
step is to produce the security protocol abstract speci-
fications represented in formal language, for example, by
using pi calculus or probabilistic process calculus. Then, a
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security protocol analyzer/prover, for example, ProVerif
or CryptoVerif, is used to analyze the securities of the
security protocol abstract specification. Finally, a trans-
former is developed to transform the security protocol ab-
stract specifications into the security protocol implemen-
tation.

Two types of models, namely, the symbolic model
and computational model, have been proposed and ap-
plied for code generation. There have been some ex-
isting approaches based on the symbolic model, includ-
ing [16, 3, 11, 14, 8, 15, 2, 9, 1, 18, 13], which will be
reviewed and discussed in section 2, the related work sec-
tion. The symbolic model and the computational model
are complementary ways for security analysis of secu-
rity protocols. However, we know that one limitation of
the symbolic model is that it cannot instill confidence in
users with regard to its security because in the symbolic
model, the cryptographic primitives are highly abstracted
as black boxes, which often result in some attacks being
missed. In contrast, the computational model is based
on complexity and probability and uses a strong notion
of security to counter all probabilistic polynomial-time
attacks; therefore, its security properties are practically
verifiable and it can find some attacks missed in the sym-
bolic model. Some existing schemes [5, 6, 7] using the
computational model are introduced in the related work
section. However, to the best of our knowledge, none of
the existing schemes can achieve mechanized generation
of security protocol implementations in Java from secu-
rity protocol abstract specifications proved in the com-
putational model. Thus, in this study, we choose to use
the computational model and focus on the mechanized
generation of security protocol implementation in Java
from security protocol abstract specifications proved in
the computational model.

The main contributions of this study are summarized
as follows:

1) We give a brief survey of the state-of-art schemes for
automatic generation of security protocol implemen-
tations based on both the computational model and
the symbolic model. We find that there is no scheme
for automatic generation of security protocol imple-
mentations in Java from security protocol abstract
specifications proved in the computational model.

2) We introduce a model of code generation in which the
security protocol implementations in source language
SP [S], for example, Blanchet calculus, are translated
into the security protocol implementations in a tar-
get language SP[T], for example, the Java language.
It is also necessary to prove that for the adversary
Adv[S] that is constructed based on any adversary
Adv[T], if the security protocol implementations in
source language SP [S] are secure, for any adversary
Adv[T], the security protocol implementations in tar-
get language SP[T] are also secure .

3) We develop an automatic generator CV2JAVA that

can transform the security protocol abstract specifi-
cations, which are the inputs of CryptoVerif to the se-
curity protocol implementations written in the JAVA
language. We use CryptoVerif to prove abstract secu-
rity protocol implementations in Blanchet calculus in
the computational model and then use the automatic
generator CV2JAVA developed by us to generate the
SSHV2 security protocol implementation written in
JAVA.

4) We use the automatic generator CV2JAVA and
CryptoVerif to generate the SSHV2 security proto-
col implementation written in JAVA. First, we de-
velop the SSHV2 security protocol implementation
in Blanchet calculus, and then CryptoVerif is used
to conduct the analysis of authentication of a SSHV2
security protocol implementation written in Blanchet
calculus; finally, we use the automatic generator
CV2JAVA developed by us to generate the SSHV2
security protocol implementation written in JAVA.

2 Related Work

In this section, we give an overview of the state of the
art of mechanized generation of security protocol imple-
mentations from abstract security protocol specifications
proved in two major models: the symbolic model and
computational model. According to related references,
there is no scheme or tool for the mechanized generation
of security protocol implementation in the Java language
from abstract security protocol specifications proved in
the computational model.

In the symbolic model, Pironti and Sisto [16] develop
an automatic framework called Spi2Java, which can trans-
late the abstract security protocol specifications written
in typed Spi calculus to the security protocol implemen-
tations based on some special libraries written in Java.
In addition, if the special libraries have met certain re-
quirements, the generated Java implementation correctly
simulates the typed Spi calculus specification. Following
the work of Pironti and Sisto [16], Pironti et al. [14] first
improve the Spi2Java framework and then develop a semi-
automatic tool to generate the security protocol imple-
mentations; Copet et al. [8] present a visual user interface
approach SPI2JAVAGUI based on the automatic frame-
work Spi2Java to generate and verify the security proto-
col implementations; Pironti and Sisto [15] also present
an approach based on the automatic tool FS2PV to an-
alyze the security of the data transformation function in
protocol code written in a function language. Avalle et
al. [2] design a framework called JavaSPI in which the
Java language is not only used as a modeling language
but also as the implementation language in the security
protocol. In essence, it translates the abstract security
protocol specifications written in Java into the inputs,
which are analyzed by ProVerif, a resolution-based the-
orem prover for security protocols. Based on the work
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of Avalle et al. [2], Copet and Sisto [9] develop an auto-
mated tool based on the JavaSPI framework to generate
the Java protocol code. Avalle et al. [1] present a survey
on the methods of generating the security protocol code
from the view of protocol logic and note that there are two
main approaches: model extraction and code generation.

