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Abstract

Using multiple linear of multilinear map, we propose a
simple, non-interactive and effective publicly verifiable se-
cret sharing (PVSS) scheme based on multilinear Diffie-
Hellman assumption (MDH). Up to now, the publicly ver-
ifiable of secret sharing is still an issue. In this paper, we
set the sharing secret is a multiple linear pairing, we ap-
ply the multiple linear property of multilinear map for
the shares authentication to achieve publicly verifiability
of secret sharing. What’s more, the batch verification
technique is used to reduce the computational overhead
at share verification phase. Compared with the existing
programs, this scheme has improved communication effi-
ciency under the same security level and it can meet those
high efficiency and security of the communication require-
ments of the application scenarios. In addition, we apply
our PVSS scheme to electronic voting skillfully. At last,
the performance analysis results show the publicly ver-
ifiability, security and practicality of our scheme in the
random oracle and under MDH assumption.

Keywords: Electronic voting, multilinear map, multilin-
ear Diffie-Hellman assumption, publicly verifiable secret
sharing

1 Introduction

Secret sharing is an important research content of mod-
ern cryptography, it is a method of increasing the secu-
rity of cryptography system. The earliest secret sharing
schemes were proposed by Shamir [20] and Blakey [2] in
1979. Shamir’s (t, n) threshold secret sharing scheme is
based on polynomial interpolation in a finite field. In
Shamir’s scheme, the secret is able to be reconstructed
by t or more participants at secret reconstruction phase,
while any subset of t-1 or less participants has no infor-
mation about the secret. Threshold secret sharing [1, 10]
has remarkable effect on cryptography due to its effec-

tive and applicability. However, it still has the following
drawbacks:

1) Unable to identify the honesty of the dealer;

2) Unable to detect dishonest participants and prevent
cheating behavior.

In order to prevent malicious behavior of the dealer
and participants, a new type of secret sharing scheme was
first proposed by Feldman [11], called Verifiable Secret
Sharing (VSS) schemes, which solved the security issues
mentioned above. However, it also pledges that the par-
ticipants only verify their own shares but cannot verify
the other participants received shares. VSS scheme such
as all require the availability of private channel from the
dealer to each of the participants individually, but the
communication over the private channel of VSS scheme is
obviously not publicly verifiable.

However, in publicly verifiable secret sharing (PVSS)
scheme, the dealer broadcasts information to the partic-
ipants without needing to maintain a private channel,
which avoids the interaction between the dealer and the
participants, as well as the interaction among the par-
ticipants. The notion of PVSS was first introduced by
Stadler [21] in public key setting. PVSS scheme with the
objective that anyone, not just the participants, can verify
whether the distributed shares are valid without revealing
any information about the secret at the secret distribu-
tion phase and whether each participant releases the cor-
rect share at the secret reconstruction phase. Moreover,
Stadler expressed the main goal of threshold secret shar-
ing scheme was that each authorized subset of the access
structure could reconstruct the secret. The PVSS scheme
reduces the overhead of communication and safeguards
the security of the scheme because it does not require pri-
vate channels. In view of these advantages, Schoenmak-
ers [19] proposed a simple PVSS scheme based on discrete
logarithm problem and gave its applications in electronic
voting systems and key escrow. Later, some publicly ver-
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ifiable secret sharing schemes based on traditional public-
key systems were proposed [6, 7, 26]. Although PVSS
plays a powerful role in threshold cryptography, the secu-
rity of this kind of scheme was either based on the inte-
ger factoring problem or the discrete logarithm problem.
Until 1993, Menezes et al. [16] presented the Weil pair-
ing, which was defined on an elliptic curve and could be
used to solve the decision Diffie-Hellman (DDH) problem
effectively. Subsequently, many pairing-based secret shar-
ing schemes were proposed [3, 23, 24]. For example, WU
and TSENG [25] proposed the first pairing-based PVSS
scheme in 2011, they had showed the security of their
PVSS scheme under the bilinear Diffie-Hellman assump-
tion, but the computation overhead of their scheme was
considerable, especially in the share verification phase.

Recently, multilinear map has received extensive at-
tentions from cryptographic researchers, which has been
applied to public key cryptography [8, 12] successfully.
In [13], Garg et al. presented a public and secure
attribute-based signcryption scheme based on multilin-
ear map, this signcryption scheme gave the foundation
method of carrying out secure communication in social
network. In 2009, on the basis of multilinear map, by
using multiple linear pairing, Ruckert et al. [18] have con-
structed efficient aggregate and verifiable encrypted sig-
natures without random oracles. From the above refer-
ences, we can easily know that multiple linear pairing has
been an important tool for constructing encryption and
signature algorithms, and the security of the signcryp-
tion schemes is guaranteed under the multilinear Diffie-
Hellman assumption, but there is almost no secret sharing
scheme based on multiple linear pairing presently.

