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Abstract

An embedding attack based on constraint Lenvenshtein
distance was proposed by Golić and Mihaljević to analyze
a statistical model of a key stream generator which con-
tains an additive noise of probability p, where any value
of p < 1/2 is possible. This attack is significant only if
the embedding error caused by the noise is less than that
caused by an incorrect candidate initial state. We show
that this condition is not satisfied when p ≥ 1/4.
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1 Introduction

A key stream generator is a function that maps a short key
into a long stream, which can be used to efficiently encrypt
a plaintext stream by bit-wise XORing with the latter.
The main purpose is to make it fast. The lightweight key
stream generator Sprout [1] is such an example. However,
proposing a secure key stream generator is very tricky. In
fact, Sprout has been effectively attacked [12, 17]. See [2,
4, 5] for other examples of key stream generators. In this
paper, we consider the key stream generator based on a
linear feedback shift register (LFSR) sequence [10] which
is a very efficient mechanism for a key stream generator (of
course, LFSR has many applications such as frequency-
hopping communication [3]).

In fact, most of generators in the literature are designed
using it. However, many of them are broken by exploiting
the linearity of LFSRs; see the correlation attack [14] for
an example. A popular method for this type of attack is
to reduce a complicated generator to a statistical model
Yi = Xi + Ei, i = 1, 2, · · · , where {Xi}i≥1 is a secret
LFSR sequence, {Yi}i≥1 is the key stream and Ei is a
binary noise with P (Ei = 1) = p < 1/2. For instance,
Zeng et al. [15] reduced generators [6] to this model and
completely broke them using a linear syndrome attack.

Generators subject to this attack usually have a com-

mon feature: Its input LFSR is regularly clocked. An
irregularly clocked key stream generator is desired. Golić
et al. [7] studied the security of this type of generator
by considering the model Yi = Xf(i) + Ei, i = 1, 2, · · · ,
where P (Ei = 1) = p < 1/2, f(i) = i +

∑i
j=1 aj and

{aj} is another LFSR. They proposed a constrained em-
bedding attack to this model. When p = 0, this model
degenerates to a decimation generator.

Golić and O’Connor [8] proposed an (un)constrained
embedding attack to this generator when the irregularly
clocking step is bounded by D. The embedding probabil-
ity for D = 2 was given in [9]. Zhang [16] proposed a new
attack to the decimation generator.

Given a partial key stream Y1, · · · , Yn of the model
Yi = Xf(i) + Ei with Pr(Ei = 1) = p < 1/2, Golić
and Mihaljević considered a noisy embedding attack: Try
to embed Y n into the prefix X̂1, · · · , X̂2n of a candidate
LFSR X̂ for X (assume the resulting error sequence is
Ên) and find X̂ with the least

∑n
i=1 Êi as the solution for

X. The attack succeeds if it gives the solution X̂ = X.
Notice that when generating Y n from X2n, the noise se-
quence is E1, · · · , En. Hence, this attack is significant
only if

∑n
i=1Ei <

∑n
i=1 Êi for any LFSR X̂ other than

X (otherwise, Y1, · · · , Yn is less noisy when considered as
generated from a wrong LFSR X̂). In this paper, we show
that this condition is invalid when p ≥ 1/4.

2 Preliminaries

Notions: We will use the following notions.

• For a set S, s ← S samples an element s from S
uniformly randomly.

• For j ≤ n, unj denotes sequence uj , uj+1, · · · , un, and
sequence un1 is simply denoted by un.

• For n ∈ N, [n] denotes the set {1, · · · , n}.

• i.i.d. is a well-known abbreviation of “independently
identically distributed”.
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2.1 LFSR and Key Stream Generator

A binary linear shift register sequence (LFSR) S =
s0, s1, · · · is a sequence generated using a linear recursive
relation sj+k = sjck−1 + sj+1ck−2 + · · · + sj+k−1c0 over
F2, starting with an initial state (s0, · · · , sk−1), where
c0, · · · , ck−1 ∈ F2 are called connection coefficients.

