
International Journal of Network Security, Vol.18, No.6, PP.1109-1121, Nov. 2016 1109

A Lightweight Generic Compiler for
Authenticated Key Exchange from

Non-interactive Key Exchange with Auxiliary
Input

Zheng Yang1, Chao Liu1, Wanping Liu1, Song Luo1, Hua Long1 and Shuangqing Li2

(Corresponding author: Hua Long)

School of Computer Science and Engineering, Chongqing University of Technology1

Chongqing 400054, China

College of Computer Science, Chongqing University2

Chongqing 400044, China

(Email: cqlongman@163.com)

(Received Sept. 3, 2015; revised and accepted Dec. 7 & Dec. 15, 2015)

Abstract

We introduce a new lightweight generic compiler that
is able to transform any passively forward secure two-
message key exchange (KE) protocols into authenticated
key exchange (AKE) protocols with security in the pres-
ence of active adversaries who can reveal critical session
specific information such as long-term or ephemeral se-
crets and can establish malicious parties. The compiler
is built based on a new security notion regarding non-
interactive key exchange with auxiliary input (NIKEA).
The NIKEA is able to provide two security properties on
the confidentiality and the unforgeability of shared key.
Our new compiler is a very useful tool for the design of
new AKE protocols in a modular and efficient way, that
is suitable for resources constrained devices.

Keywords: Authenticated key exchange, non-interactive
key exchange, protocol compiler, standard model

1 Introduction

Authenticated key exchange (AKE) is a cryptographic
primitive which enables two parties to compute a ses-
sion key with an assurance that the generated key is only
known by these intended communication partners. In
many application systems, AKE protocols usually serve
as an important building block to protect the communi-
cation data over insure networks.

AKE Compilers. It is known to be a generic secu-
rity strengthening transformation that pushes forward the
modular design of AKE protocols. An interesting fashion
of AKE compiler is to securely combine authentication

protocols (AP) with passively secure key exchange pro-
tocols (KE) to yield AKE protocols that is referred as
AP&KE style compiler [14] in the sequel, see the works
in [14, 16, 18]. In this paper, we focus on a variant of this
style AKE compiler where the implicit key authentica-
tion is guaranteed (instead of the explicit mutual authen-
tication in previous works). Several advantages of AKE
compilers are worth highlighting. First of all one could
realize a AKE protocol with a rich collection of exist-
ing authentication and key exchange protocols which are
specifically fit to a certain application scenario. On the
second, a generic compiler would be very useful to avoid
any modifications (which are often costly or error-prone
in practice) in existing implementations of the input sub-
protocols. To the last but not least, it could simplify the
security analysis of the entire system, where the security
of any resulting AKE protocol is directly inherited from
the security proof of the AKE compiler.

While reviewing existing AKE compilers[14, 16, 18], we
notice that they might be not efficient enough. Katz and
Yung presented a generic compiler (which is referred to
as KY compiler) for building group authenticated key ex-
change [16] based on passively secure group key exchange
and digital signature. The KY compiler needs an ad-
ditional communication round to the input protocol, in
which each party chooses a random nonce and broadcasts
it to its communication partners. In 2010, Jager et al. [14]
introduced the first compiler (called as JKSS compiler)
which accounts only for a constant number of additional
messages (which is independent of the KE protocol) to
be exchanged. But this scheme requires the KE protocol
to output the session key to the compiler (unlike the KY
compiler) and increases three additional communication
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rounds in the compiler that might be not practical. Most
recently, Li et al. [18] proposed three new AP&KE style
compilers (which are referred to as LSYBS compilers).
Unlike the KY and JKSS compilers, no nonce is required
in the LSYBS compilers which instead rely on the entropy
of the ephemeral keys of KE. As a result the LSYBS com-
pilers are more round efficient than KY and JKSS compil-
ers. However, we find out that all these compilers increase
the communication rounds to the compiled KE protocols.
Thus they might be not suitable for power constrained
devices which need low latency of communication. In ad-
dition, the LSYBS compiler shows that if a KE proto-
col without long-term key is passively secure then each
protocol message generated by the ephemeral generation
function (EKGen) is unique. This uniqueness property is
what enables the LSYBS to get rid of the random nonce
used in previous compilers such as KY compiler and the
compiler introduced by Jager et al. [14] (which will be
referred to as JKSS compiler). However, their restriction
on EKGen rules out a lot of key exchange protocol with
long-term key. In this work we therefore try to broaden
the range of KE that a AKE compiler can work on, i.e.,
without putting restriction on specific ephemeral key gen-
eration function.

Recently, Boyd et al. [4] and Cremers et al. [8] pro-
posed two compilers respectively for two-message AKE
protocols. However, these two compilers all aimed to com-
pile (e)CK secure two-message protocols to achieve per-
fect forward secrecy without increasing protocol round
and changing the internal execution of compiled proto-
cols. However, they need very strong assumptions on the
compiled protocols, i.e., they should be proved secure in
the CK [5] model or the eCK model [17]. On the other
hand, the (e)CK secure protocols without random ora-
cles are inefficient. The computational costs of these two
compilers are basically less computational efficient than
above AP&KE style AKE compiler. But, to our best of
knowledge, it is still an open question on how to build
AP&KE style AKE compiler without increasing protocol
round.

Non-interactive key exchange. Non-interactive key
exchange (NIKE) is introduced to allow two parties to
calculate a shared key based only on their long-term pub-
lic keys without any interaction. NIKE has many real-
world applications, e.g., establishing keys and enabling
secure communications in mobile ad hoc and sensor net-
works where the energy cost of communication is prime
concern [6, 10, 11]. The formal security of NIKE was
studied by Freire et al. [10]. However, the limitation of
NIKE is also obvious that it lacks of some important se-
curity properties of AKE, such as perfect forward secrecy
or resilience of known key attacks. Once the long-term
private key or the shared key of honest parties is leaked
somehow then the security of the system cannot be guar-
anteed anymore. Hence we try to figure out a solution
on key establishment to make a trade-off between round
efficiency and AKE security properties.

Contributions. In this paper, we first present a new
notion concerning non-interactive key exchange with aux-
iliary input (NIKEA). In contrast to ordinary NIKE [10],
the share key of NIKEA is generated relying on long-term
keys and an auxiliary input string aux (which could be for
example timestamps, constants or other public informa-
tion). Intuitively, the shared key generated with different
aux would be distinct. Hence the leakage of some shared
key may not affect the security of other shared key with
distinct aux. This leads the confidential security prop-
erty of NIKEA to be stronger than that of NIKE. Besides,
the NIKEA has another interesting security property on
unforgeability that adversary is unable to generated the
shared key of uncorrupted honest parties with an auxil-
iary input aux that is not used by these parties before.
A concrete NIKEA scheme is proposed, which is derived
from the pairing-based NIKE scheme in [10]. Moreover we
somehow optimize the algorithms to make it to be more
efficient and practical. Namely we require the certificate
authority to check the validity of registered public key
rather than doing so in each execution of shared key gen-
eration. The new NIKEA scheme is proven secure without
random oracles under standard assumptions.