Backes et al. [3] introduce a new code generator
Expi2Java that can translate the abstract security pro-
tocol specifications written in an extensible variant of
the Spi calculus and is analyzed by ProVerif into the se-
curity protocol implementations written in Java, which
has the features of concurrency, synchronization between
threads, exception handling and a type system. At the
same time, they formalized the translation algorithm
of Expi2Java with the Coq proof assistant and proved
that if the original models are well-typed, the gener-
ated programs are also well-typed. Li et al. [11] pro-
pose a multi-objective-language-oriented automatic code
generation scheme for security protocols based on XML
that describes the formal model of the security protocol.
Quaresma and Probst [18] present a protocol implemen-
tation generator framework based on the LySatool and a
translator from the LySa calculus in the symbolic model
into C or the Java language. Modesti [13] develops an
AnBx compiler that accepts a special notation AnB to
generate the protocol code. However, the work does not
provide the proof of the soundness of the translation pro-
cess.

As for the computational model, Cade and Blanchet [5,
6, 7] develop a compiler that takes an abstract specifica-
tion of the protocol as the input language of the com-
putational protocol verifier CryptoVerif and translates it
into an OCaml implementation. They also prove that
this compiler preserves the security properties proved by
CryptoVerif, and if the abstract protocol specification is
proved secure in the computational model by CryptoVerif.
Li et al. [12] develop an automatic verifier SubJAVA2CV,
which is able to transform security protocols written in
SubJAVA to the security protocol abstract specification
written in Blanchet calculus in the computational model.
However, as we mentioned earlier, none of these schemes
can provide mechanized generation of security protocol
implementations in Java from security protocol abstract
specifications proved in the computational model, which
is what we aim to achieve in this study.

3 The Model of Code Generation
from Abstract Security Protocol
Specifications

For the code generation in Figure 1, we should prepare
the security protocol implementations SP[S] written in
formal languages, such as Pi calculus, Blanchet calculus,
and SPI calculus; while the target language of the se-
curity protocol implementations SP[T] are programming
languages, for example, Java, C #, and the C language.

This means that the target languages are programming
languages, and the source languages are formal languages.
If the code generation method is used to generate secu-
rity protocol implementations in target languages, there
are two requirements that need to be satisfied:

1) The semantic of the target language simulates the
semantic of the source language;

2) For the adversary Adv[S] constructed based on any
adversary Adv[T], if the security protocol implemen-
tation written in source language SP[S] is secure, for
any adversary Adv[S], the security protocol imple-
mentation written in target language SP[T] is also
secure.

The first requirement shows that from the view of the
behaviors, the relationship between the security protocol
implementations written in target language SP[T] and the
security protocol implementations written in source lan-
guage SP[S] is simulation or observational equivalence.

The second requirement shows how to prove the secu-
rity properties of the security protocol implementations
written in target language SP[T]. For any adversaries in
the context, we want to prove the cryptographic security
properties of the security protocol implementations writ-
ten in target language SP[T]. Thus, according to any ad-
versary Adv[T] in the security protocol implementations
written in target language SP[T], we construct an ad-
versary Adv[S] in the security protocol implementations
written in source language SP[S] and then prove that for
the adversary Adv[S]. If the security protocol implemen-
tations written in source language SP[S] are secure, for
any adversary Adv[T], the security protocol implementa-
tions written in target language SP[T] are secure.

Security protocol implementations 

in source language  SP[S]

Adversary Adv[S]

Security 

Security protocol implementations 

in target language  SP[T]

Any adversary Adv[T]

Security

Security model 
Security 

implementation model 

Figure 1: Model of code generation
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4 Blanchet Calculus

Blanchet calculus [4] is based on probabilistic polyno-
mial calculus and has been widely used to prove the
security properties of security protocols. In Blanchet
calculus, messages are modelled as bitstrings and cryp-
tographic primitives are functions that operate on bit-
strings. Blanchet calculus has two versions: channels
front-end and oracles front-end in order to be as the
input of CryptoVerif. Here we introduce the channels
front-end version. Blanchet calculus is mainly made
up of terms, conditions and processes. The adversary
is modelled by an evaluation context Blanchet calcu-
lus mainly consists of terms and processes. Suppose
there are m terms indexed as 1, · · · , i, · · · ,m; then, vari-
able access x[M1, · · · ,Mi, · · · ,Mm] or function applica-
tion f(M1, · · · ,Mi, · · · ,Mm) represent computations on
bitstrings represented by these m terms. The vari-
able access x[M1, · · · ,Mi, · · · ,Mm] outputs the content
of the cell of indices [M1, · · · ,Mi, · · · ,Mm] of the m-
dimensional array variable x. The function application
f(M1, · · · ,Mi, · · · ,Mm) outputs the result of applying
function f to [M1, · · · ,Mi, · · · ,Mm].

The processes in Blanchet calculus include the input
process and output process. Input process 0 does nothing;
Q|Q′ is the parallel composition of Q and Q′; !i represents
n copies of Q in parallel; newChannel c;Q produces a new
private channel n and performs Q. Output process new
x[i1, · · · , im] : T ;P chooses i1, a new random number,
uniformly, stores it in x[i1, · · · , im], and then executes P .
Random numbers are chosen by new x[i1, · · · , im] : T .
Output process let new x[i1, · · · , im] : T = M in P stores
the bitstring value of M in x[i1, · · · , im] and executes P .