Consequently, by using multiple linear pairing, in this
paper, we propose a non-interactive, simple and effec-
tive PVSS scheme, whose security is based on multilin-
ear Diffie-Hellman assumption. In our scheme, we as-
sume that the secret is a multiple linear paring, by us-
ing multiple linear property of multilinear map and the
batch verification technique to prevent cheating at se-
cret distribution phase and reduce computational over-
head at verification phase, respectively. Moreover, any-
one can identify the process of distributing and recovering
secret publicly without implementing the interactive pro-
tocol such as DLEQ(g1, h1; g2, h2) by Chaum and Ped-
ersen in [5], it’s an effective solution to prevent dishonest
dealer and participants, thereby reducing the communi-
cation cost. Furthermore, we show that in the random or-
acle model and under multilinear Diffie-Hellman assump-
tion, our proposed scheme is securely and effectively. In
addition, the performance analysis shows that it is less
communication overhead and more effective than the pre-
vious schemes [11, 17, 25], so it can be more applicable in
those high efficiency of the communication requirements
of the application scenarios.

The rest of the paper is organized as follows. We briefly
describe the concept of multilinear map and the related
security assumptions. At the same time, we review the
model of PVSS scheme in Section 2. In Section 3, we

present our new publicly verifiable secret sharing based
on multiple linear pairing. And then in Section 4, we
make the scheme analysis, which focus on the proof of
the correctness and security, as well as the performance
comparison. In Section 5, the application of our PVSS
scheme in electronic voting is briefly presented. We intro-
duce a conclusion and our next work in Section 6.

2 Preliminaries

In this section, we briefly describe the definition of mul-
tilinear map, the related security assumptions, and recall
the publicly verifiable secret sharing (PVSS) scheme.

2.1 Multilinear Maps

Boneh and Silverberg (BS) [4] first proposed the concept
of multilinear map and described many cryptographic ap-
plications in 2003. The definition of BS is that: Let G1

and G2 be two groups which have the same prime order
q. In particular, G1 is an additive cyclic group and G2

is a multiplicative cyclic group. A map e : Gn1 → G2

is an n-multilinear map if it satisfies the following three
properties:

1) Multilinear: For all g1, g2, · · · , gn ∈ G1 and a1, a2,
· · · , an ∈ Z∗q , we have en(a1g1, a2g2, · · · , angn) =
en(g1, g2, · · · , gn)a1a2···an ;

2) Non-degenerate: If g ∈ G1 is a generator of G1, then
en(g, g, · · · , g) is a generator of G2;

3) Computable: For all g1, g2, · · · , gn ∈ G1, there is an
efficient algorithm to compute en(g1, g2, · · · , gn).

2.2 Security Problems and Assumptions

Computational Diffie-Hellman (CDH) problem:
Given g, ag, bg ∈ G1 for some a, b ∈ Z∗q , it is difficult
to compute abg ∈ G1.

Discrete logarithm (DL) problem: Given g, ag ∈
G1, it is hard to compute a ∈ Z∗q .

Multilinear discrete logarithm (MDL) problem:
Let G be a finite cyclic group with prime order q,
for all k > 1, 1 ≤ i ≤ k and gi ∈ G, given (i, gi, agi)
for some a ∈ Z∗q , it is hard to compute a.

n-Multilinear computational Diffie-Hellman (n-
MDH) problem: Given g, a1g, a2g, ..., ang ∈ G1

for some random selective a1, a2, · · · , an ∈ Zp, where
g is a generator of group G1, it is hard to compute
en(g, g, · · · , g)

a1a2···an ∈ G2.

MDH assumption: No PPT algorithm can solve the
MDH problem with a non-negligible advantage.
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2.3 Model of PVSS

In this section, the model of (t, n) threshold publicly ver-
ifiable secret sharing (PVSS) scheme is presented. Let
t and n be two positive integers such that 1 ≤ t ≤ n.
Let U1, ..., Un denote the participants, and D denotes
the dealer. An access structure can be a (t, n) thresh-
old scheme for 1 ≤ t ≤ n, it means that any subset of t or
more participants is able to reconstruct the secret, while
the subset of at most t-1 participants cannot recover the
secret and has no information about it. The system of a
PVSS scheme consists of three phases are described be-
low.