On the next we introduce a new lightweight AP&KE
style compiler that generically build secure AKE from se-
cure NIKEA protocols and two-message passively forward
secure two-message key exchange protocols. Namely we
take the NIKEA as an authentication protocol. We ob-
serve that the forward secrecy property of KE would lead
the message transcript of each session to be unique among
its owner’s sessions. One of the reasons that we choose
NIKEA as our building block is that it can be efficiently
realized. It is remarkable that the new compiler does not
require any modifications in the underlying KE and un-
derlying application based on such KE. It is thus easily
applicable to existing systems what makes it to be very
useful in real world applications. The main idea is to take
the message outputted by each KE instance as the auxil-
iary input of NIKEA, where the generated shared key is
used as one-time authentication token for such KE mes-
sage. Unlike previous compilers [14, 16, 18], we do not
increase any protocol round. All communication can be
done within two moves. In addition, the generic com-
piler can also be efficiently instantiated for instance with
concrete Diffie-Hellman based KE and NIKEA. Then the
computational cost is approximately dominated by only
three exponentiations. In a nutshell, the proposed com-
piler is suitable for resources constrained application en-
vironment (such as sensor networks). Furthermore, the
security analysis of the compiler is given in the standard
model, i.e., without assuming random oracles. The secu-
rity result shows that our compiler satisfies well-known
desirable security properties including resilience of cho-
sen identity and public key attacks, known session key
attacks and leakage of ephemeral secrets (from sessions
non-related to test session), and provision of perfect for-
ward secrecy. Although the resilience of key compromise
impersonation attacks is not covered by our compiler, we



International Journal of Network Security, Vol.18, No.6, PP.1109-1121, Nov. 2016 1111

believe that it would still meet the security requirement
in most applications.

Other Related Works. In our work an important
AKE security property that we care about is the per-
fect forward secrecy. It is notorious that the PFS for
TMAKE is non-trivial to achieve. 1n 2012, Cremers and
Feltz [8] proposed a stronger security model (referred to
as eCKw) to reformulate the wPFS notion based on a new
concept so called origin-session. The resultant model is
claimed to provide a slightly stronger form of wPFS than
eCK model’s. On the second, they further develop eCKw
to model PFS that yields another new model (which is
referred to as eCK-PFS). More interestingly, it is pos-
sible to transform any eCKw secure protocol (e.g. [23])
to be eCK-PFS secure using the signature based com-
piler in [8]. The implication relationship between eCK
and eCKw models was studied in literature [8, 24]. In
2016, Yang and Zhang [25] introduced a new authenti-
cated group key exchange (AGKE) model named g-eCK-
PFS which particularly covers PFS. These above models
(e.g. eCK-PFS and g-eCK-PFS) consider the security of
AKE protocol in a very strong sense. This also leads the
protocols being secure in these models to be inefficiency.

Some other GAKE protocols, for instance. [7, 9, 12, 19,
21, 22] have been recently proposed from different moti-
vations. But the efficiency still needs to be optimized
somehow. We stress that our construction idea can also
be used in the group case to build efficient AGKE proto-
col. But the group NIKEA is required then.

2 Preliminaries and Definitions

In this section, we describe the cryptographic building
blocks that will be used in the rest of Sections. The set of
integers between 1 and n is denoted by [n] = {1, . . . , n}.
The notion a

$← S denotes the action of sampling a uni-
formly random element a from a set S. Let ‘||’ denote the
operation concatenating two binary strings. Let IDS be
an identity space.

2.1 Target Collision-Resistant Hash
Functions

Let TCRHF : KTCRHF × MTCRHF → YTCRHF be a fam-
ily of keyed-hash functions associated with key space
KTCRHF, message space MTCRHF and hash value space
YTCRHF. The public key hkTCRHF ∈ KTCRHF of a hash
function TCRHF(hkTCRHF, ·) is generated by a PPT al-
gorithm TCRHF.KG(1κ) on input security parameter κ.
If the hash key hkTCRHF is obvious from the context, we
write TCRHF(m) for TCRHF(hkTCRHF,m).

Definition 1. TCRHF is called (tTCRHF, εTCRHF)-target-
collision-resistant if for all tTCRHF-time adversaries A it

holds that

Pr


hkTCRHF

$← TCRHF.KG(1κ),

m
$←MTCRHF,

m′ ← A(1κ, hkTCRHF,m),
m 6= m′, m′ ∈MTCRHF,
TCRHF(m) = TCRHF(m′)

 ≤ εTCRHF,

where the probability is over the random bits of A.

Normally target collision resistant functions can be re-
alized with a specific cryptographic hash function such as
MD5 and SHA.

2.2 Pseudo-Random Functions

Let PRF : KPRF×DPRF → RPRF denote a family of deter-
ministic functions, where KPRF is the key space, DPRF is
the domain and RPRF is the range of PRF for security pa-
rameter κ. Let RF : DPRF → RPRF be a stateful uniform
random function which takes as input a distinct message

x ∈ DPRF, and outputs a random element y
$← RPRF. The

input message x of RF and its output y is one-to-one map.

Definition 2. We say that PRF is a (t, εPRF)-
secure pseudo-random function family, if it holds that
|Pr[EXPind−cmaPRF,A (κ) = 1]− 1/2| ≤ εPRF for all adversaries
A that make a polynomial number of oracle queries q while
running in time at most t in the following experiment:

EXPind−cmaPRF,A (κ) F(b, x)

b
$← {0, 1}, k $← KPRF; If x /∈ DPRF then return ⊥;

b′ ← AF(b,·)(κ); If b = 1 then return PRF(k, x);
If b = b′ then return 1; Otherwise return RF(x);
Otherwise return 0;

where εPRF = εPRF(κ) is a negligible function in the secu-
rity parameter κ, and the number of allowed queries q is
bound by t.

2.3 The Bilinear Decision Diffie-Hellman
Assumption

We first briefly recall some of the basic properties of
symmetric bilinear groups. The bilinear groups will be
parametrized by a symmetric pairing parameter genera-
tor, denoted by PG.Gen. This is a polynomial time al-
gorithm that on input a security parameter 1κ, returns
the description of two multiplicative cyclic groups G and
GT of the same prime order p, generators g for G, and a
bilinear computable pairing e : G×G→ GT . The formal
description of of the properties of such pairing operation
can be found in [3], which is omitted here.

Let PG : (G, g,GT , p, e)
$← PG.Gen(1κ) denote the de-

scription of symmetric bilinear groups. The Bilinear De-
cisional Diffie-Hellman (BDDH) problem [15] is stated as
follows: given the tuple (a, b, c, γ) ∈ Zp as input, and
output yes if e(g, g)γ = e(g, g)abc and no otherwise..
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Definition 3. We say that the BDDH problem relative
to generator PG.Gen is (t, εBDDH)-hard, if the probability
bound |Pr[EXPbddhPG.Gen,A(κ) = 1] − 1/2| ≤ εBDDH holds for
all adversaries A running in probabilistic polynomial time
t in the following experiment:

EXPbddhPG.Gen,A(κ)

PG = (G, g,GT , p, e)
$← PG.Gen(1κ);

(a, b, c, γ)
$← Z∗p; b

$← {0, 1};
if b = 1 Γ← e(g, g)abc, otherwise Γ← e(g, g)γ ;
b′ ← A(1κ,PG, ga, gb, gc,Γ);
if b = b′ then return 1, otherwise return 0;

where εBDDH = εBDDH(κ) is a negligible function in the
security parameter κ.