Find process shows that it tries to find a branch J in
[1,m] such that there are values of uj1 , · · · , ujmj

for which

Mj1 , · · · ,Mjlj
are defined and Mj is true. In the case of

success, it executes P . When event e(M1, · · · ,Mm) has
been executed, the formula event e(M1, · · · ,Mm) is true.

5 Code Generation from Security
Protocol Implementations Writ-
ten in Blanchet Calculus

We know that the security protocol implementations writ-
ten in Blanchet calculus are mainly composed of pro-
cesses, and processes mainly consist of top processes and
communicating party processes. The top process is the
main process. The parties in security protocols are mod-
elled as communicating party processes. Owning to the
powerful ability of Blanchet calculus, the communicat-
ing parties in the security protocols are multiple parties.
Here we classified it into two kinds of communicating par-
ties: the sender processes and the receiver processes in the
template for security protocol implementations written in
Blanchet calculus as shown in Figure 2. In our model
there can exist multiple sender parties and receiver par-

ties. When we model the security protocol with Blanchet
calculus, the problem needs to be addressed with different
role names.

Generally the template file used to analyze the secu-
rity protocols through Blanchet calculus is made up of
the following sections: Type declaration, function decla-
ration, cryptographic primitive declaration, channel dec-
laration, security property, sender process, receiver pro-
cess and top process. The type declaration section is com-
posed of the related type in formalizing the security proto-
cols, in which some types are owned by Blanchet calculus
and other types are defined according to the requirement
in formalizing the security protocols. The cryptographic
primitives, for example, indistinguishability under adap-
tive chosen ciphertext attack public key enc, which are
used in analyzing the security protocols, is declared in
the Cryptographic primitive section. Channels are used
to model the communication channel between the sender
and receiver processes that are declared in the Channel
declaration section. In the template, we assume that there
are two roles in the security protocols: One is the sender,
and the other is the receiver. Hence, the sender is mod-
elled as the sender process in the Sender process section,
and the receiver is modelled as the receiver process in the
Receiver process section. The top process is composed of
the sender process and the receiver process.

Figure 2: Template for security protocol implementations
written in Blanchet calculus

Hence, in the translation of the code generator, the
top process is mapped into the main program in secu-
rity protocol implementations written in JAVA, which is
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a class. Regarding the type in Blanchet calculus, we di-
rectly transform it into the corresponding type in JAVA
because in Blanchet calculus, we can define the required
types for the types in JAVA showed in Table 1. The func-
tion in Blanchet calculus is translated into the function
in JAVA. The cryptographic primitive in Blanchet cal-
culus is transformed into the security package in JAVA.
The communicating channel processes, which include in-
put channels and output channels, are mapped into the
classes, which are implemented based on the socket and
are the parties in security protocol implementations writ-
ten in JAVA. These classes are responsible for sending and
receiving messages between the communicating parties.
The sender process and the receiver process are mapped
into the sender class and receiver class, respectively, in
Figure 2. Figure 3 presents the generators from Blanchet
calculus to JAVA in detail.

Figure 3: The model of code generation from Blanchet
calculus

 
1 m

1

2 3

int  x=new int m ;

x M ; x M ; x M ;...; x M ;
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m
x M M

                                

    

Figure 4: GeneratorVariableAccess(x[:T])

Generation function GeneratorVariableAccess(x[:T])
in Figure 4 maps variable access x[:T] in Blanchet cal-
culus into variable (int[] x= new int[m]; x[M1]; x[M2];
x[M3];... x[Mm]) in JAVA.

Table 1: The transforming from some types in Blanchet
calculus to some types in JAVA

Types in Blanchet calculus Types in JAVA
keyseed SecureRandom

key Key
cleartext String

ciphertext String
seed SecureRandom

mkeyseed SecureRandom
mkey key

macinput String
macres String
pkey PublicKey
skey PrivateKey

signinput String
signature byte[]
hashinput String

hashoutput String
input int

output int

 
1 1

public Type FunName Typ, , ( )e1 M ;
m

f M M   
    

Figure 5: GeneratorFunctionApplication(f)

Generation function GeneratorFunctionApplication(f)
in Figure 5 transforms function f in Blanchet calculus into
function (public Type FunName(Type1 M1);) defined by
us in JAVA.

 

  1 1 1
 , , , : , , : ;

ServerSocket c;

c = new ServerSocket(8080);

Socket c1=c.accept();

InputStreamReader in=new InputStreamReader(c1.getInputStream());

BufferedReader 

l k k
in c M M x i T x i T P               
      

 br=new BufferedReader(in);

pw=new PrintWriter(c1.getOutputStream(),true);

while(true) {

receive_message =br.readLine();

}

Figure 6: GeneratorInput in

Regarding the generation of input process in Blanchet
calculus, we mainly use the network statements, for ex-
ample, socket statement, in JAVA to implement it. A
special socket is defined to implement the input process.
The property of the input process socket of the sender is
the address and port number of the sender. The property
of the input process socket of the receiver is the address
and port number of the receiver. Hence, input process
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in() in Blanchet calculus can be translated into JAVA as
shown in Figure 6.

