
International Journal of Network Security, Vol.18, Number5, PP.978-986, Sept. 2016 978

Analysis of Algorithms for Overlapping Resource
Access Members in Cloud Computing

Amar Buchade1, Rajesh Ingle2

Department of Computer Engineering, College of Engineering, Pune1

Wellesely Rd, Shivajinagar, Pune, Maharashtra 411005, India

Department of Computer Engineering & Pune Institute of Computer Technology2

Sr. No 27, Pune-Satara Road, Dhankawadi, Pune, Maharashtra 411043, India

(Email: arb.comp@coep.ac.in, ingle@ieee.org)

(Received Aug. 12, 2015; revised and accepted Nov. 12 & Dec. 15, 2015)

Abstract

In Cloud computing environment, resources include vir-
tual machine, CPU and Storage. These resources are ac-
cessed by tenants. Group key may be used to access the
resources securely. Group key is constructed using tree
by considering tenants in a group. In existing scenario,
different key trees are formed even if tenants are com-
mon among multiple groups to access the resources. This
paper addresses the issues of overlapping tenants that ac-
cesses resources. If there are overlapping members in mul-
tiple groups, combined key trees may be formed. Through
the analysis, it is observed that computational overhead
is decreased by 24% if we combine the key trees than the
separate key trees. It is also observed that key estab-
lishment time for combined key trees is less compared to
separate key trees.

Keywords: Computational cost, key tree, resource, re-
source access membership matrix

1 Introduction

In cloud computing environment, resources are considered
as virtual machine, CPU, storage. These resources are ac-
cessed by multiple tenants. Users of facebook may share
data (multiple files) in multiple groups. Members in a
group accesses the resources. To protect the resource from
unauthorized users, each member in the group shares the
partial information for forming the group key. In present
scenario, group key is formed by considering separate key
trees even if members are common to access multiple re-
sources. It incurs redundant operations and thus leads
to increase in computational cost and key establishment
time. It causes delay in accessing the actual resource
which an obviously violates the feature of cloud comput-
ing such as on demand resource access. Thus our paper
proposes combined key trees formation and its analysis
for the tenants overlapped in multiple resources.

Other example, member can be a part of multiple

projects. Multiple tenants can be involved in multiple
projects. For security purpose, members in a group form
the group key to access the resource.

The other examples can be users of whatsapp/facebook
sharing multiple files in groups. Many members can be
overlapped in groups to access the files.

The solution is to combine key trees for resources which
containing common members. We prove that our ap-
proach is efficient than the forming separate key trees for
overlapping resources access members.

It reduces computational overhead and group key es-
tablishment time. It helps to support on demand resource
access property of the cloud computing.

To form the group key, TGDH protocol is used [9, 12,
13]. More specifically our contributions are

1) Illustration of the algorithms through the examples.

2) Computation cost analysis of resource key formation
for separate key trees and combined key tree in terms
of total number of sequential exponentiation opera-
tions.

3) Formulation of key establishment time and analysis.

The paper is organized as follows. In Section 2, we de-
scribe about resource. Section 3 describes combining key
trees algorithm in brief, Section 4 presents computational
cost details in terms of sequential exponential and key
establishment time, Section 5 covers results and analysis
and Section 6 presents conclusion.

Assumption: Tree based Group Diffie Hellman Proto-
col [13] is used. Member who is acting as sponsor assumed
to be trustworthy. The words “tenant” and “member”
used alternatively.

2 Resource

2.1 Initializations

Let Resource group R = {R1, R2, R3, R4,Rn};

International Journal of Network Security, Vol.18, Number5, PP.978-986, Sept. 2016 979

Consider two resources R1 and R2.
Let {m1,m2,m3,m4, ...mn} be the members accessing

resource R1.

Let {n1, n2, n3, n4, ...nn} be the members accessing
resource R2.

It is possible to have members overlapped to access the
resources R1 and R2.
Assume R1∩R2 = cm where cm is number of overlapping
members which accesses the resources R1 and R2.