2.4 Notations for Two-message KE

In a two-message AKE protocol (TMKE), each party may
send a single ‘message’. The key exchange procedure is
done within two pass and a common shared session key is
generated to be known only by session participants, which
is shown in Figure 1.

A general TMKE protocol may con-
sist of four polynomial time algorithms
(TMKE.ST,TMKE.KG,TMKE.MSG,TMKE.SKG) with
following semantics:

• pms← TMKE.ST(1κ): On input 1κ, outputs pms, a
set of system parameters.

• (skkeID , pk
ke
ID )

$← TMKE.KG(pms, ID): This algorithm
takes as input system parameters pms and a party’s
identity ID ∈ IDS, and outputs a pair of long-term
private/public key (skkeID , pk

ke
ID ) ∈ {PK,SK}.

• mID1

$← TMKE.MSG(pms, skkeID1
, ID2, pk

ke
ID2
, rID1

,mID2
):

This algorithm takes as input system parameters
pms and the sender ID1’s secret key skkeID1

, the in-

tended receiver ID2’s public key pkkeID2
, a randomness

rID1

$← RTMKE and a message mID2 ∈ MTMKE from
party ID2, and outputs a message mID1

∈MTMKE to
be sent, where RTMKE is the randomness space and
MTMKE is message space. We remark that the secret
key skkeID1

of sender, the identity ID2 and public key

pkkeID2
of receiver are only optional for generating the

message.1

• K ← TMKE.SKG(pms, skkeID1
, ID2, pk

ke
ID2
, rID1 ,mID2):

This algorithm take as the input system parameters
pms and ID1’s secret key skID1

, a public key pkkeID2

of ID2, a randomness rID1

$← RTMKE and a received
messagemID2

from party ID2, and outputs session key
K ∈ KTMKE, where KTMKE is the session key space.

We say that the TMKE.SKG algorithm is correct, if for

all (skkeID1
, pkkeID1

)
$← TMKE.KG(ID1) and (skkeID2

, pkkeID2
)

$←
1Please note that if ID1 is initiator then mID2

= ∅.

TMKE.KG(ID2), for all rID1 , rID2

$← RTMKE and for all

messages mID1

$← TMKE.MSG(skkeID1
, ID2, pk

ke
ID2
, rID1

, ∅)
and mID2

$← TMKE.MSG(skkeID2
, ID1, pk

ke
ID1
, rID2

,mID1
), it

holds that

TMKE.SKG(skID1
, ID2, pkID2

, rID1
,mID2

) =

TMKE.SKG(skID2
, ID1, pkID1

, rID2
,mID1

)

A the system initiation phase, the parameters would
be generated as pms← TMKE.ST(1κ), where pms might
be ignored in the description of other algorithms of TMKE
for simplicity. The Figure 1 briefly illustrates the generic
protocol execution of TMKE on input pms.

Please note that if in the above execution, if the party
ID2’s message mID2

is generated to be independent of
mID1

then the TMKE is a one-round AKE protocol, i.e.

mID2

$← TMKE.MSG(skkeID2
, ID1, pk

ke
ID1
, rID2

, ∅). The inde-
pendence property of one-round AKE enables parties to
run protocol instances simultaneously (which is a key fea-
ture of one-round protocol).

3 Non-Interactive Key Exchange
with Auxiliary Input

In the subsection, we introduce a new security notion re-
garding non-interactive key exchange with auxiliary input
(NIKEA).

3.1 Notions for Non-Interactive Key Ex-
change with Auxiliary Input

We consider a NIKEA scheme in the public key setting
consists of three algorithms: NIKEA.Setup, NIKEA.KG and
NIKEA.ShareKey associated with an identity space IDS
and a shared key space KNIKEA, in which those algorithms
are defined as follows:

• pmsnikea ← NIKEA.Setup(1κ): This algorithm takes
as input a security parameter κ and outputs a set
of system parameters pmsnikea. The parameters
pmsnikea might be implicitly used by other algo-
rithms for simplicity.

• (skID, pkID, pf ID)
$← NIKEA.KG(ID): This algorithm

takes as input an identity ID, and outputs a pair
of long-term secret/public key (skID, pkID) and cor-
responding proof pf ID for key registration.

• K ← NIKEA.ShareKey(ID1, skID1
, ID2, pkID2

, aux):
This algorithm takes as input an identity ID1, a se-
cret key skID1 along with another identity ID2 and
corresponding public key pkID2 , and an auxiliary in-
put string aux ∈ {0, 1}∗, and outputs either a shared
key K ∈ KNIKEA for the two parties, or a failure sym-
bol ⊥. This algorithm is assumed to always output
⊥ if the input identities are not distinct.
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ID1

(skkeID1
, pkkeID1

)
$← TMKE.KG(ID1)

ID2

(skkeID2
, pkkeID2

)
$← TMKE.KG(ID2)

rID1

$←RTMKE rID2

$←RTMKE

mID1

$←
TMKE.MSG(skkeID1

, ID2, pkkeID2
, rID1

, ∅)
mID2

$←
TMKE.MSG(skkeID2

, ID1, pkkeID1
, rID2

,mID1
)

−
mID1

−−−−−−−−−−−−−−−−−−→

←−
mID2

−−−−−−−−−−−−−−−−−−
accept K :=

TMKE.SKG(skkeID1
, ID2, pkkeID2

, rID1
,mID2

)
accept K :=

TMKE.SKG(skkeID2
, ID1, pkkeID1

, rID2
,mID1

)

Figure 1: General TMKE protocol

For correctness, we require that, for a tuple of
identities (ID1, ID2), and corresponding key pairs
(skID1

, pkID1
) and (skID2

, pkID2
) and the same aux,

the algorithm NIKEA.ShareKey should satisfy the
constraint:

– NIKEA.ShareKey(ID1, skID1
, ID2, pkID2

, aux)=
NIKEA.ShareKey(ID2, skID2

, ID1, pkID1
, aux)

One of the differences between the notion of NIKE
in [10] and the above notion of NIKEA is that the
NIKEA.ShareKey algorithm (in the later notion) requires
an additional input aux for shared key generation. The
NIKE in [10] can be seen as a special NIKEA with empty
aux = ∅. In order to run the NIKEA correctly, two par-
ties should share the aux somehow. For example the aux
could be synchronized timestamps or constants or other
public information.2 In contrast to the NIKE, the NIKEA
might be useful to generate either one-time shard key or
authentication token for aux (see our upcoming AKE pro-
posal). In a nutshell, the NIKEA can provide more func-
tions than NIKE. In the following, we formally describe
the security notion of NIKEA.