A key stream generator is a function f : {0, 1}k →
{0, 1}∗ that maps a secret key w ∈ {0, 1}k into a long
binary stream z1, z2, · · · . It can be used to encrypt a
plaintext stream m1,m2, · · · by simply bit-wise XORing:
m1⊕z1,m2⊕z2, · · · . When a receiver with the secret key
w, receives the ciphertext, he can recover the plaintext in
an obvious way. For the generator to be useful, we must
make sure it is secure against some attacks.

A relatively weak attack is a ciphertext-only attack,
which requires an adversary to recover the secret key w
when only a partial ciphertext stream is given. A widely
considered attack is a known plaintext attack: The ad-
versary is given a partial ciphertext and its correspond-
ing plaintext and his objective is to recover the secret w.
Equivalently, the attacker is given a partial key stream
z1, · · · , zn, from which he tries to recover the secret w. It
is well-known from Berlekamp-Massey algorithm [13] that
LFSR with an initial state and connection coefficients as
the secret key is not a secure key stream generator. How-
ever, LFSR is a very useful tool to construct a reasonably
secure key stream generator.

2.2 Hoeffding Inequality

We now introduce the famous Hoeffding inequality. For
details, see [11].

Lemma 1. [Hoeffding] Let X1, · · · , Xn be n indepen-
dent RVs with ai ≤ Xi ≤ bi for i = 1, · · · , n. Then, for
∀t > 0,

P
( 1

n

n∑
i=1

Xi − µ ≥ t
)
≤ e
− 2n2t2∑n

i=1
(bi−ai)

2
,

P
( 1

n

n∑
i=1

Xi − µ ≤ −t
)
≤ e
− 2n2t2∑n

i=1
(bi−ai)

2
,

where µ = 1
n

∑n
i=1 E(Xi).

3 Problem Statement

3.1 A Statistical Model of a Clock-
controlled Generator

Golić and Mihaljević [7] considered the following statis-
tical model of a key stream generator. Let X = {xi}i≥1
and A = {ai}i≥1 be two LFSR sequences. The key stream
Z = {zi}i≥1 is generated noisily as follows.

zi = xf(i) + ei, i = 1, 2, · · · , (1)

where f(i) = i +
∑i

t=1 at and e1, e2, · · · , are i.i.d. with
P (ei = 1) = p < 0.5. Strictly, this is not a key stream
generator as it involves an additive noise ei. However, this
could be a useful abstraction of a key stream generator.
Specifically, ei could be an a statistical approximation to
a complicated structure.

The initial state recovering problem for this generator
is to find the initial states of X and A, assuming the noise
probability p, a partial key stream zn and connection co-
efficients of X and A are known. A näive approach for
this is to search for all possible initial states of X and A
and verify whether xf(i) matches with zi for i = 1, · · · , n
with probability roughly p. However, if each of X and A
has an initialize state length k, then it requires O(22k)
times of tests.

3.2 Constrained Levenshtein Distance
Attack

Golić and Mihaljević [7] proposed a noisy embedding
attack based on Constrained Levenshtein Distance (CLD)
to recover {xi}i≥1 from zn. We call it a CLD attack.

Their approach is as follows. For each candidate X̂ of X,
they generate a partial sequence x̂2n and compute the
CLD between x̂2n and the known key stream zn, where
CLD is defined as follows.

D∗(x̂2n, zn) = minimal number of deleting and comple-
mentation operations required to produce zn from x̂2n, by
first deleting an arbitrary prefix of x̂m and then following
the model at Equation (1).

Let X be the set of candidate X̂ for X. If the ini-
tial state of X has k bits, then |X | = 2k. Given zn, the
attack outputs X∗ that minimizes CLD (among all pos-
sible sequences in X ) as its solution for X. It succeeds if
X∗ = X.

For each X̂, [7] showed that CLD(x̂m, zn) can be com-
puted in O(mn) time and hence is efficient.

Note that the number of deletions in producing zn

from x̂2n is the constant n. This attack is equiva-
lent to minimize the number of complementing opera-
tions. We denote the number of complementing opera-
tions in D∗(x̂2n, zn) by D(x̂2n, zn). In the sequel, instead
of D∗(x̂2n, zn), we will focus on D(x̂2n, zn).

Note that zn is generated from X,A in the real pro-
cess with the complementing sequence en. So the number
of complementing operations in this process is

∑n
i=1 ei.