2.2 Resource Key Tree

Figure 1 shows resource key tree with leaf nodes repre-
sents group members m1, m2, m3, m4 etc. [8].

h

m1 m2 m3 m4

Group Key

<0,0>

<1,0> <1,1>

<2,0> <2,1> <2,2> <2,3>

Figure 1: Resource key tree

Diffie and Hellman presented two party key exchange
protocol called TGDH in 1976 [13].

• In TGDH [1, 6, 22, 23] group key is formed from
bottom-up fashion.

• Members m1, m2, m3 and m4 have α1, α2, α3 and
α4 private keys, respectively.

• Each member forms the public key called as blinded
key.

• In this case, g is generator, p is prime number Mem-
ber blinded keys are gα1 mod p, gα2 mod p, gα3 mod
p, and gα4 mod p.

• Each member knows all keys on key path and all
blinded keys. Key path of m2 includes the node at
< 1, 0 > and node at < 0, 0 >.

• Thus resource group key is formed as below.

gα1.α2.α3.α4 mod p

Let h is the height of the key tree. From Figure 1, h=2.
Number of exponential operations performed serially

by the member are called sequential exponentiation oper-
ations. It is observed that number of sequential exponen-
tiation required to form the group key = 2h - 2.

Thus to calculate group key at node < 0, 0 >, member
m2 two sequential exponential operations mainly at node
< 1, 0 > and node < 0, 0 > are required.

2.3 Resource Access Membership Matrix

Every tenant that is part of the resource, entry is made
in its resource access membership [RAM] matrix also for
any member that joins/leaves the resource. RAM matrix
contains the following entries.

Members m1, m2, m3, . . ., mn represents the entries
in row wise.

Resources R1, R2, R3, . . ., Rn represents the entries in
column wise. 

1 1 · · · · · ·
1 0 · · · · · ·
1 1 · · · · · ·
1 · · · · · · · · ·


It shows that there areR1, R2, . . ., Rn resources. Mem-

ber m1 accesses resource R1 and R2 i.e. overlapped to ac-
cess the resources R1 and R2 while member m2 is part of
resource R1, m3 is a part of resources R1 and R2. Three
dots (...) indicates entry either 0 or 1.

3 Combining Resource Key Trees
Algorithm

In existing key management algorithm [11, 16, 20, 24],
separate key tree is built for each resource, even if same
members are accessing multiple resources. Buchade and
Ingle gives combining key tree algorithm [4]. This algo-
rithm takes consideration of resource access membership
matrix. Key tree of overlapping members are formed as
well as key tree of non overlapping members are formed.
These key trees are combined. The combined key tree of
overlapping members is rooted at the root node to reduce
the height of the tree.

4 Computational Cost

This section covers the proof of sequential exponentiation
and key establishment time for combined and separate
key trees.

Lemma 1. Total number of sequential exponentiation
(SE) for separate key trees (SKT) required more than
combined key tree (CKT).

Proof. Total number of sequential exponentiation opera-
tions with SKT

[SESKT] =

NRK∑
i=1

(2hi − 2)Ni (1)

where hi = log(Ni) (property of binary tree); NRK =
Total number of resource key tree; hi = height of ith re-
source key tree; Ni = Number of members of ith resource
key tree. Average height of each member, h = log(N).

International Journal of Network Security, Vol.18, Number5, PP.978-986, Sept. 2016 980

Total number of SE due to overlapping members:

[SEOM] =

NOT∑
j=1

(2hj − 2)Oj , (2)

where hj = log(Oj), h > 1 otherwise SE=1; NOT =
Number of trees formed due to overlapping members;
hj = height of jth resource key tree; O = Number of
overlapping members; Average height of each member,
h = log(O).

SE due to combined key trees [SECKT]
= SE due to SKT - SE due to Overlapping members.

Thus it is observed that SE for separate key trees is
more compared to combined key trees.

Lemma 2. Key establishment time for SKTs is more
than key establishment time for CKT. It depends on Num-
ber of members overlapped to access the resources.

Proof. For SKT, total Number of members,

N =

NRK∑
i=1

Ni

Average height of each member, h = log(N/NRK); Time
required to form the group key =

(2h− 2) ∗DHt = (2log(N/NRK)− 2) ∗DHt, (3)

where, NRK = Number of resource key trees; Ni = Num-
ber of members of ith resource key tree; DHt = Time
required to perform one Diffie Hellman Exponentiation
operation.