 

 

 

 

1 1

ServerSocket c;

c = new ServerSocket 8080 ;

Socket c1=c.accept ;

InputStreamReader out =new InputStreamReader c1.getInput

 , , , , ;

()

( ()Stream ;

BufferedReader br=new BufferedReader out

)

l k
out c M M N N Q   
    



 

;

pw=new PrintWriter c1.getOutputStream ,true ;

pw.println send_mess

( () )

age ;

Figure 7: GeneratorOutput out

Regarding the generation of output process out in
Blanchet calculus, we also use the network statements
in JAVA to implement it. A special socket is defined to
implement the output process. The property of the out-
put process socket is the address and port number of the
receiver. The property of the output process socket of
the receiver is the address and port number of the sender.
Hence, output process out in Blanchet calculus can be
translated into JAVA showed in Figure 7.
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Figure 8: Generator new x

Regarding the process new x in Blanchet calculus, we
mainly use the class new in JAVA to implement it. Hence,
the new process in Blanchet calculus is transformed into
JAVA code in Figure 8.
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Figure 9: GeneratorAssignment Let

The assignment process let x: T=M in P is transformed
into the statementsfor (int i=0; i¡i++)x[i]=Miin JAVA in
Figure 9.
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           return true;
   return fal

||

se;
}

Figure 10: Generator additional if then

In the transformation of the conditional process if
defined (M1, · · · ,M1)M then P else P ′, there are two
methods that can be used to implement the key part
defined (M1, · · · ,M1)M . One method is that the array
is first transformed into the list; then, we can use the
method contained in the list to implement it. Hence, the
arryContains is implemented in JAVA as:

public static boolean arryContains
(String[] stringArray,String source)

{List¡String¿tempList=Array.asList(stringArray);
if (tempList.Contains(source)){return true;}
else {return false;}}

In the other method, the traversing array is used to
implement it. So, the key part defined (MM1, · · · ,M1)M
is implemented in JAVA as in Figure 10:

public static boolean
arryContains(final T[]array,fianl T v)

(final T e:array)if (e==v||v!=null&&v.equals(e))
return true;return false).

6 Automatic Generator CV2JAVA
from Blanchet Calculus to
JAVA

According to the generation functions introduced in the
previous section, we develop an automatic generator
CV2JAVA that accepts the security protocol model ex-
pressed by Blanchet calculus as an input and produces
security protocol implementations in JAVA as an output.

Figure 11 presents the application of automatic gen-
erator CV2JAVA. First, we model the security protocols
with Blanchet calculus, and then, the tool CryptoVerif
is used to implement the analysis of security, and finally,
the automatic generator CV2JAVA is used to generate
the security protocol implementations written in JAVA.
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Figure 11: Application of automatic generator CV2JAVA

Figure 12 shows the development of automatic genera-
tor CV2JAVA. First, according to the informal specifica-
tion of the security protocol, we produce the security pro-
tocol implementations written in Blanchet calculus, and
then, based on the syntax of Blanchet calculus, the lexi-
cal analyzer developed by us is used to analyze and verify
the correctness of security protocol implementations writ-
ten in Blanchet calculus. If verification succeeds, lexical
elements, for example tokens, are produced. Next, the
parser developed by us is used to process tokens and pro-
duces an abstract syntax tree to represent the structure
of security protocol implementation written in Blanchet
calculus. The goal is to generate secure security protocol
implementations written in JAVA, so the structures and
elements that are not related to the programming imple-
mentation of the security protocol, for example, irrelevant
events, are deleted, and the simplified abstract syntax tree
is produced. After this step, the translator mapping the
simplified abstract syntax tree in Blanchet calculus into
the abstract syntax tree in JAVA is derived.

Next, we develop the code generator to produce the se-
curity protocol implementations written in JAVA. In the
next section, we mainly concentrate on the development of
automatic generator CV2JAVA based on JavaCC. We use
JavaCC to develop the lexical analyzer and parser. First,
we need to construct the .jj file and then use JavaCC to
implement the lexical analyzer and parser for Blanchet
calculus. The .jj file is mainly composed of options, func-
tion declarations, specification for lexical analysis and
BNF notations for Blanchet calculus.

6.1 Simplifier

Owing to the specialty of Abstract Syntax Tree of security
protocol implementation written in Blanchet calculus, it
is not easy to directly transform it into Abstract Syn-
tax Tree of security protocol implementation written in
JAVA. At the same time, it may produce some mistakes

in the transformations.
To reduce Abstract Syntax Tree of security protocol

implementation written in Blanchet calculus, we need to
program a simplifier to perform the function. Simplifier
accepts the Abstract Syntax Tree as inputs and produces
the simplified Abstract Syntax Tree. Here, we implement
the simplifier by using visitor pattern.

Visitor pattern is one type of design pattern. Visitor
pattern defines an operation on the elements of an object
structure. Without modifying the structure of the type,
visitor pattern can access the different objects of a type
and make different operations on them. In most cases,
we do not add a new node in the Abstract Syntax Tree
after it has been generated. Hence, we find that it is a
good method to develop the simplifier visitor to address
the Abstract Syntax Tree. At the same time, different
operations can be made on the different nodes. Hence, it
is proper to use visitor patterns to address this situation.