3.2 Security Definition for NIKEA

We describe the formal security model for two party PKI-
based NIKEA protocols, that is modified from the CKS-
like model [10] for NIKE. Besides we do slightly modifi-
cation on modelling public key registration. Specifically,
each party IDi might be required to provide extra infor-
mation (denoted by pf IDi) to prove that the registered
public key is sound. Let {Honest,Dishonest} be two vec-
tor lists. In order to formulate the capabilities of active
adversaries against NIKEA, the adversaries are allowed to
ask the following queries:

• RegisterHonest(ID): On input an identity ID ∈
IDS, if ID /∈ {Honest,Dishonest} then C runs
NIKEA.KG(pmsnikea, ID) to generate a long-term se-
cret/public key pair (skID, pkID) ∈ (PK,SK) and
adds the tuple (ID, skID, pkID) into the list Honest,

2For example, the aux can be periodically distributed by certain
trusted key management center.

and returns pk to A; as otherwise a failure symbol
⊥ is returned. This query is allowed to be asked
at most twice. Parties established by this query are
called honest.

• EstablishParty(IDτ , pkIDτ , pf IDτ ): This query allows
the adversary to register an identity IDτ and a long-
term public key pkIDτ on behalf of a party IDτ , if the
IDτ /∈ {Honest,Dishonest} and pkIDτ is ensured to be
sound by evaluating the non-interactive proof pf IDτ .
We only require that the proof is non-interactive in
order to keep the model simple. Parties established
by this query are called dishonest.

• RevealKeynikea(ID1, ID2, aux): On input a tuple of
identities (ID1, ID2), C returns a failure symbol ⊥ if
both parties ID1 and ID2 are dishonest. Otherwise C
runs NIKEA.ShareKey using the secret key of one of
the honest parties in (ID1, ID2) and the public key of
the other party and the aux given by adversary, and
returns the result to A.

• Testnikea(ID1, ID2, aux): Given two identities
(ID1, ID2) and string aux, the challenger C returns a
failure symbol ⊥ if one of following condition holds:
(i) ID1 = ID2, (ii) ID1 /∈ Honest or (iii) ID2 /∈ Honest.
Otherwise the challenger C samples a random bit

b
$← {0, 1}, and it answers this query in terms of the

bit b. Specifically, if b = 1, C runs NIKEA.ShareKey
using the secret key of ID1 and the public key of
ID2 to obtain the shared key K1; else if b = 0, the
challenger generates a random key K1. C returns Kb

to adversary. This query can be queried only once.

Security Experiment for Confidentiality
EXPNIKEA,ind−cma

NIKEA,A (κ): On input security parameter κ,
the security experiment is proceeded as a game between
a challenger C and an adversary A based on a non-
interactive key exchange protocol with auxiliary input
NIKEA, where the following steps are performed:

1) The C first runs pmsnikea ← NIKEA.Setup(1κ) and
gives pmsnikea to adversary A.
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2) The adversary A may interact with challenger C
with RegisterHonest, EstablishParty, RevealKeynikea

queries as defined above.

3) Eventually, the adversary may terminate with out-
putting a bit b′.

4) At the end, the experiment returns 1 if all follow-
ing conditions hold: (i) the adversary A has issued
a Testnikea query on input (ID∗1, ID

∗
2, aux

∗) in either
identity order, (ii) Both parties ID∗1, ID

∗
2 ∈ Honest,

(iii)A has not issued RevealKeynikea query with input
(ID∗1, ID

∗
2, aux

∗) in either identity order, and b = b′;
Otherwise 0 is returned.

Definition 4. A two party NIKEA protocol Σ is
called (t, εNIKEA-IND)-shared-key-secure if it holds that

|Pr[EXPNIKEA,ind−cma
Σ,A (κ) = 1] − 1/2| ≤ εNIKEA-IND for

all adversaries A running within time t in the above
security experiment and for some negligible probability
εNIKEA-IND = εNIKEA-IND(κ) in the security parameter κ.

The above security definition provide a stronger secu-
rity guarantee than the CKS-light security [10], that al-
lows the adversary to ask RevealKeynikea queries to under
attacked parties (as long as these queries have distinct
inputs to Testnikea query’s).3 In other words, the leaked
shared key would not affect the shared key with distinct
aux.

On the next we show another interesting security prop-
erty of NIKEA, i.e., the unforgeability of the shared key
associated with aux. Informally speaking the adversary is
unable to output a shared key which is not generated by
uncorrupted honest parties. A NIKE scheme combines
with an authentication protocol (e.g., the one based on
message authentication code) might fulfill the same se-
curity attribute as NIKEA. But this is not efficient and
would require more security assumptions (comparing to
using NIKEA).

Security Experiment for Unforgeability
EXPNIKEA,euf−cma

NIKEA,A (κ): On input security parameter
κ, the security experiment is proceeded as a game
between a challenger C and an adversary A based on
a non-interactive key exchange protocol with auxiliary
input NIKEA, where the following steps are performed:

1) The C first run pmsnikea ← NIKEA.Setup(1κ) and
gives pmsnikea to adversary A.

2) The adversary A may interact with challenger C
with RegisterHonest, EstablishParty, RevealKeynikea

queries as defined above.

3) Eventually, the adversary may terminate with out-
putting a tuple (ID∗1, ID

∗
2, aux

∗,K∗).

3Note that if the query EstablishParty(IDτ , pkIDτ , pf IDτ ) is asked

with pf = ∅ and the query RevealKeynikea(ID1, ID2, aux) is asked
with aux = ∅, then the above model equals to the CKS-light
model [10]. The number of EstablishParty queries is bound by the
time t.

4) At the end, the experiment returns 1 if all following
conditions hold: (i) both parties ID∗1 and ID∗2 are hon-
est, (ii) A has not issued RevealKeynikea query on in-
put (ID∗1, ID

∗
2, aux

∗) in either identity order, and (iii)
K∗ = NIKEA.ShareKey(ID∗1, ID

∗
2, aux

∗); Otherwise 0
is returned.

Definition 5. A two party NIKEA protocol Σ is
called (t, εNIKEA-EUF)-unforgeable-secure if it holds that

|Pr[EXPNIKEA,euf−cma
Σ,A (κ) = 1] − 1/2| ≤ εNIKEA-EUF for

all adversaries A running within time t in the above
security experiment and for some negligible probability
εNIKEA-EUF = εNIKEA-EUF(κ) in the security parameter κ.

Lemma 1. Assume the NIKEA protocol Σ is
(t, εNIKEA-IND)-shared-key-secure, then it is also
(t, εNIKEA-EUF)-unforgeable-secure provided that t ≈ t′

and εNIKEA-EUF ≤ εNIKEA-IND.