1) Initialization phase: On input the number n of
participants, a threshold t, it outputs all public pa-
rameters as well as participants’ private keys and the
corresponding public keys as part of the system pa-
rameters.

2) Distribution phase: On input a secret s, the dis-
tribution phase consists of two steps as follows.

a. Share distribution: The dealer D distributes
a secret s among n participants, the dealer uses
the participants’ private keys and public param-
eters to encrypt secret and then publishes some
specific value Yi(the shares are embedded into
these specific values Yi) to the participants Ui,
where for i = 1, 2, · · · , n.

b. Public verification: This step can be exe-
cuted by a third party and determines whether
the distributed shares are valid. Anyone not just
the participants can verify these specific values
Yi by checking some equations. If all the check-
ing equations hold, then these specific values Yi
are believed to be correctly published by the
dealer, and the shares included in Yi are valid.
Once the equations do not hold, we say that the
dealer fails to distribute a secret, and then break
the scheme.

3) Reconstruction phase: The reconstruction phase
contains decryption of the shares and reconstruction
of the secret:

a. Decryption of the shares: Each participant
uses his/her own private key to obtain the cor-
responding share si from the specific value Yi,
respectively.

b. Reconstruction of the secret: When the
qualified participants offered at least t correct
shares si, then the secret s can be recovered
from these shares si by threshold technique such
as Lagrange interpolation.

3 Proposed PVSS Scheme

In this section, we present our non-interactive and effec-
tive PVSS scheme based on multiple linear pairing.

First, the key generation center (KGC) generates m

public parameters P
(1)
pub, P

(2)
pub, ..., P

(m)
pub , m ∈ RZ

∗
q . We as-

sume that the secret S = em(P
(1)
pub, P

(2)
pub, ..., P

(m)
pub )a will be

distributed by the dealer D among n participants, where
a ∈ Z∗q . Let U = {U1, U2, · · · , Un} be a set of n qual-
ified participants. The PVSS scheme consists of three
phases: Initialization phase, Distribute phase and Recon-
struct phase.

1) Initialization phase
Let G1 and G2 be two groups, separately denote ad-
ditive cyclic group and multiplicative cyclic group
which have the same prime order q. Assuming that
there exists a multilinear map e : Gn1 → G2 among
G1 and G2. The independently generators P, Q of
groupsG1 andG2 are selected using appropriate pub-
lic procedure. Each participant Ui chooses a private
key di ∈ Z∗q and compute the corresponding public

key Pi = diP
(i)
pub for i = 1, 2, ..., n.

2) Distribute phase
The distribution phase consists of two steps as fol-
lowing:

a. Distribution of the shares: The dealer D
wishes to distribute a secret among n par-
ticipants. The dealer D first chooses a ran-

dom polynomial f(x) =
t−1∑
j=0

ajx
j of degree

at most t − 1 with coefficients in Zq. Here
f(0) = a0 = a. And then the dealer keeps
this polynomial secretly but computes and pub-
lishes the following values: the related com-
mitments Cj = aj · P , for j = 0, 1, ..., t − 1,

Xi = f(i) · P and γi = f(i) · P (i)
pub. The

dealer also publishes the encrypted shares Yi =

em(Pi, P
(1)
pub, · · · , P

(i−1)
pub , P

(i+1)
pub ..., P

(m)
pub )f(i) for

i = 1, 2, ..., n.

Each Xi can be constructed by all public values
Cj as follows:

Xi = f(i) · P

=
t−1∑
j=0

aj · (ij) · P

=
t−1∑
j=0

(ij) · aj · P

=
t−1∑
j=0

(ij) · Cj

b. Verification of shares: Anyone first can re-

cover Xi =
t−1∑
j=0

(ij) · Cj from the value Cj and

then checks equation (1) by public values Cj
and Xi, γi, for j = 0, 1, ..., t − 1, i = 1, 2, ..., n.
Equation (1):

em(γ1, ..., γj−1, P
(j)
pub, γj+1, ..., γm−1, Xj)

= em+1(γ1, γ2, ..., γm−1, P )
(1)
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If the Equation (1) holds, then the verifier be-
lieves that these specific values Yi correctly pub-
lished by the dealer D and the verifier can con-
firm that each Yi holds for i = 1, 2, ..., n. The
proof is as follows:

Yi = em(Pi, P
(1)
pub, ..., P

(i−1)
pub , P

(i+1)
pub , ...,

P
(m)
pub )f(i)

= em(di · P (i)
pub, P

(1)
pub, ..., P

(i−1)
pub , P

(i+1)
pub , ...,

P
(m)
pub )f(i)

= em(P
(i)
pub, P

(1)
pub, ..., P

(i−1)
pub , P

(i+1)
pub , ...,

P
(m)
pub )di·f(i)

= em(P
(1)
pub, P

(2)
pub, ..., P

(m)
pub )di·f(i).