Simplifier visitor in Figure 13 visits, adds and deletes
the nodes according to the Abstract Syntax Tree for
JAVA. There are two different methods for processing the
keywords in simplified visitors. One is the JAVA untrans-
forming method. The other is the JAVA transforming
method. The JAVA untransforming method visits the
Abstract Syntax Tree for Blanchet calculus and obtains
syntax keywords and then compares it to the syntax key-
words in JAVA. If they are the same, the syntax keywords
in Blanchet calculus are not modified. At the same time,
it abstracts the main keyword nodes and variable nodes in
Blanchet calculus to implement the simplification of the
Abstract Syntax Tree. The JAVA transforming method
visits the Abstract Syntax Tree for Blanchet calculus and
obtains syntax keywords and then compares them to the
syntax keywords in JAVA. If they are not same, the syn-
tax keywords in Blanchet calculus are modified. At the
same time, it abstracts the main keyword nodes and vari-
able nodes in Blanchet calculus to implement the sim-
plification of the Abstract Syntax Tree for the main key
variable nodes.

JJTree has additional good support for the visitor de-
sign pattern. If we set the VISITOR option to true, a
jjtAccept() method and childrenaccept() method are in-
serted into all of the node classes it generates by JJTree.
Apart from that, a visitor interface Visitor.java is also pro-
duced that can be implemented and passed to the nodes
to accept. Our simplifier is an instance of a visitor in-
terface Visitor.java. JJTree generates SimpleNodes, and
they are processed differently.

Here is the process of the statement new a:T;P in
Blanchet calculus. It generates a new variable for which
the type is T and then performs process P. There is also
the key word new. Hence, we construct the simplifier vis-
itor according to the new statement syntax in JAVA.

The syntax of the statement new a:T;P in Blanchet cal-
culus is presented in Figure 14. The syntax of statement
new in JAVA is shown in Figure 15.

According to the production of the new statement, the
syntax tree of statement new a:T;P in Blanchet calculus
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Figure 12: Development of automatic generator CV2JAVA

 

Figure 13: The idea of the simplifier visitor

void newterm :

� new�  vartype  scolon  term

()

{}{

() () ()

}

Figure 14: The syntax of statement new a: T; P in Blanchet calculus
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is expressed in Figure 16. The key node is newex node,
and the key variables are constant variable identex and
type variable indentex.

Simplifier visitor travels the Syntax Tree of new state-
ment in Blanchet calculus and abstracts the key nodes and
adjusts the sequence of the key nodes of Syntax Tree for
Blanchet calculus. Finally, it adds the correspondent Java
nodes. The method is the JAVA untransforming method.
The key word is new, and the node term() should be
deleted by the case statement in Figure 17. The method
used to delete the nodes is implemented in the method
for TreeVisitor and can be used to travel the nodes of the
syntax tree.

 
Type a = new Type();

Figure 15: The syntax of statement new in JAVA

 

Figure 16: Syntax tree of new statement in Blanchet cal-
culus

Based on the new statement syntax tree, TreeVisitor
travels the nodes following the sequence. First, the jjtAc-
cept(Visitor, Object) method of the new statement node
is invoked by the main method in parser. Parameter Vis-
itor is the object addvisitor. Then, the visit method of
object addvisitor is called, and the new statement node
is sent to visit method. The post-order traversal is ap-
plied. So, with parameter addvisitor, the visit method is
called childrenAccept(Visitor, Object) in new statement
node to travel to subnodes. The jjtAccept(Visitor, Ob-
ject) method in subnodes to perform the traversal of the
subtree is invoked by the childrenAccep method. Then, it
invokes the addchildren() method to add new nodes. In
addition, the children fields in the new node are revalued
to avoid the logical error. At the same time, the fourth
node is deleted by invoking the method visitor of the ob-
ject deletevisitor.

 

 
 

 
  

case EG2TreeConstants.JJTNEWEX:
    node.childrenAccept this, data ;
    deletechildren node, 4 ;
    break;
 case EG2TreeConstants.JJTNEWEX:
    node.childrenAccept this, data ;
     StringBuffer  data .append(node.jjtGetValue .toString ;

    br

() ())

eak;

Figure 17: Case statement

6.2 Translator

Translator is also a visitor that takes the simplified Ab-
stract Syntax Tree for Blanchet calculus as an input and
outputs the Abstract Syntax Tree for JAVA. This means
that translator is a mapping function from language ele-
ments in Blanchet calculus to language elements in JAVA
based on the definitions. In the next section, we show
how to use the visitor to perform the mapping function
GeneratorRandomNumber x, which implements mapping
from a new statement in Blanchet to a new statement in
JAVA.