Proof. Suppose that there exists an adversary A1 which
can win the unforgeability security experiment with out-
put (ID∗1, ID

∗
2, aux

∗,K∗) with overwhelming probability,
then we could construct an adversary A2 using A1 to
break the confidential property of Σ with the same ad-
vantage. Technically, A2 simulates the EUF-CMA se-
curity experiment for A1, and it forwards all queries
from A1 to the challenger C in its own experiment and
returns the corresponding answers to A1. Note that
the triple (ID∗1, ID

∗
2, aux

∗) was never queried by A1 to
RevealKeynikea. When A1 outputs a (ID∗1, ID

∗
2, aux

∗,K∗),
then A2 asks the Testnikea(ID∗1, ID

∗
2, aux

∗) with obtaining
a test key Kb. If Kb = K∗ then A2 would know that the
Kb is the real key with probability at least εNIKEA-EUF.

3.3 A Concrete NIKEA Scheme

We here introduce a pairing-based NIKEA scheme which
is derived from the pairing based NIKE in [10]. In
this variant, the chameleon hash function used in [10] is
replaced with a target collision resistant hash function
TCRHF (to lower the assumption). In particular we make
use of a pseudo-random function to not only generate the
final shared key but also bind the identities and an aux-
iliary string to such shared key. This also enables us to
deal with the chosen identity and public key attacks mod-
elled by EstablishParty query. In addition, we require the
trusted public key bulletin (such as Certificate Author-
ity) to check the validity of registered public key rather
than doing so in each NIKEA.ShareKey execution for effi-
ciency consideration. This change would lead the NIKEA
scheme to be more suitable to power constrained devices.
It is noticeable only one exponentiation is required in the
NIKEA.ShareKey algorithm of our modified scheme that
is more efficient than the original one [10] which requires
three pairings operations.

The concrete algorithms of our new NIKEA scheme
between two parties ID1 and ID2 are defined as follows:

• NIKEA.Setup(1κ). On input security parameter 1κ,
this algorithm is proceeded as the follows: (i) Run
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PG = (G, g,GT , p, e)
$← PG.Gen(1κ), and generate

random values u, u0, u1, u2
$← G; (ii) Run hkTCRHF

$←
TCRHF.KG(1κ); (iii) Return system parameters
pmsnikea := (hkTCRHF, u, u0, u1, u2).

• NIKEA.KG(ID). On input a party’s identity ID ∈
IDS, the key generation algorithm does the follow-

ing steps: (i) Choose one random element skID
$←

Z∗p as its secret keys, and (ii) Compute corre-

sponding public key pkID := e(u, gskID), and gen-

erate proof pf := (gskID , (u0u
hID
1 u

h2
ID

2 )skID) where
hID = TCRHF(gskID). Then the public key is regis-

tered if e(u0u
hID
1 u

h2
ID

2 , gskID) = e(u0u
hID
1 u

h2
ID

2 )skID , g) and
e(gskID , u) = pkID.

• K $← NIKEA.ShareKey(ID1, skID1
, ID2, pkID2

, aux).
Given the private key skID1 of party ID1, party
ID2’s public key pkID2 and auxiliary input string
aux, the ID1 generates the shared key K :=

PRF(pk
skID1

ID2
, ID1||ID2||aux).

Theorem 1. Suppose the Bilinear Decisional Diffie-
Hellman problem is (t, εBDDH)-hard in PG, the hash func-
tion TCRHF is (t, εTCRHF)-target-collision-resistant and
the pseudo-random function family is (t, εPRF)-shared-
key-secure as defined above. Then the proposed NIKEA
scheme is (t′, εNIKEA-IND)-secure provided that t ≈ t′ and
εNIKEA-IND ≤ εTCRHF + εBDDH + εPRF.

The proof of this theorem is presented in Appendix A.

4 Security Model for Authenti-
cated Key Exchange

In this section we present a security model for authen-
ticated key exchange (AKE) that is extended from the
model by Bellare and Rogaway [1] with additionally for-
mulating the active attacks on chosen identity and pub-
lic key attacks, known session key, leakage of ephemeral
secret and perfect forward secrecy. In this model, the
active adversary is provided with an ‘execution environ-
ment’ which emulates the real world execution of AKE
protocols.

Execution Environment. In the execution environ-
ment, we fix a set of honest parties {ID1, . . . , ID`} for
` ∈ N, where IDi (i ∈ [`]) is the identity of a party which is
chosen uniquely from space IDS. Each identity is associ-
ated with a long-term key pair (skIDi , pkIDi) ∈ (SK,PK)
for authentication. Each honest party IDi can sequentially
and concurrently execute the protocol multiple times with
different intended partners, this is characterized by a col-
lection of oracles {πsi : i ∈ [`], s ∈ [d]} for d ∈ N.4 Or-
acle πsi behaves as party IDi carrying out a process to
execute the s-th protocol instance (session), which has

4An oracle in this paper might be alternatively written as πsIDi
which is conceptually equivalent to πsi .

access to the long-term key pair (skIDi , pkIDi) and to all
other public keys. Moreover, we assume each oracle πsi
maintains a list of independent internal state variables:
(i)pidsi – storing the identities and public keys of session
participants which are sorted lexicographically in terms
of identity, including IDi; (ii) Φsi – denoting the deci-
sion Φsi ∈ {accept, reject}; (iii)ρsi – denoting the role
ρsi ∈ {Initiator(I), Responder(R)}; (iv) sT si – recording
the transcript of messages sent by oracle πsi ; (v) rT tj –
recording the transcript of messages received by oracle
πsi .

All those variables of each oracle are initialized with
empty string which is denoted by the symbol ∅. At some
point, each oracle πsi may complete the execution always
with a decision state Φsi ∈ {accept, reject}.

Adversarial Model. An adversary A in our model is
a PPT Turing Machine taking as input the security pa-
rameter 1κ and the public information (e.g., generic de-
scription of above environment), which may interact with
these oracles by issuing the following queries.

• Execute(ID1, s1, ID2, s2): This query allows adver-
sary to execute the protocol among unused ora-
cles {πsii }1≤i≤2, and responds with the transcript of
the execution. The pidsii of each instance is set to
{ID1, ID2}. We will write Execute(ID1, ID2) for short,
where the identities are sorted lexicographically.

• Send(IDi, s,m): The adversary can use this query to
send any message m of his own choice to oracle πsi .
The oracle πsi will respond the next message m∗ (if
any) to be sent according to the protocol specification
and its internal states. Oracle πsi would be initiated
via sending the oracle the first message m = (>, pidsi )
consisting of a special initialization symbol > and a
variable storing partner identities.

• RevealKey(IDi, s): Oracle πsi responds with the ses-
sion key if Φsi = accept.

• RevealState(IDi, s): Oracle πsi responds with random-
ness used to generate the session key of this oracle.

• Corrupt(IDi): Oracle π1
i responds with the long-term

secret key skIDi of party IDi if i ∈ [`]; otherwise a
failure symbol ⊥ is returned.

• EstablishParty(IDτ , pkIDτ , pf IDτ ): This query allows
the adversary to register an identity IDτ (` < τ and
τ ∈ N) and a static public key pkIDτ on behalf of
a party IDτ . Parties established by this query are
called dishonest. This query is proceeded similarly
to the one described in Section 3.2.