For CKT, total Number of members = N − cm, where
cm = Number of overlapping members; Average height of
each member, h = log((N − cm)/NRK); Time required
to form the group key =

(2h− 2) ∗DHt = (2log((N − cm)/NRK)− 2) ∗DHt (4)

From Equations 3 and 4, it is observed that key estab-
lishment time for SKTs can be more than key establish-
ment time for CKT. It depends on number of overlapping
members.

4.1 Single Join

Buchade and Ingle stated algorithm when tenant wants
to access the resource [4]. If the joining tenant is not
overlapped, it is added in the key tree as per TGDH. If
it is overlapped to other resources forms the key graph.
The details of the algorithm is given in detail through the
examples below.

4.1.1 Example: Single Member Join

This example illustrates how member m3 join to access
the resource and how resource access membership matrix
is maintained. Member uses TGDH [13] to join to access
the resource.

1) There are two resources namely R1 and R2;

2) Member m1, m2 accesses the resources R1;

3) Member m5,m6 accesses the resources R2;

4) Each member has to maintain resource access mem-
bership matrix.

Example:

1) Member m3 joins R1.

2) Member m3 wants to access R2, broadcast join re-
quest for R2 alongwith message containing it is al-
ready having membership with R1.

3) Each member in R1 and R2 notices and makes the
entry ‘1’ against the entry of m3 in resource access
membership matrix.

4) Sponsor of R2 gives/broadcast blinded keys, mem-
bership details.

5) Thus m3 is made sponsor. Because it is a member of
R1 and R2.

6) Member m3 joins for resource R2 and builds key
graph.

7) Member m3 builds key graph as it is overlapped with
R1 and R2. It also makes the entry in resource mem-
bership matrix.

8) Each Member of R1 and R2 has its own tree view.

9) Each member of R1 except m3 has the follow-
ing view of Resource Access Membership Matrix.
R1=m1,m2,m3; Rows represents members m1, m2,
m3; and Columns represents Resources R1, R2. 1 0

1 0
1 1


It indicates that m1 represents that m1 is part of
(access) of R1, m2 is part of R2 and m3 is part of R1
and R3.

10) Member m3 has the following view of Resource access
membership matrix. Rows represents members m1,
m2, m3, m5, m6 and Columns represents Resources
R1, R2. 

1 0
1 0
1 1
0 1
0 1



International Journal of Network Security, Vol.18, Number5, PP.978-986, Sept. 2016 981

Member m3 has information of m5 and m6 because
they are the members of resource group R2. RAM
matrix maintained by m3 indicates that m1 is part
of resource group R1, m2 is part of resource R2, m3
is part of resource R1 and R2, m4 is part of resource
R2 and m5 is a part of resource R2.

11) Each member of R2 except m3 has the following view
of Resource Membership Matrix. R1=m1, m2, m3.
Rows represents members m3, m5, m6 and Columns
represents Resources R1, R2. 1 1

0 1
0 1


Figure 2 shows that m1, m2 are the members of re-
source R1 and m5, m6 are the members of resource
R2. Figure 3 shows member m3 joins R1. Figure 4
shows member m3 builds key graph as it is over-
lapped with R1 and R2. Figure 5 shows each Member
of R1 and R2 key tree view.

R1

m1 m2 m5 m6

R2

Figure 2: Members and resources

R1

m1

m2

m5 m6

R2

m3

Figure 3: M3 joins R1

Table 1 illustrates the analysis of when single member
joins to access the resource.

4.2 Batch Join

Buchade and Ingle states the algorithm when multiple
tenants in a batch wants to access the resources [4]. The
algorithm is classified into

1) Some tenants in a batch access single resource;

2) Some tenants in a batch access the multiple re-
sources.

R1

m1 m2
m5 m6

R2

m3

Sponsor

Figure 4: M3 joins R1 and R2, keygraph at M3

R1

m1 m2
m5 m6

R2

m3 m3

Sponsor Sponsor

Figure 5: Each member view of R1 and R2

Key trees are build by considering overlapping mem-
bers and non overlapping members in multiple resources.
The details are given in the example.