We have used the simplifier to delete the node term().
To implement the translation from the new statement in
Blanchet calculus and form the new statement in JAVA,
we also need to adjust the position according to the syn-
tax tree of the new statement in JAVA. The content node,
identex node, colon node, sclon node and newex node
are not changed. The identex node needs to be changed
through the method exchangenode(node,1). According to
the syntax nodes in JAVA, the method nodeExchange in
translator can be used to exchange the nodes if the jjtN-
odeName of the node is the same as the predefined JJT-
LOCALVARIABLEDECLARATION. Finally, we gener-
ate the model for the Abstract Syntax Tree in Blanchet
calculus shown in Figure 18.

When translator has visited all the nodes in the Ab-
stract Syntax Tree for Blanchet calculus, the correspond-
ing Abstract Syntax Tree for Blanchet calculus will be
generated according to the model for the Abstract Syn-
tax Tree in Blanchet calculus in Figure 18.

Figure 19 shows the Abstract Syntax Tree for the new
statement in JAVA.

6.3 Code Generator

If we have derived the Abstract Syntax Tree of Blanchet
calculus, the next task is to implement the code generator
to generate code of Blanchet calculus, which is the secu-
rity protocol implementation written in Blanchet calculus.
Although the Abstract Syntax Tree mainly consists of the
type name, variable name, method name and parameter
list, we are not able to directly use the leaf node to gen-
erate security protocol implementation in JAVA because
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JJTNEWEX

term

identex newexp scolon

assignidentex subnewex

identexnewex leftbracket rightbracket
 

Figure 18: The model for the abstract syntax tree of code exchange method in Blanchet calculus

 

Figure 19: Abstract syntax tree of new statement
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Figure 20: The structure of the code generator visitor

the channel declaration, security definition and declara-
tion have not been transformed. Hence, we design a visi-
tor code generator for channel declaration, security defini-
tion and declaration. When the code generator traverses
the syntax tree and adds input channels, out channels,
operators and security definitions and declarations are in
the proper position.

When the code generator traverses the syntax tree, it
first adds the declaration methods and security properties
verification and then translates it into JAVA code. For ex-
ample, to verify the security of sessionkey, the statement
in Blanchet calculus is query secret sessionkey; there-
fore, the corresponding method verifSecret(sessionkey) in
JAVA is added to verify the sessionkey.

Figure 20 shows the structure of the visitor code gener-
ator. The visitor method first accesses the jjtNodeName
of nodes and then creates different operations on different
nodes. The switch statement is used to match the value
of the jjtNodeName, and the task of processing the node
is performed in the case statement. It mainly adds some
keywords, operators and special characters and so on into
the object StringBuffer.

Security protocol implementations in JAVA is stored
in the object StringBuffer after the code generator visitor
travels through all of the Abstract Syntax Tree. Finally,
we write the contents in the object StringBuffer into a file,
and thus, the security protocol implementation in JAVA
is completed.

6.4 Templator

Templator is used to add the security object expressed by
events in Blanchet calculus into security protocol imple-
mentation in CryptoVerif. Thus, we can use CryptoVerif
to verify the security properties of security protocol im-
plementation in Blanchet calculus.

7 Case: SSHV2 Security Protocol
Implementation in JAVA

In this section, we use the automatic generator CV2JAVA
and CryptoVerif to analyze the authentication of the Se-
cure Shell Version 2 (SSHV2) security protocol and gener-
ate its implementation written in JAVA. We first develop
the SSHV2 security protocol implementation written in
Blanchet calculus. Then, we use the automatic verifier
CryptoVerif to analyze the authentication of the SSHV2
security protocol. Finally, we use automatic generator
CV2JAVA to generate SSHV2 security protocol imple-
mentation written in JAVA.

7.1 Review of the SSHV2 Security Pro-
tocol

The SSHV2 security protocol was issued in 2006 by
IETF and is designed to implement remote secure lo-
gin and other secure network services over an insecure
network. The SSHV2 protocol is made up of three ma-
jor sub-protocols: The Transport Layer Protocol imple-
ments server authentication, confidentiality, and integrity
with perfect forward secrecy. The User Authentication
Protocol authenticates the client identity to the server.
The Connection Protocol provides the encrypted tunnel
in several logical channels. The SSHV2 security protocol
uses the Digital Signature Algorithm (DSA) to replace the
RSA algorithm to implement the secret key exchange in
the Transport Layer Protocol and use the Hash Message
Authentication Code (HMAC) to guarantee the integrity
of the message.

To implement the security of data over a public net-
work, the message exchange is made up of the following
four phases: the protocol version negotiation, encryption
algorithms and key negotiation, key exchange and authen-
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tication. In the protocol version negotiation phase, the
client and server chose the same version to communicate.

In the encryption algorithms and key exchange
phases in the Transport Layer Protocol, parameter
negotiation is allowed to minimize the number of round
trips. The key exchange method, public key algorithm,
symmetric encryption algorithm, message authentica-
tion algorithm, and hash algorithm are all negotiated.
Hence, there are nine messages to be exchanged between
the client and the server: Protocol Version Exchange
between the client and the server SSH-protoversion-
softwareversion, the client and server Algorithm
Negotiation SSH MSG KEXINIT, key exchange request
SSH MSG KEXDH GEX REQUEST, key exchange
parameters response SSH MSG KEXDH GEX GROUP,
key exchange parameter initialization
SSH MSG KEXDH GEX INIT, key exchange re-
sponse SSH MSG KEXDH GEX REPLY and the new
key message SSH MSG NEWKEYS.