• Test(IDi, s): If the oracle has state Φ 6= accept, then
the oracle πsi returns some failure symbol ⊥. Other-
wise it flips a fair coin b, samples a random element
K0 from key space KAKE, and sets K1 to the real ses-
sion key of oracle πsi . Finally the key Kb is returned.
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Secure AKE Protocols. In order to denote the situa-
tion that two oracles are engaged in an on-line communi-
cation, we first define two notions regarding partnership,
i.e. matching sessions (MS) and origin session (OS) [8],
where the MS is used to formulate the security related
to RevealKey query, and the OS is used to formulate the
security related to RevealState and Corrupt queries.

Definition 6 (Matching sessions). We say that πsi has a
matching session to πtj, if pidsi = pidtj, ρ

s
i 6= ρtj, rT

t
j = sT si

and sT tj = rT si . The πtj is said to be the partner-oracle of
πsi .

Definition 7 (Origin session). We say that πsi has a ori-
gin session to πtj, if rT tj = sT si . The πsi is said to be the
origin-oracle of πsi .

Correctness. We say an authenticated key exchange
(AKE) protocol Π is correct, if two oracles πsi and πtj
accept with matching sessions, then both oracles hold the
same session key.

For the security definition, we need the notion of fresh-
ness of an oracle. in the sequel, we give two freshness
definitions. Let πsi be an accepted oracle, πtj be an oracle
(if it exists) having matching session to πsi , and πvl be an
oracle (if it exists) having origin session to πsi .

Definition 8 (Passive Freshness). The oracle πsi is said
to be KE-fresh if the following condition is held:

• A queried either RevealKey(πsi ) or RevealKey(πtj) (if
πtj exists).

Definition 9 (Active Freshness). The oracle πsi is said
to be AKE-fresh if none of the following conditions holds:

1) A queried EstablishParty(IDj , pkIDj ) to some party
IDj ∈ pidsi .

2) A queried either RevealKey(πsi ) or RevealKey(πtj) (if
πtj exists).

3) A queried either Corrupt(IDi) or Corrupt(IDj) to some
party IDj ∈ pidsi .

4) A queried either RevealState(πsi ) or RevealState(πvl )
(if πtl exists).

Let M ∈ {KE,AKE} be a variable to denote two dis-
tinct security experiments.

Security Experiment EXPMΠ,A(κ): On input security
parameter 1κ, the security experiment is proceeded as a
game between a challenger C and an adversary A based
on (A)KE protocol Π, where the following steps are per-
formed:

1) At the beginning of the game, the challenger C im-
plements the collection of oracles {πsi : i ∈ [`], s ∈
[d]}, and generates ` long-term key pairs and cor-
responding proof (pkIDi , skIDi , pf IDi) for all honest
parties IDi for i ∈ [`] where the identity IDi ∈
IDS of each party is chosen uniquely. C gives
adversary A all identities, public keys and proofs
{(ID1, pkID1 , pf ID1

), . . . , (ID`, pkID` , pf ID`)} as input.

2) If M = KE, then A is allowed to ask a polynomial
number of queries: Execute, Corrupt and RevealKey.

3) If M = AKE, then A is allowed to ask a polyno-
mial number of queries: Send, Execute, RevealState,
Corrupt, EstablishParty and RevealKey.

4) At some point, A may issue a Test(πsi ) query on an
oracle πsi during the game with only once.

5) At the end of the game, the A may terminate with
returning a bit b′ as its guess for b of Test query.

6) Finally, 1 is returned if all following conditions hold:

• A has issued a Test query to a M -fresh oracle
πsi without failure,

• A returned a bit b′ which equals to b of Test-
query;

Otherwise 0 is returned.

Definition 10 (Session Key Security). We say that a
correct key exchange protocol Π is (M, t, ε)-secure, if for
any A runs the M security experiment within time t while
having advantage ε = ε(κ) in terms security parameter κ,
it holds that

• If two oracles πsi and πtj accept with matching ses-
sions, then except for ε the following conditions must
be satisfied: (i) the oracle πsi has a unique match-
ing session at party IDj, and (ii) the oracle πtj has a
unique matching session at party IDi.

• If a Test query has been issued to a M -fresh oracle
πsi , then the probability holds that |Pr[EXPMΠ,A(κ) =
1]− 1/2| < ε.

It is not hard to see that the KE security provides for-
ward secrecy property in presence of passive adversary.
Since we allow the adversary to Corrupt the long-term
keys (if any) of principles.

5 Compiler for two-move AKE
Protocol from NIKEA

In this section we propose a generic compiler that trans-
forms a passively forward secure two-move TMKE proto-
col to a AKE protocol based on NIKEA. The resulting
AKE protocol can provide the AKE security as modelled
in Section 4 that covers a lot of well-known security at-
tributes such as resilience of leakage ephemeral keys (from
sessions not ‘associated’ with test session) and chosen
identity and public key attacks (such as the unknown key
share attacks or small sub-group attacks), and provision
of perfect forward secrecy.
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ID1

(pkID1
, sknikeaID1

, pf ID1
)

$← NIKEA.KG(ID1)

(skkeID1
, pkkeID1

)
$← TMKE.KG(ID1)

ID2

(pknikeaID2
, sknikeaID2

, pf ID2
)

$← NIKEA.KG(ID2)

(skkeID1
, pkkeID1

)
$← TMKE.KG(ID1)

rID1

$← RTMKE rID2

$← RTMKE

mID1

$←
TMKE.MSG(skkeID1

, ID2, pk
ke
ID2
, rID1

, ∅)
mID2

$←
TMKE.MSG(skkeID2

, ID1, pk
ke
ID1
, rID2

,mID1
)

MKID1
← NIKEA.ShareKey(ID1, sk

nikea
ID1

,

ID2, pk
nikea
ID2

,mID1
||ID1)

MKID2
← NIKEA.ShareKey(ID2, sk

nikea
ID2

,

ID1, pk
nikea
ID1

,mID2
||ID2)

−
mID1

,MKID1
−−−−−−−−−−−−−−−−−−−→

←−
mID2

,MKID2
−−−−−−−−−−−−−−−−−−−

Reject if
MKID2

6= NIKEA.ShareKey(ID1, sk
nikea
ID1

,

ID2, pk
nikea
ID2

,mID2
||ID2)

Reject if
MKID1

6= NIKEA.ShareKey(ID2, sk
nikea
ID2

,

ID1, pk
nikea
ID1

,mID1
||ID1)

accept K :=
TMKE.SKG(skkeID1

, ID2, pk
ke
ID2
, rID1

,mID2
)

accept K :=
TMKE.SKG(skkeID2

, ID1, pk
ke
ID1
, rID2

,mID1
)

Figure 2: AKE protocol from NIKEA

Protocol Description. The compiler takes as input
the following building blocks: (i)passively forward
secure two-message key exchange protocol TMKE =
(TMKE.ST,TMKE.KG,TMKE.MSG,TMKE.SKG), and
CKS-like secure non-interactive key exchange scheme
NIKEA = (NIKEA.Setup, NIKEA.KG, NIKEA.ShareKey).