3) Reconstruct phase
This phase is divided into decryption of the shares
and the reconstruction of the secret:

a. Decryption of the shares: Each partic-
ipant Ui uses his/her own private key di
to compute the corresponding share Si =

em(P
(1)
pub, P

(2)
pub, · · · , P

(m)
pub )f(i) by computing the

following equation:

Yi
d−1
i = em(Pi, P

(1)
pub, ..., P

(i−1)
pub , P

(i+1)
pub ,

· · · , P (m)
pub )f(i)·d

−1
i

= em(di · P (i)
pub, P

(1)
pub, ..., P

(i−1)
pub , P

(i+1)
pub ,

· · · , P (m)
pub )f(i)·d

−1
i

= em(P
(i)
pub, P

(1)
pub, ..., P

(i−1)
pub , P

(i+1)
pub ,

· · · , P (m)
pub )f(i)

= em(P
(1)
pub, P

(2)
pub, ..., P

(m)
pub )f(i)

= Si.

b. Reconstruct of the secret:
Any t shareholders Ui with the correct
shares Si can reconstruct the secret S =
em(P

(1)
pub, P

(2)
pub, ..., P

(m)
pub )a, for i = 1, 2, ..., t. The

secret S is obtained by Lagrange interpolation
as Equation (2):

S =

t∏
i=1

Sλi
i = em(P

(1)
pub, P

(2)
pub, ..., P

(m)
pub )a (2)

Where λi =
∏
j 6=i

i
j−i is Lagrange coefficient.

4 Scheme Analysis

This section introduced the proof of the correctness and
security of the proposed scheme, and we make perfor-
mance analysis mainly in the computation and communi-
cation aspects.

4.1 Correctness Analysis

Lemma 1. First, we verify the equation em(γ1, ..., γj−1,
Ppub, γj+1, ..., γm−1, Xj) = em(γ1, γ2, ..., γm−1, P ) (1).

Proof. From the public values Xi = f(i) · P , γi = f(i) ·
P

(i)
pub. we can gain that

em(γ1, γ2, ..., γj−1, P
(j)
pub, γj+1, ..., γm−1, Xj)

= em(γ1, γ2, ..., γj−1, P
(j)
pub, γj+1, ..., γm−1, f(j) · P )

= em(γ1, γ2, ..., γj−1, f(j) · P (j)
pub, γj+1, ..., γm−1, P )

= em(γ1, γ2, ..., γj−1, γj , γj+1, ..., γm−1, P )
= em(γ1, γ2, ..., γm−1, P ).

Hence, Equation (1) holds, the shares distributed by the
dealer are valid.

Lemma 2. And then verify that the method of recon-
structing the secret is correct. In other words, it is need to

verify equation S =
t∏
i=1

Sλi
i = em(P

(1)
pub, P

(2)
pub, ..., P

(m)
pub )a.

Proof. From the known share value Si = em(P
(1)
pub, P

(2)
pub,

· · · , P (m)
pub )f(i), which is computed from private key di

and specific public value Yi, we can get that

t∏
i=1

Sλi
i =

t∏
i=1

(em(P
(1)
pub, P

(2)
pub, ..., P

(m)
pub )f(i))λi

= em(P
(1)
pub, P

(2)
pub, ..., P

(m)
pub )

t∑
i=1

f(i)·λi

= em(P
(1)
pub, P

(2)
pub, ..., P

(m)
pub )f(0)

= em(P
(1)
pub, P

(2)
pub, ..., P

(m)
pub )a

= S

The Equation (2) holds, so the method of secret recon-
struction is correct.

4.2 Security Analysis

In this section, we present security analysis of our
proposed scheme under the multilinear Diffie-Hellman
(MDH) assumption.

We first consider the security of the shares Si =

em(P
(1)
pub, P

(2)
pub, ..., P

(m)
pub )f(i). Given the public values

P
(i)
pub, Pi, Xi and Yi for i = 1, 2, ..., n, we observe that

the difficulty of computing the share Si is equivalent to
solve the multilinear Diffie-Hellman (MDH) problem as
described in Section 2. Consequently, we have the follow-
ing lemma.

Lemma 3. The encryption of shares is security in the
proposed PVSS scheme if and only if the MDH assump-
tion holds.