4.2.1 Example: Batch Member Join

In existing key management algorithm [11, 16, 20, 24],
seperate key tree is built for each resource, even if same
members are accessing multiple resources.

For HDTV, Enhance layer channel subscribers can see
enhance layer, Medium layer and Basic layer TV Chan-
nel. Medium layer channel subscribers can see Basic layer
and Medium layer TV Channel. Basic layer channel sub-
scribers can see Basic layer TV channel.

In existing approach, Enhanced layer members has to
maintain three types of key trees.

1) For accessing EL Channel;

2) For accessing ML Channel;

3) For accessing BL Channel.

Our approach combines all key trees and eliminates
redundant operations. Thus it helps to reduce key estab-
lishment time.

Each EL subscriber maintains resource access member-
ship matrix. EL Channel considered as R1, ML Channel
considered as R2 and BL Channel considered as R3. Any
member broadcast request for joining the resource, the
entry by EL subscriber is made in the resource member-
ship matrix. EL subscriber forms key tree as mentioned
in Figure 6.

International Journal of Network Security, Vol.18, Number5, PP.978-986, Sept. 2016 982

Table 1: Analysis of single join

SE for SKT (N + 1)(2 log(N + 1)− 2)
where N = total Number of members

SE for CKT if overlapped
(N)(2 log(N)− 2)− (cm+ 1)(2 log(cm+ 1)− 2)
where cm = Number of overlapping members
if not overlapped
(N + 1)(2 log(N + 1)− 2)− (cm)(2 log(cm)− 2)

R1

m1 m2 m3 m4 m5 m6
BL Layer subscriber

 members

ML Layer subscriber

 members

EL Layer subscriber

 members

R2

R3

R2 ML Layer Channel

R3 BL Layer Channel

R1 EL Layer Channel

Figure 6: Key tree for EL members

EL members maintains the entries in resource access
membership matrix is shown below. Members m1, m2,
m3, m4, m5 and m6 represents the rows while Resources
R1, R2 and R3 represents the entries in columns.

1 1 1
1 1 1
0 1 1
0 1 1
0 0 1
0 0 1


Each ML member maintains resource access member-

ship matrix. ML Channel considered as R2 and BL Chan-
nel considered as R3. Any member broadcast request for
joining the resource, the entry by ML subscriber is made
in the resource membership matrix. ML subscriber forms
key tree as mentioned in Figure7.

ML members maintains the entries in resource access
membership matrix is shown below. Members m3, m4,
m5 and m6 represents the rows while Resources R2 and
R3 represents the entries in columns respectively.

1 1
1 1
0 1
0 1



R2

m3 m4 m5 m6

R3

R2 ML Layer Channel

R3 BL Layer Channel

ML Layer subscriber

 members

BL Layer subscriber

 members

Figure 7: Key tree for ML members

Each BL member maintains resource access member-
ship matrix. Any member broadcast request for joining
the resource, the entry by BL subscriber is made in the
resource membership matrix. BL subscriber forms key
tree as mentioned in Figure 8.

m5 m6

R3
R3 BL Layer Channel

BL Layer subscriber

 members

Figure 8: Key tree for BL members

BL members maintains the entries in resource access
membership matrix is shown below. Members m5 and
m6 represents the rows while Resources R1 represents the
entries in columns. [

1
1

]
Thus our approach is more suitable for the applications

mentioned in [9] and reduces computation overhead in
terms of sequential exponential.

Table 2 illustrates the analysis when multiple members
join to access the resources.

International Journal of Network Security, Vol.18, Number5, PP.978-986, Sept. 2016 983

Table 2: Analysis of batch join

SE for SKT (N + n)(2 log(N + n)− 2)
SE for CKT if all subscribers overlapped

(N)(2 log(N)− 2)− (cm+ n)(2 log(cm+ n)− 2)
if some subscribers overlapped
(N + nom)(2 log(N)− 2)− (cm+ om)(2 log(cm+ om)− 2)
nom = Number of not overlapping members
om = Number of overlapping members
if not overlapped
(N + n)(2 log(N + n)− 2)− (cm)(2 log(cm)− 2)

4.3 Single Leave

Buchade and Ingle states the algorithm when member
leaves the access of resource [4]. It broadcast the leave
request. Entry is removed from the resource access mem-
bership matrix. Each member build the key tree by con-
sidering overlapping and non overlapping members. The
Table 3 gives the analysis of single leave.