The parameters of the compiler consist of values gen-
erated by pmsnikea ← NIKEA.Setup(1κ) and pmske ←
TMKE.ST(1κ). The generic compiler between two parties
is shown as Figure 2.

Remark 1. In the above compiler, the NIKEA is used as a
tool to authenticate the outgoing message of KE without
changing it. Hence the KE and underlying application
based on TMKE would have no ‘awareness’ on the in-
creased compiler. Instead, security can be established by
simply ‘adding’ the implementation of the compiler to the
system. We stress that the computations on authentica-
tion tokens MKID1 and MKID2 can use the same shared

key material (i.e., the (pknikeaID2
)sk

nikea
ID1 ). If one realizes the

TMKE and NIKEA with Diffie-Hellman key exchange and
the NIKEA presented in Section 3.2 respectively, then the
overall computation cost would be approximately domi-
nated by only three regular exponentiations (that is quite
efficient). Moreover, the size of secret key is also very
short that only one element in pairing group G is required.
Such performance makes the resulting AKE protocol to
be appealing to the resource constrained application en-
vironment (such as sensors networks).

The resilience of key compromise impersonation at-
tacks is not covered by our compiler. In order to mod-
ify our compiler for achieving KCI resilience, a way is
to use signature-based authentication protocol instead of
NIKEA. But the computation cost will increase also. We
leave out this as future work.

Comparisons. We summarize the comparisons be-
tween our proposal and some well known AKE compil-
ers without random oracles in Table 1, i.e., the signature-

based JKSS compiler [14] and the signature-based LSYBS
compiler [18] which are referred to as JKSSSIG and
LSYBSSIG respectively. We instantiate the signature
scheme in those compilers with the concrete one called
SigSRSA[Hcfs] [13] which is overall efficient on signing and
verifying operations. Whereas the passive secure KE pro-
tocol in all compilers would be instantiated with the tra-
ditional Diffie-Hellman key exchange protocol.

Our comparisons are given from the following perspec-
tives: (i) security assumptions; (ii) the number of ex-
changed messages sent by a party; (iii) overall computa-
tion cost of considered protocol; (iv) the communication
round. Let ‘DDH’ denote the Decisional Diffie-Hellman
assumption and ‘SRSA’ denote the strong RSA assump-
tion. Let MAC denote the message authentication code.
Let ‘Exp’ denote the regular exponentiation. In addition,
we ignore the cost of PRF and MAC in the comparison.

Security Analysis. In the following, we are going to
show that the new compiler is secure without appealing
to random oracles.

Theorem 2. Suppose the TMKE protocol is
(TMKE, t, εKE)-secure and the NIKEA is (t, εNIKEA-EUF)-
unforgeable-secure. Then the proposed AKE compiler
is (AKE, t′, εAKE)-secure, provided that t ≈ t′ and
εAKE ≤ d` · εKE + d`2 · (εNIKEA-EUF + (d+ 1) · εKE).

We present the proof of this theorem in Appendix B.

6 Conclusions

We have presented a new security notion on non-
interactive key exchange with auxiliary input (NIKEA).
One of the advantages of NIKEA is that two parties may
have a number of shared keys which are generated by
different auxiliary input aux. We have also shown an-
other interesting security property of NIKEA regarding
unforgeability that adversary is unable to generate the
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Table 1: Comparison

Security Assumption Message Length Computation Cost Communication Round

JKSSSIG [14] SRSA, DDH, PRF, MAC 9G 4 Exp 4

LSYBSSIG [18] SRSA, DDH 7G 4 Exp 2

Ours BDDH, DDH, PRF 2G 3 Exp 1

shared key of uncorrupted honest parties with an auxiliary
input aux that is not used by these parties before. Based
on such property, we have proposed a new lightweight
AP&KE style compiler that generically build secure AKE
from secure NIKEA protocols and passively secure two-
move key exchange protocols without long-term keys. The
new compiler is superior to previous similar works on per-
spectives of both communication and computation costs.
Hence it is suitable for resources constrained application
environment. As for a future work, it might be interesting
to extend the idea of our compiler to group case for ef-
ficiency consideration, i.e. to build AGKE protocol from
passively secure GKE and group NIKEA.
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Appendix A: Proof of Theorem 1

The proof will be given using a gamed based approach
as in [2, 20]. Let breakδ be the event that the A cor-
rectly guesses the bit b sampled by the Testnikea query in
Game δ. Let Advδ := Pr[breakδ]− 1/2 denote the advan-
tage of A in Game δ.

Game 0 This is the original game with adversary A.
Thus we have that Pr[break0]− 1/2 = εNIKEA-IND = Adv0.

Game 1 In this game we want to make sure that the
received ephemeral keys are correctly formed. Technically
the challenger proceeds exactly as before, but it aborts if
there exist two distinct long-term public keys W and N
such that TCRHF(W ) = TCRHF(V ). According to the
security property of underlying hash function, the above
abortion event might occur with probability εTCRHF. Thus
we have Adv0 ≤ Adv1 + εTCRHF.

Game 2 In this game proceeds as the previous one,

but we replace the key material β∗ = pk
skID∗

2

ID∗
1

of PRF

with random value β̃∗ where ID∗1 and ID∗2 are test par-
ties. If there exists an adversary A which can distin-
guish the Game 2 from Game 1 then we can use it to

construct an efficient distinguisher D to solve the BDDH
problem as follows. Given a BDDH challenge instance
(ḡ, v, w, z,Γ), D sets g := ḡ, u := z, pkID∗

1
:= e(v, u) and

pkID∗
2

= e(w, u), and computes hID1
= TCRHF(pkID∗

1
) and

hID∗
2

= TCRHF(pkID∗
2
). Let p(h) = p0 +p1h+p2h

2 = (h−
hID∗

1
)(h− hID∗

2
) be a polynomial of degree 2 over Zp such

that p(hID∗
1
) = p(hID∗

2
) = 0. Let q(h) = q0 + q1h + q2h

2

be random polynomials of degree 2 over Zp. D next sets
u0 = up0gq0 , u1 = up1gq1 and u2 = up2gq2 . D then an-
swers the following queries:

• RegisterHonest( ˆID): This query is simulated as the
original one, except for the public keys for test parties
ID∗1 and ID∗2 which are generated as above. In par-

ticular we have that pf ID∗
1

= (v, v
q(hID∗

1
)
) and pf ID∗

2
=

(w,w
q(hID∗

2
)
), where q(hID∗

1
) and q(hID∗

2
) are known

values. These are correct proofs for public keys of
parties ID∗1 and ID∗2, since p(hID∗

1
) = p(hID∗

2
) = 0.

• EstablishParty(IDτ , pkIDτ ). Upon receiving a public
key pkIDτ and an identity IDτ from A, the public key
is registered if IDτ has not been registered before and
correspond proof pf IDτ = (pf IDτ ,1, pf IDτ ,2) are evalu-
ated correctly as protocol specification.