Proof. ⇐ By contradiction proof. Assuming that the
MDH assumption holds but the encryption of shares is
not security. Since the method of share encryption does
not hold, then there exists an Algorithm A can com-

pute the shares Si = em(P
(1)
pub, P

(2)
pub, ..., P

(m)
pub )f(i) with a
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non-negligible probability ε for the given public value

P
(i)
pub, Pi, Xi and Yi. Then we want to prove that an at-

tacker can solve the MDH problem with the same proba-
bility using the Algorithm A.

The MDH problem is that given a1P, a2P, ..., amP
for some a1, a2, · · · , am ∈ Z∗q , it is hard to compute

em(P, P, · · · , P )
a1a2···am . Hence, we try to compute the

value em(P, P, · · · , P )
a1a2···am using A in the following.

The attacker chooses random elements a1, a2, · · · , am, b ∈
Z∗q and a

′

1, a
′

2, · · · , a
′

m, b
′ ∈ Z∗q . For the given values

Q1 = a1P,Q2 = a2P, ..., Qm = amP,Q = bP , the

attacker first computes and feeds the values P
(i)
pub =

a
′

i ·Qi, Pi = ai · P (i)
pub, Xi = b′ · Q and Yi =

em(P
(1)
pub, P

(2)
pub, ..., P

(m)
pub )ai·bb

′
to A, where i = 1, 2, ..., n.

Since the input of A is uniformly distributed and Xi =
b′ · Q = b′ · bP = f(i)P is known, we obtain that

Si = em(P
(1)
pub, P

(2)
pub, ..., P

(m)
pub )f(i) = em(a1a

′

1 ·P, a2a
′

2

·P, ..., ama
′

m ·P )f(i) = em(P, P, ..., P )a1a
′
1·a2a

′
2·ama

′
m·f(i)

= em(P, P, ..., P )a1a
′
1·a2a

′
2·ama

′
m·bb

′
with the same non-

negligible probability ε. By taking (Si)
1/(a

′
1a
′
2···a

′
mbb

′)

= em(P, P, ..., P )a1a2···am , we know that the attacker is
able to compute em(P, P, · · · , P )

a1a2···am with the proba-
bility ε. It is a contradiction to the above MDH assump-
tion.

It shows that the MDH assumption holds, then the
encryption of shares is secure.
⇒ By contradiction proof. Assuming that the en-

cryption of shares is secure but the MDH assumption
does not hold. Because the MDH assumption does not
hold, then there exists an algorithm B can compute
em(P, P, · · · , P )

a1a2···am with a non-negligible probability
ε for m random elements a1P, a2P, ..., amP ∈ G1, where
a1, a2, · · · , am ∈ Z∗q . The attacker chooses random ele-

ments β1, β2, · · · , βm, b ∈ Z∗q and β
′

1, β
′

2, · · · , β
′

m, b
′ ∈ Z∗q .

When feeding Q = bP,Xi = b′Q to B, the attacker com-
putes and inputs Q

′

1 = β1 ·P,Q
′

2 = β2 ·P, ..., Q
′

m = βm ·P ,

P
(i)
pub = β

′

iP for i = 1, 2, ..., n. Then the share Si

must satisfy that Si = em(P
(1)
pub, P

(2)
pub, · · · , P

(m)
pub )f(i) =

em(Q
′

1, Q
′

2, · · · , Q
′

m) = em(β1P, β2P..., βmP ).
Since the input of B is uniformly distributed, we can

compute Xi = b′Q = b′bP = f(i)P with the same
probability ε because of Q = bP,Xi = b′Q. There-
fore, we can obtain that em(β

′

1P, β
′

2P, ..., β
′

mP )f(i) =
em(β1P, β2P..., βmP ). Which produces

em(P, P..., P )β
′
1β
′
2···β

′
mbb

′
= em(P, P..., P )β1β2···βm .

Due to the MDH assumption does not hold, So the al-
gorithm B can compute em(P, P..., P )β1β2···βm with the
same non-negligible probability ε, and then the share Si
can be computed by algorithm B. Hence, the encryption
of shares is not secure.

It shows that the encryption of shares is secure, the
MDH assumption must hold.

Lemma 4. If only t-1 participants can work together to

recover the secret in the proposed scheme, then the Mul-
tilinear Diffie-Hellman (MDH) problem can be solved.

Proof. At first, we recall that the MDH prob-
lem is to compute em(P, P, · · · , P )

a1a2···am for given
P, a1P, a2P, ..., anP ∈ G1 for some random choices
a1, a2, · · · , an ∈ Zp. As in Section 2, solving the MDH
problem is to compute em(P, P, · · · , P )

a1a2···am with the
non-negligible probability ε.