Hence, the CLD attack is meaningful only if
∑n

i=1 ei <

D(x̂2n, zn) for each X̂ ∈ X −{X}. That is, the real num-
ber of complementing operations should not be greater
than that under a wrong candidate sequence X̂. Hence,
we consider

α = P
(
D(x̂2n, zn) ≤

n∑
i=1

ei

)
. (2)

As in [7], we model an LFSR as a purely random se-
quence. So α is defined over the uniform random x̂2n, x2n
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and the randomness of zn and en.
The expected number of X̂ in X with D(x̂2n, zn) ≤∑n
i=1 ei is 2kα, as |X | = 2k. Thus, the CLD attack is

meaningful only if 2kα is small. The problem in this paper
is to lower bound α and show that α > constant when
p ≥ 1/4. In this case, 2kα is large, which makes the attack
fail to identify which X̂ will be the true X.

Finally, we notice that D∗(x̂2n, zn) permits deleting an
arbitrary prefix of x̂m. However, here the prefix can be
changed to postfix without affecting α in Equation (2).
Indeed, we can convert a postfix into a prefix version
in the following way. We can start to embed zn re-
versely to x̂2n. That is, we can embed zn, zn−1, · · · , z1
into x̂2n, · · · , x̂1. If z1 is embedded at x̂j , then x̂j−1 can
be deleted by the convention.

Since zn and x̂2n are uniformly random and inde-
pendent, the distribution of zn, · · · , z1, x̂2n, · · · , x̂1 and
the distribution of z1, · · · , zn, x̂1, · · · , x̂2n are exactly the
same. So the two ways give the same α. In this paper,
for convenience, we use the postfix version for D(x̂2n, zn)
(i.e., we revise “prefix” in the definition of D∗(x̂2n, zn) to
“postfix”).

4 Lower Bound on α When p ≥ 1/4

In this section, we show that α is larger than a constant
when p ≥ 1/4. Our strategy is as follows. For an em-
bedding algorithm E that embeds zn into u2n, we use
E(u2n, zn) to denote the number of flips in the embed-
ding process. Then, E(u2n, zn) ≥ D(u2n, zn). It follows
that α ≥ P (E(u2n, zn) ≤

∑n
i=1 ei). Hence, it suffices to

show that P (E(u2n, zn) ≤
∑n

i=1 ei) > constant for some
algorithm E . So the main task is to design E .

Now we present our algorithm E to embed zn to u2n,
in which the average number of complements is n/4. The
formal description is in Algorithm 1. The idea is as fol-
lows. It sequentially embeds z1, · · · , zn into u2n. Let zi
be the current bit to be embedded and uj be the currently
unused bit awaiting to embed zi. Initially, i = j = 1. If
zi 6= uj and zi 6= uj+1, then one complementing operation
(recorded in a variable F ) is used and zi is embedded at
uj+1; otherwise, zi is embedded to uj when zi = uj and
embedded to uj+1 when zi = uj+1. Finally, increment i
and update j to the next unused index.

Before analyzing our algorithm, we first present a gen-
eral lemma. It considers a function f : {0, 1}m → [m−1].
It states that if f satisfies a certain property, then for uni-
formly random Um in {0, 1}m and J = f(Um), we have
that (UJ , UJ+1) is independent of UJ−1. We remark that
this independency does not trivially follow from the uni-
formly randomness of Um, as J depends on Um and is
implied from UJ−1 (by looking at the dimension).

Lemma 2. Let f : {0, 1}m → [m− 1] be a function with
the following property: if f(um) = j, then f(uj−1, vmj ) =

j for any vmj ∈ {0, 1}m−j+1. Let Um be uniformly random
in {0, 1}m and J = f(Um). Then, (UJ , UJ+1) is indepen-
dent of UJ−1.