In the authentication phase, the server implements the
authentication of the client. The server initiates the au-
thentication by telling the client which authentication
methods can be chosen to continue the exchange. The
client can choose the proper methods listed by the server
in any order. This gives the server complete control over
the authentication process. There are three methods that
can be used by the client: public key, password, and host-
based client authentication methods. Here, we chose the
public key authentication method.

In the public key authentication method, the client
sends the Authentication Requests message to the
server: (1) SSH MSG USERAUTH REQUEST, which is
made up of username, servicename, methodname and
method specific fields. The value of methodname is ”pub-
lic key” based on the authentication method we chose.
The method specific field consists of signature algorithm,
public key, signature fields. The signature field is made up
of session ID,SSH MSG USERAUTH REQUEST, user
name, service, ”public key”, TRUE, algorithm name, pub-
lic key fields.

When the server accepts authentication, it sends
the message (2) SSH MSG USERAUTH SUCCESS
to the client; otherwise, it sends the messages
SSH MSG USERAUTH FAILURE SSH, which means
that the authentication request has failed.

7.2 SSHV2 Security Protocol Implemen-
tation Written in Blanchet Calculus

The formal model implemented in Blanchet calculus in-
cludes initialization process, the client process and server
process.

The initialization process generates the public key
pkeyrsa and private key skeyrsa for the server, the sig-
nature public key signpkey, the signature private key
signskey for the server, the public key pkey c, private
key skey c for the client and the signature public key
psignkey c, the signature private key ssignkey c for the

client. Then, the public keys pkeyrsa, skeyrsa, signpkey,
pkey c, keyhash are published through the channel c. Af-
ter that, the client process ClientProcess and the server
process ServerProcess are launched.

The client process produces the version information
clientversion and sends it through the channel c1. Then,
it receives the version information messagetwo s from the
channel c4 and sets the version equal to messagetwo s.
The client process also generates the client algorithm
parameters message algoclient and sends it through the
channel c5. Next, it receives the server algorithm param-
eters messagetwo s from the channel c8 The client process
accepts messagetwo s. The client process generates the
key exchange parameters minc, dp, maxc using the state-
ments new minc: Z; new dp: vlue; new maxc: Z; it then
sends them to the server process through channel c9. The
random number r c produced using the statement new r c:
Z accepts as the input of the function exp(); then, we can
get the dh e, which is sent to the server process through
the channel c13. When the server receives the message
dh e, it will send a message dh f s as the response. Thus,
through the channel c16, the client process gets the mes-
sage dh f s generated by the server process and r c to
compute the client share key clientshareK using the func-
tion Gtokey(). The client process verifies the digital
message dh signature s received from the server process
using the function check(htomes(clienthash), psignkey c,
dh signature s) with the signature key psignkey c.

If the verification is successful, the client authenticates
the server. Next, the client process generates the new ses-
sion key sessionkey using the function hashtokey(), and
then, the new session key sessionkey is encrypted with
the public keypkeyrsa of the server, and the ciphertext
messenc is produced and is sent to the server process
through the channel c17. The four parameters of the
function hashtokey() are client share key clientshareK, the
hash of client message clienthash, client message clientmes
and session id sessionid. The session key sessionkey is
the hash value of the four parameters: client shares
key clientshareK, the hash of client message clienthash,
client message clientmes and session id seesionid. Next,
the client generates the authentication request message
SSH MSG USERAUTH REQUEST, which includes user-
name, servicename, methodname, method specific. Then,
it uses the client signature key ssignkey c to generate the
digital signature request signature of the authentication
request message SSH MSG USERAUTH REQUEST and
send it to the server process through channel c19.

The server process receives the version information
messageversion c through channel c6. Then, it gen-
erates the server version information serverversion and
sends it through channel c3. The server process also
receives the client algorithm parameters message algoc
through the channel c2. Then, it generates the server
algorithm parameters message algoserver and sends it
through the channel c7. The server receives the message
message DHrequ through the channel c10. The message
message DHrequ is made up of the key parameters dhmic,
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dhdp and dhmaxc, which are accepted as the inputs of
function exp() to generate the message message DHgroup
and send it to the client process.

The server receives the message message c and com-
putes the shared key k through k=exp(message e,r s).
Next, it calculates the hash value hashserver by the hash
function hash(keyhash,messagedhhash). Then, the sig-
nature signtext is generated by fhashtosign(hashserver)
and the client uses the signature private key ssingkey c to
produce the digital signature dh signature. The server
process generates the authentication message dhgexre-
ply through the function concatreply, which accepts dh f,
pkeyrsa, session id s,dh signature as the inputs. Fi-
nally, the server process sends the authentication message
dhgexreply to the client through the channel c15.

The server process receives the authentication request
message messageauth c from the client process through
the channel c20. Then, it constructs the message mes-
sageauth c through the function concatsshuser(). Next,
the server process uses the function check to verify the
authentication request message with the public key cp-
key c. If the verification is successful, the server pro-
cess sends the message SSH MSG USERAUTH SUCESS
through the channel c21.