Without loss of generality, we assume that t-1 partic-
ipants U1, U2, ..., Ut−1 are able to pool their valid shares
and recover the secret.

Now we need to prove that adversary Λ can compute
em(P, P, · · · , P )

a1a2···am by using t-1 participants as ora-
cle. In the following, we will set up the system to simulate
PVSS for adversary Λ such that this system enables the
adversary Λ to compute em(P, P, · · · , P )

a1a2···am when t-1
participants are seen as oracle. The Setup system consists
of six steps as follows:

1) Adversary Λ sets P
(i)
pub = aiP,C0 = bP (= f(0)P ) for

i = 1, 2, ..., n, where ai ∈ Z∗q , b ∈ Z∗q .

2) Taking t-1 values: The values f(1), f(2), ..., f(t − 1)
are chosen at random from Z∗q , and previous fixed
f(0) such that a polynomial f(x) can be fixed.

3) Adversary Λ compute forward t-1 values
of Xi and Yi as follows: Xi = f(i)P ,

Yi = em(Pi, P
(1)
pub, · · · , P

(i−1)
pub , P

(i+1)
pub ..., P

(m)
pub )f(i),

i = 1, 2, ..., t− 1.

4) f(0) is hiding fixed, so Λ is not able to compute the
following values: f(t), f(t + 1), · · · , f(n). However,
we can use Xi for i = 1, 2, · · · , t− 1 to obtain Cj by

solving t-1 simultaneous equations Xi =
t−1∑
j=0

(ij) · Cj

for j = 1, 2, · · · , t−1. When we have computed these
values Cj , we can obtain Xi for i = t, t − 1, ..., n by
Lagrange interpolation formula.

5) First compute Cj(i = 1, ..., t − 1). Since f(x) =
t−1∑
i=1

ai · xi, then there is the following linear system

of equations:
f(0) = a0
f(1) = a0 + a1 · 1 + · · ·+ at−1 · 1t−1
...

f(t− 1) = a0 + a1 · (t− 1)
1

+ · · ·+ at−1 · (t− 1)
t−1

In this linear system of equations, adversary Λ knows
the values of f(1), f(2), · · · , f(t−1), while f(0) is un-
known, so it is unable to compute the coefficient ai of
the polynomial f(x). However, adversary Λ can com-
pute values of Cj by the linear system of equations
and public values C0, Xj for i = 0, 1, · · · , t − 1, j =
1, 2, ..., t− 1.
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6) Now, adversary Λ computes the public keys Pi
of participants Ui as Pi = vi · P (i)

pub for i =
0, 1, ..., n, where vi ∈ Z∗q . In particular, we

set Yi = em(Xi, P
(1)
pub, · · · , P

(m)
pub )ai·vi such that

Yi = em(Pi, P
(1)
pub, · · · , P

(i−1)
pub , P

(i+1)
pub ..., P

(m)
pub )f(i), as

required.

Now, the complete view for the system is defined.
Which is consistent with the private view of participants
U1, U2, ..., Ut−1, and the view comes from the right dis-
tribution. Supposing that they are able to obtain the

secret S = em(P
(1)
pub, P

(2)
pub, ..., P

(m)
pub )f(0). Since P

(i)
pub = aiP

and f(0) = b for i = 0, 1, · · · , n, we can compute

em(P
(1)
pub, P

(2)
pub, ..., P

(m)
pub )f(0) = em(P, P, · · · , P )

a1a2···amb.
It contradicts the MDH assumption.

So far we have ignored the proofs that are required at
several points in the protocol. However, in the random
oracle model, these proofs can easily be simulated. By the
above two lemmas, we can draw the following theorem.

Theorem 1. Under the MDH assumption, the proposed
scheme is a secure PVSS scheme in the random oracle
model. That is, (1) only qualified participants can com-
pute the valid shares; (2) any subset of t-1 participants
is unable to recover the secret. (3) The proposed PVSS
scheme must provide publicly verifiable property.

1) From Lemma 3 and the scheme’s construction
method in Section 3, we know that Yi = Sdii , then
any attacker is unable to compute the corresponding
shares Si from these specific values Yi because of the
hardness of the MDH and discrete logarithm.

2) By Lemma 4, any t participants with shares Si can

obtain the secret S = em(P
(1)
pub, P

(2)
pub, ..., P

(m)
pub )a by La-

grange interpolation method. And any subset of t-1
or less participants is unable to recover the secret un-
less the MDH problem is solved.