Algorithm 1 Embedding algorithm E

Imput: u2n, zn;
Output: F
1: Begin
2: Set i = 1, j = 1, F = 0
3: for i = 1 to n do
4: if zi = uj then
5: j = j + 1
6: else
7: if zi = uj+1 then
8: j = j + 2;
9: else F = F + 1 and j = j + 2;

10: end if
11: end if
12: end for
13: Return F
14: End

Proof. For j ∈ [m − 1], let Nj be the set of uj−1 such
that f(uj−1, vmj ) = j for some vmj . By the property of f ,

the set of all um with f(um) = j is exactly Sj
def
= Nj ×

{0, 1}m−(j−1). As any um must map to some j ∈ [m− 1],

it follows that
∑m−1

j=1 |Nj |2m−(j−1) = 2m. So

m−1∑
j=1

|Nj |2−(j−1) = 1. (3)

Notice that J can be derived from UJ+1 by looking at
the dimension. Hence, UJ+1 = uj+1 if and only if J = j
and U j+1 = uj+1. So,

P (UJ+1 = uj+1) = P (U j+1 = uj+1, J = j)

= PUj+1(uj+1)PJ|Uj+1(j|uj+1)

=

{
2−(j+1), uj−1 ∈ Nj

0, otherwise,
(4)

where we have used the fact PJ|Uj+1(j|uj+1) = 1 if uj−1 ∈
Nj and zero, otherwise. Similarly,

P (UJ−1 = uj−1) = P (U j−1 = uj−1, J = j)

= PUj−1(uj−1)PJ|Uj−1(j|uj−1)

=

{
2−(j−1), uj−1 ∈ Nj

0, otherwise.
(5)

Therefore, PUJ+1(uj+1) = 1
4PUJ−1(uj−1). As

PUJUJ+1
(a, b) =

n∑
j=1

PUjUj+1J(a, b, j)

(∗)
=

∑
j

|Nj | · 2−(j+1)

= 1/4, (by Equation (3)) (6)

where equality (∗) follows from the fact that
(Uj , Uj+1, J) = (a, b, j) if and only if

Um ∈ Nj × {a} × {b} × {0, 1}m−(j+1),
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and the fact that Um is uniformly random over {0, 1}m.
Hence, Equations (4) (5) (6) imply

PUJ+1(uj+1) = PUJUJ+1
(uj , uj+1)PUJ−1(uj−1). (7)

That is, (UJ , UJ+1) is independent of UJ−1.

We are ready to analyze our algorithm E . We will use
the following notations. Let U2n = U1, · · · , U2n be a se-
quence of purely random binary stream. We define a bi-
nary RV Fi with respect to algorithm E(U2n, zn) such that
Fi = 1 if and only if F = F+1 is executed in loop i. Then,
F =

∑n
i=1 Fi. Since E is deterministic, the randomness of

F is over U2n. Let Ji be the index j at the beginning of
loop i (e.g., J1 = 1). Define function δ : {0, 1}2 → {0, 1}
is defined such that δ(x, y) = 1 if and only if x = y.

In the following, we show that F1, · · · , Fn are indepen-
dent and that δ(UJ1

, z1), · · · , δ(UJn
, zn) are independent

too, where the independency for both collections follows
only from the randomness of U2n.

Lemma 3. Given zn ∈ {0, 1}n, if U2n is uniformly ran-
dom in {0, 1}2n, then

1) RVs F1, · · · , Fn are i.i.d. with P (Fi = 1) = 1/4.

2) RVs δ(UJ1 , z1), · · · , δ(UJn , zn) are i.i.d. with
P (δ(UJi

, zi) = 1) = 1/2.

Proof. Notice that for any i ≤ n, we have Ji < 2n. By
Lemma 2, if f(U2n) = Ji, then (UJi , UJi+1) is indepen-
dent of UJi−1. This will be used in our proof.

1) We start with the following claim.

Claim 1. For fixed zn and i, we have that
(F1, · · · , Fi−1) is deterministic in UJi−1.

Proof. Indeed, by our algorithm, if zi−1 = UJi−1
,

then Ji = 1 + Ji−1 and Fi−1 = 0; otherwise, Ji =
2 + Ji−1, and Fi−1 = 1 if and only if zi−1 6= U1+Ji−1

.
Here we can see that in any case, Fi−1 is computed
only using UJi−1. So for any ` < i, F`−1 is deter-
mined by UJ`−1 (which in turn is determined by
UJi−1). Thus, (F1, · · · , Fi−1) are deterministic in
UJi−1, when zn is fixed. This concludes the proof
of our claim.