7.3 Authentication of SSHV2 Security
Protocol Implementation in Blanchet
Calculus

In this section, we give a brief overview of the mecha-
nized prover CryptoVerif, which is used to automatically
analyze authentication of SSHV2 security protocol imple-
mentation in Blanchet calculus.

Here, we use non-injective correspondences in Fig-
ure 21 to model the authentication from server to client
and from client to server. Event client(x, y, kx, px,
gx, gy, krsa)==> server(x, y, kx, px, gx, gy, krsa) is
used to authenticate the client by server. Event server
A(ya)==>client A(ya) is used to authenticate the server
by client. These events and non-injective correspondences
had been added into the model implemented in Blanchet
calculus by hand.

The analysis was performed by CryptoVerif and suc-
ceeded. The result is shown in Figure 22, and the
SSHV2 security protocol is proved to guarantee authen-
tication. ”All queries proved” in Figure 22 shows that
event client(x, y, kx, px, gx, gy, krsa)==> server(x, y,
kx, px, gx, gy, krsa) is true, which shows that the server
authenticates the client. Event server A(ya)==> client
A(ya) is true, which shows that the client authenticates
the server; query secret sessionkey is proved, which shows
that the session key is secure.

 

 
 
 
 

event client version,version,key,value,G,G,rsapkey .

event server version,version,key,value,G,G,rsapkey .
event clientA signature .

event serverA signature .

query x:version,y:version,px:value,gx:G,gy:G,kx:key,kr
   

   

sa:rsapkey;
event client x,y,kx,px,gx,gy,krsa ==>server x,y,kx,px,gx,gy,krsa .
query ya:signature;
event serverA ya ==>clientA ya .
query secret sessionkey.

                            

Figure 21: Events

7.4 SSHV2 Security Protocol Implemen-
tation Written in JAVA

According to the SSHV2 protocol, a protocol implemen-
tation written in Blanchet Calculus, we use the automatic
verifier CV2JAVA to generate the SSHV2 protocol imple-
mentation in JAVA, as shown in Figure 23. But in our
current version, there are some limitations on it. we also
need to implement its method in the class. Then, we run
the client and server code, which is shown in Figure 24.
In addition, it also shows that the server authenticates
the client.

8 Conclusions

In the last twenty years, many security protocols have
been introduced and deployed in all kinds of information
systems. Hence, the verification of the security properties
of these protocols has received plenty great deal of at-
tention. Now, there is a popular issue: analysis of the
security protocol implementations, which is introduced
from the security field. In this study, we first present the
model of code generation from abstract security protocol
specifications. Then, we develop an automatic generator
CV2JAVA, which is able to translate security protocol
abstract specifications written in Blanchet calculus in the
computational model into security protocol implementa-
tions written in JAVA. Moreover, we also use the auto-
matic generator CV2JAVA and CryptoVerif to generate
the SSHV2 security protocol implementation written in
JAVA from the SSHV2 security protocol implementation
written in Blanchet calculus proved in the computational
model.

One of our main work is to develop a generator form
security protocols implementations written in Blanchet
calculus to JAVA code and is not to develop a complex
complier. Hence the compile time error and compiler op-
timization etc. have not been addressed in current work.
Compared to the works of Cade and Blanchet [12,13],
there are six big difference. Firstly, the target languages
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Figure 22: The result

 

Figure 23: Generating SSHV2 protocol implementation written in JAVA
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Figure 24: The result of executing the client and server code

are different. Firstly, the target languages are different.
The target language in Cade and Blanchet [12,13] is the
Ocaml language which is a function language. By con-
trast, the target language in our work is Java language
which is an imperative language. Secondly, the formal
languages are different. In Cade and Blanchet [12,13], the
modified Blanchet calculus is used, in which some state-
ments are added and some other statements are removed
in order to deal with transforming from it to Ocaml lan-
guage. By contrast, we use the original Blanchet calcu-
lus to deal with transforming from it to JAVA language.
Thirdly, the Blanchet calculus has two versions: chan-
nels front-end and oracles front-end as the input language
of CryptoVerif. Cade and Blanchet [12] use the oracles
front-end to model the SSH protocol. However, we use
the channels front-end to model the SSH protocol. Hence
the formal code are very different. Fourthly, the technolo-
gies based upon during the development of the translator
may be different because of the different target languages.
They use the Ocaml language to develop the complier.
But we chose the JAVACC as the base in order to process
the transformation from Blanchet calculus to JAVA lan-
guage.. Fifthly, The SSH protocol modelled in our work
is nice distinction. For example, the cryptographic prim-
itives. Finally, the proof of the correctness of translator
are different. Owning to the differences of the formal lan-
guages and the target languages, although the frameworks
are similar, the technologies used are different. We will
prove it from the view of operational semantics. More-
over, the operational semantics are different due to the
different target.

In our current version of CV2JAVA, there are some lim-
itations on it. At a time the only one process in Blanchet
calculus can be translated into classes in JAVA code. At
the same time we also need to implement its method in
the class. In future work, we will improve the generator

CA2JAVA and use the formal method to prove the cor-
rectness of translation from Blanchet calculus to JAVA
and enhance the ability of the tool.
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