• RevealKeynikea(ID1, ID2, aux). We assume this query
is legitimate, otherwise D aborts. As for the case
that there exists an honest user, say ID2 ∈ {ID∗1, ID

∗
2}

then D computes session key as

K = PRF(e((
pf ID1,2

pf
q(hID1

)

ID1,1

)
1

p(hID1
) , pkID2

), ID1||ID2||aux),

where hID1 = TCRHF(pkID1).

• Testnikea(ID∗1, ID
∗
2, aux

∗): D returns K∗ =
PRF(Γ, ID∗1||ID

∗
2||aux∗).

This completes our simulation correctly. If Γ =
BDDH(v, w, z), then the simulation is equivalent to Game
1; otherwise the simulation is equivalent to Game 2. At
the end, D returns what A returns to BDDH challenger.
If A can distinguish the real key from the random value,
that implies D solves the BDDH problem. We therefore
obtain that Adv1 ≤ Adv2 + εBDDH.

Game 3 In this game, the function PRF(β̃∗, ·) com-
puted in Testnikea query is changed to a truly random

function RF(·). As the secret seed β̃∗ is set to a truly
random value due to previous game. If there exists an
efficient adversary A who can distinguish the Game 3
from Game 2 with non-negligible advantage. Then we
can construct an efficient algorithm B using A to break
the security of PRF. In terms of the security of PRF, we
have that Adv2 ≤ Adv3 + εPRF. Note that in this game the
session key returned by Testnikea query is totally a truly
random value which is independent to the bit b. Thus the
probability that the adversary wins the game is Adv3 = 0.

Collect all the probabilities in above games, this theo-
rem is proved.
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Appendix B: Proof of Theorem 2

Let breakδ be the event that the A correctly guesses the
bit b sampled by the Test-query in Game δ. Let Advδ :=
Pr[breakδ]−1/2 denote the advantage of A in Game δ. Let
oracle πs

∗

i denote the fresh test oracle and let πt
∗

j denote

the oracle having matching conversation to πs
∗

i .

Game 0 This is the original security game. We have
that Pr[break0]− 1/2 = εAKE = Adv0.

Game 1 This game proceeds exactly as the previous
game but the challenger aborts if it fails to guess the test
oracle πs

∗

i and its intended communication partner IDj .
Since there are ` honest parties and d oracles for each
party, the probability that the adversary guesses correctly
is at least 1/(d`2). Thus we have that Adv0 ≤ d`2 · Adv4.

Game 2 In this game, the challenger proceeds exactly
as previous game but it raises an abort event aborttoken
that: the challenger aborts if test oracle accepts the in-
coming authentication token MKIDj which is not sent
from its origin oracle. Due to the unforgeability of
NIKEA, Pr[aborttoken] ≤ εNIKEA-EUF. Thus we have that
Adv4 ≤ Adv2 + εNIKEA-EUF. In this game, we have that the
test oracle must have origin oracle.

Game 3 In this game we are going to show that the test
oracle has an origin oracle at each intended communica-
tion partner. The challenger proceeds as previous game
but it aborts if either: (i) every (sub)-message (which
could be, for instances, Diffie-Hellman key and identity)
in the message transcript ms∗

i of test oracle πs
∗

i has been
sampled by some other oracle; or (ii) every (sub)-message
in the message transcript mt∗

IDj
of origin oracle πs

∗

i (of test

oracle) has been sampled by other oracle.
If the above abort event occurs in a non-negligible

probability then there exists an adversary B which can
break the KE security of P by running A. The simulation
of B is proceeded as follows:

• At the initiation phase, B first implements the col-
lection of oracles {πsi : i ∈ [`], s ∈ [d]}. All long-term
public/private key pairs for each honest user IDi are
generated and all public keys are given to adversary
as input.

• Meantime, B generates the protocol messages for
each oracle as protocol specification and answers all
oracle queries honest except for the test oracle and
its origin oracle.

• As for the test oracle and its partner oracles, B
queries CKE for asking a Execute query to obtain T ∗KE
and a Test query to obtain the session key K∗b,KE of
that Execute query. B simulates the test oracle cho-
sen by A and its origin oracle using the transcript
T ∗KE and K∗b,KE. A may keep asking oracle queries.

• B answers those oracle queries using secrets of her
own choice. In particular the B would generate the
signatures of oracles based on corresponding long-
term key chosen by herself.

Assume that the adversary A leads two oracles πv
∗

h (which
is either test oracle or its origin oracle) and πtj to output
the same message m∗ without matching sessions. This
means that the ephemeral secret key eskv

∗

h (which equals
to esktIDj ) used to generate the message m∗ is known by B.

Since the oracle πtj is simulated by B honestly as protocol
specification, i.e., esktj is chosen by B. Hence the B could
break the KE security of P by computing the session key
of test oracle using ephemeral secret eskv

∗

h . We therefore
have that Adv2 ≤ Adv3 + εKE.

This game also implies that each oracle πsi has a unique
origin oracle. Hence the adversary A can not exploit
RevealKey query to win the game.

Game 4 This game proceeds exactly as the previous
game but the challenger aborts if it fails to guess the origin
oracle πt

∗

j . Thus we have that Adv3 ≤ d · Adv4.

Game 5 Finally, we replace the key k∗ of the test oracle
πs

∗

i and its partner oracle πt
∗

j (if it exists) with the ran-

dom value k̃∗. Note that the KE protocol instance can be
seen as being executed between the test oracle and its ori-
gin oracle due to Game 2. If there exists an adversary A
which can distinguish this game from the previous game,
then we use it to construct an algorithm B to break the
passive security of key exchange protocol as follows. As-
sume that the adversary B interacts with the challenger
CKE. More specifically, B simulates the challenger in this
game for A which is illustrated as follows:

• At the beginning, B implements the collection of or-
acles {πsi : i ∈ [`], s ∈ [d]}. All long-term pub-
lic/private key pairs for each honest user IDi are gen-
erated, and all public keys are given to adversary.

• Meantime, B generates the protocol messages for
each oracle as protocol specification and answers all
oracle queries honest except for the test oracle and
its origin oracle.

• B queries a Execute query with obtaining message
transcript T ∗ from CKE, where one of the oracles in-
volved in this query will be chosen as test oracle.
B simulates the messages of test oracle and its ori-
gin oracle based on the transcript T ∗. As for the
Test(πs

∗

i ) query from A, B answers it using the result
of Test(πs

∗

i ) query returned by CKE. If the test oracle
πs

∗

i has no matching session but has origin-oracle πt
∗

j

then the session key of πt
∗

j can be computed using the
ephemeral secret key (which is simulated by B) of the
origin-oracle of πt

∗

j . Please note that πt
∗

j must also
have origin-oracle due to the security of NIKEA.

• Eventually, B returns the bit b′ from A to CKE.
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The simulation of B is perfect since B can always
correctly answer all queries from A. If A is able to cor-
rectly answer the bit b of Test-query with non-negligible
probability, so does the adversary B. Hence we obtain
that Adv4 ≤ Adv5 + εKE. In this game, the response to
the Test query always consists of a random key, which is
independent to the bit b flipped in the Test query. Thus
we have Adv5 = 0. This theorem is proved by putting
together of probabilities from above games.
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