3) From Section 3, it is easy to know that anyone
not just the participants can verify each Yi whether

it is equal to em(P
(1)
pub, P

(2)
pub, ..., P

(m)
pub )dif(i) with the

dealer’s secret f(i) for i = 0, 1, · · · , n. In this sec-
tion, we also have verified that each qualified partic-
ipant Ui can use his/her private key di to compute

the share Si = Yi
d−1
i = em(P

(1)
pub, P

(2)
pub, ..., P

(m)
pub )f(i).

Each Si also contains the factor f(i). So the proposed
scheme must provide publicly verifiable property.

4.3 Performance Analysis

In this subsection, we mainly analyze the computation
overhead and communication overhead. The performance
analysis shows that our scheme is effective when compar-
ing with previous schemes. For convenience to evaluate
the computational cost, we define the following notations:

Tem : The time of executing a multiple linear pairing op-
eration em : Gm1 → G2.

TGmul: The time of executing a scalar multiplication op-
eration of points in G1.

Texp: The time of executing a modular exponent opera-
tion of points in Zq.

Tmul: The time of executing a modular multiplication op-
eration of points in Zq.

TLag: The time of using the Lagrange interpolating
method to construct the secret.

Tpol: The time of computing the polynomial value f(x) =
t−1∑
i=0

aix
i in Zq.

1) From the computation aspect. As we all know,
the most time consuming is power modular opera-
tion in the scheme based on Discrete Logarithm. The
most time consuming is a modular multiplication op-
eration of points in the scheme based on ECDLP.
While the most time consuming mainly contains Tem ,
TGmul in the scheme based on multiple linear pair-
ing.

Hence, we only consider these time-consuming oper-
ations Tem , TGmul and Texp in the performance anal-
ysis of the proposed PVSS scheme. In our scheme,
there is no need for the dealer to compute the corre-
sponding shares for the participants, compared with
the references [23] and [14], our scheme solves the
overhead at the secret distribution phase. Especially
in verification phase of the shares, we use the tool of
multiple linear paring and the batch verification tech-
nique to reduce the computational overhead. In Ta-
ble 1, we list the performance comparison, which are
concentrated on the publicly verifiability and compu-
tation cost of all phases in secret sharing schemes.

From Table 1, we know that the computation over-
head of our scheme is lower in share verification
phase, and the main operation cost is a linear re-
lationship with the number of participants. In addi-
tion, some calculations can be done preprocessing in
secret distribution phase, which can greatly improve
the efficiency of secret distribution.

2) From the communication aspect. Since there
is no need for our scheme to implement interactive
protocol to prevent malicious players, which greatly
saves the communication overhead. The communi-
cation complexity of our scheme is lower than PVSS
in [19]. The communication of the proposed scheme
mainly reflects in secret distribution phase and re-
construction phase. Namely the process of the dealer
distributes the secret and publishes the public infor-
mation at secret sharing phase, as well as the over-
head of t shareholders pool shares to the secret re-
storer. Other phases do not need interaction between
participants. Consequently, the total communication
cost of our scheme is 4nq + tq, which is almost the
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Table 1: Performance comparison

Authors’
schemes

Publicly
verifiable

The computation cost of all phases
Distribution phase Verification phase Construction phase

Tian et al. [22] No
t(n+ 1)TGe + nTpol
+2tTGmul

TGe + TGmul + tTexp TLag + tTmul

Wu et al. [25] Yes
TGe + (4n+ t)TGmul
+nTexp + nTpol

(n+ 3)TGe + n(t+ 1)TGmul
+nTexp + ntTpol

TLag + tTexp

Tian et al. [24] Yes
nTGe + 2nTGmul
+nTmul + nTpol

nTGe + nTGmul
+nTexp + ntTpol

TLag + tTmul

Our PVSS Yes
(2n+ 1)TGe + 3nTGmul
+nTexp + nTpol

2nTGe + nTmul TLag + tTexp

same with reference [25]. Moreover, using multiple
linear paring and the technique of batch verification,
our communication overhead has great advantage at
the share verification phase. So the proposed scheme
is less communication overhead and more effective.

5 Discussion

In this section, the application of our publicly verifiable
secret sharing scheme is presented in electronic voting.
By using our PVSS scheme as a basic tool, we get a sim-
ple and efficient voting scheme. At last, we analyze the
advantages of this electronic voting scheme.

From the model for universally verifiable elections as
introduced by Hwang et al. [15], it is easily to know that
all of the players will post their messages in electronic
voting schemes. We assume that the players are composed
by a set of tallying authorities (tallliers) T1, · · · , Tn, which
act as the participants in our PVSS scheme, a set of Voters
V1, · · · , Vl, and each of them acts as a dealer in our PVSS
scheme, as well as a set of passive observers. These sets
need not be disjoint, each player may be both a voter and
a tallier. Assuming that each tallier Ti has registered a

public key Pi = aiP
(i)
pub for the randomly selected private

key ai ∈ RZq, where i = 1, 2, · · · , n.
The designed electronic voting scheme consists of two

phases: Ballot casting and Tallying.