From the algorithm description, we can write Fi =
(zi ⊕ UJi) ∧ (zi ⊕ U1+Ji). Thus, Fi is determinis-
tic in (UJi

, U1+Ji
). From claim 1 and the fact that

(UJi
, UJi+1) is independent of UJi−1 (see the begin-

ning of the proof), we know that Fi is independent
of (F1, · · · , Fi−1).

Finally, notice that (UJi
, U1+Ji

) is independent of Ji,
as Ji is deterministic in UJi−1 (by looking at the

dimension). Hence,

P ((UJi
, U1+Ji

) = (a, b))

=
∑
j

P ((Uj , Uj+1, Ji) = (a, b, j))

=
∑
j

P ((Uj , Uj+1) = (a, b))P (Ji = j)

=
1

4

∑
j

P (Ji = j) = 1/4.

Hence, from Fi = (zi ⊕ UJi
) ∧ (zi ⊕ U1+Ji

), we have
P (Fi = 1) = 1/4.

2) As UJi
is independent of UJi−1, we have δ(UJi

, zi) is
independent of δ(UJ1

, z1), · · · , δ(UJi−1
, zi−1) for any

i. Hence, δ(UJ1
, z1), · · · , δ(UJn

, zn) are independent.
Finally, as Ji is deterministic in UJi−1 (by looking at
the dimension), UJi is independent of Ji. Thus,

P (UJi = 0) =
∑
j

P ((Uj , Ji) = (0, j))

=
∑
j

P (Uj = 0)P (Ji = j)

=
1

2

∑
j

P (Ji = j) = 1/2.

This completes our proof.

We are ready to prove our theorem. This mainly is
achieved using Heoffding inequality to F1, · · · , Fn and the
true error sequence e1, · · · , en in producing zn.

Theorem 1. If p = 1/4, then α ≥ 1/2; if p > 1/4, then

α ≥ 1− e−(p−.25)2n.

Proof. Notice that F =
∑n

i=1 Fi is the number of com-
plements in a specific embedding process. Hence, F ≥
D(U2n, zn). Hence,

α =P
(
D(U2n, zn) ≤

n∑
i=1

ei

)
≥P
( n∑

i=1

Fi ≤
n∑

i=1

ei

)
(8)

Since Fn only depends on U2n, it is independent of en.
If p = 1/4, then F1, · · · , Fn are identically distributed
with e1, · · · , en. Then, by symmetry, α ≥ 1/2. If p >
1/4, then since F1, · · · , Fn, e1, · · · , en are independent, by
Hoeffding inequality with 2n random variables,

P (e1 + · · ·+ en − F1 − · · · − Fn ≥ 0)

=1− P (
∑
i

(ei − Fi)− n(p− .25) < −n(p− .25))

≥1− e−(p−.25)
2n. (9)

This completes our theorem.
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Now we look at how many bits Algorithm E has used
in order to embed zn. In fact, after embedding zn, the
next available index of Uj is Jn+1. So the number of bits

in embedding zn is Nn
def
= Jn+1 − 1. From our algorithm

description, J`+1 = 1 + δ(UJ`
, z`) + J`. Thus,

Nn = n+

n∑
i=1

δ(UJi
, zi). (10)

Notice that in the real process in producing zn, we know
that f(n) = n+

∑n
i=1 ai, where a1, a2, · · · , are i.i.d. and

uniformly random over {0, 1} (as idealized in our analy-
sis). Therefore, by Lemma 3, the distribution of Nn is
identical to the real distribution. This demonstrates an
interesting aspect of our algorithm.

5 Conclusion

In this paper, we revisited the noisy embedding attack
from constraint Lenvenshtein distance by Golić and Mi-
haljević to a noisy key stream generator that contains an
additive binary noise term of probability p, where any
value of p < 1/2 is possible. We showed that this attack
is not successful if p ≥ 1/4. One immediate interesting
question is to study the success for the case p < 1/4.
When p is very small, the exponentially small embedding
probability without a noise showed in [9] trivially implies
the success of this algorithm. However, in general, this
does not seem to be a trivial question. We leave it as an
open question.
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