1) Ballot casting. A voter V casts a vote v ∈ {0, 1}
by running the distribution protocol for our PVSS
scheme from Section 3, using a random secret value
a ∈ RZq, the voter can compute the value U =

em(P
(1)
pub, P

(2)
pub, · · · , P

(m)
pub )a+v. In addition, the voter

constructs a proof PROOFU showing that indeed
v ∈ {0, 1} without revealing any information on v.
PROOFU refers to the commitment value of C0 =
a0P = aP which is published as part of the PVSS
distribution protocol. And then each voter proves

that: em(Pi, P
(1)
pub, · · · , P

(i−1)
pub , P

(i+1)
pub , · · ·P (m)

pub ) =

em(P
(1)
pub, P

(2)
pub, · · · , P

(m)
pub )ai+v.

Due to the publicly verifiability of the proposed

PVSS scheme and the known value of PROOFU , the
ballots can be checked by using the above equation
by the bulletin board when the voters submit their
ballots. What’s more, the ballot for voter V consists
of the output values U and PROOFU of the PVSS
distribution protocol.

2) Tallying. Supposing that voters Vj have all cast
valid ballots, where j = 1, · · · , k and k ≤ l. The tal-
lying protocol uses the reconstruction protocol of our
PVSS scheme. We first accumulate all the respective
encrypted shares, that is, we compute the values Y ∗i ,
where

Y ∗i =

k∏
j=1

Yij

= em(Pi, P
(1)
pub, · · · , P

(i−1)
pub , P

(i+1)
pub ,

· · · , P (m)
pub )

k∑
j=1

fj(i)

.

And then each tallier Ti applies the reconstruction
protocol to the value Y ∗i , which will produce

em(Pi, P
(1)
pub, · · · , P

(i−1)
pub , P

(i+1)
pub , · · · , P (m)

pub )

k∑
j=1

fj(0)

= em(Pi, P
(1)
pub, · · · , P

(i−1)
pub , P

(i+1)
pub , · · · , P (m)

pub )aj

Next, by combining with the equation

k∏
j=1

Uj

= em(Pi, P
(1)
pub, · · · , P

(i−1)
pub , P

(i+1)
pub ,

· · · , P (m)
pub )

∑k
j=1 aj+vj .

We obtain

em(Pi, P
(1)
pub, · · · , P

(i−1)
pub , P

(i+1)
pub , · · · , P (m)

pub )
∑k

j=1 vj ,

from which the tally T =
k∑
j=1

vj , 0 ≤ T ≤ k can be

computed efficiently.
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The advantages of this electronic protocol:

1) In the ballot casting phase, the voters’ ballots contain
the votes in encrypted form and the voters need not
be anonymous in this protocol. In tallying phase, the
talliers use their private keys to collectively compute
the final tally corresponding with the accumulation
of all the valid ballots.

2) The above electronic voting scheme achieves the same
level of security with regard to publicly verifiability,
privacy, and robustness.

3) Our scheme does not require a shared-key generation
protocol for a threshold decryption scheme, which
avoids the interaction between the voters and the in-
teraction among the talliers.

4) Compared with [9], which requires a private channel
by public key encryption, our protocol does not need
a shared-key generation protocol, so the information-
theoretic privacy for the voters is not lost.

Analysis results show that our PVSS scheme can be
used in elections for computational privacy without need-
ing a private channel.

6 Conclusion

In this paper, we proposed a non-interactive, simple and
effective publicly verifiable secret sharing based on mul-
tiple linear pairing. In our PVSS scheme, not just the
participants, anyone is able to verify whether the shares
distributed by the dealer are correctly at the secret distri-
bution phase and whether each participant releases valid
shares at the reconstruction phase. We use multiple lin-
ear property of multilinear map and the batch verification
technique to reduce the computational overhead at verifi-
cation phase. The computation cost and communication
overhead are lower than the previous PVSS schemes which
are based on bilinear paring or discrete logarithm. In ad-
dition, under the multilinear Diffie-Hellman assumption,
we have shown our PVSS scheme is security in the ran-
dom oracle model. In the discussion section, we present
the application of our PVSS scheme in electronic voting
and analyze the advantages of this protocol. Our next
work is to apply the proposed PVSS scheme in secure
multi-party computation and other practical protocols.
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