4.4 Batch Leave

Buchade and Ingle states the algorithm when members in
a batch leaves the access of resources [4]. The entries of
the same is made in the resource membership matrix. The
entries of member removed from RAM matrix when mem-
bers not accessing any resources. Overlapping members
builds the key tree graph and non overlapping members
builds the key tree. The analysis of the batch leave is
given in Table 4.

5 Results and Analysis

Analysis is done by taking resources, varying group size
and overlapping members.

From Figure 9, it is observed that when number of re-
sources are 2, Number of overlapping members, cm=30
and group size varying, Number of sequential exponen-
tiation required for separate resource key trees required
more as compared to combined resource key trees.

From Figure 10, it is observed that when number of re-
sources are 2, group size = 200 and overlapping members
varying, Number of sequential exponentiation required
for separate resource key trees required (23.66%) more
as compared to combined resource key trees.

From Figure 11, it is observed that when group
size = 200, overlapped members = 30 and as we varying
the Number of resources, sequential exponential opera-
tions for separate resource key trees are more (11.16%) as
compared to combined resource key trees.

From Figure 12, it is observed that when Number of
resources are 2, overlapping members = 50 and group size
varying, key establishment time required more for sepa-
rate resource key trees as compared to combined resource

Figure 9: Computational cost, Number of resources = 2,
cm = 30

key trees.

From Figure 13, it is observed that when Number of
resources are 2, group size = 100 and overlapping mem-
bers varying key established time required for separate re-
source key trees required more as compared to combined
resource key trees.

From Figure 14, it is observed that when Group size
= 200, overlapped members = 50 and as we varying the
Number of resources, key establishment time for separate
resource key trees required more as compared to combined
resource key trees.

6 Related Work

[14] proposes the scheme of tree key graph design but it
has computation overhead for connection network gen-
eration. [2, 19] proposes share based key management
scheme. KDC Scheme is used. It can cause single point
of failure. Key-user tree is proposed. Storage cost is ana-
lyzed. Scheme is applicable to group communication. [8]
proposes IGK scheme, considers TGDH approach. Au-
thor describes service group containing equal Number of
members. But in real scenario, members can vary in the
group. Sponsor selection is as per TGDH. The author ap-

International Journal of Network Security, Vol.18, Number5, PP.978-986, Sept. 2016 984

Table 3: Analysis of single leave

SE for SKT (N − 1)(2 log(N − 1)− 2)
SE for CKT if overlapping member leaves

(N)(2 log(N)− 2)− (cm− 1)(2 log(cm− 1)− 2)
if non overlapped member leaves
(N − 1)(2 log(N − 1)− 2)− (cm)(2 log(cm)− 2)

Table 4: Analysis of batch leave

SE for SKT (N − n)(2 log(N − n)− 2)
where N = Number of members

SE for CKT if overlapping member leaves
(N)(2 log(N)− 2)− (cm− om)(2 log(cm− om)− 2)
if non overlapped member leaves
(N − nom)(2 log(N − nom)− 2)− (cm)(2 log(cm)− 2)
if non overlapping and overlapping member leaves
(N − nom)(2 log(N − nom)− 2)− (cm− om)(2 log(cm− om)− 2)
where nom = non overlapping members and om = overlapping members

Figure 10: Average computational cost, Number of re-
sources = 2, group size = 200

plies the scheme to specific type of example. [10] proposes
tunable group key agreement protocol. Tree structure is
used to form the group key among the members. [5] pro-
poses share based hierarchical access control scheme is
used. Group manager is considered. It assigns secret
shares. Multi-group key management scheme is proposed.
Computational analysis not done. [9] shows study of ex-
isting access control models done. Detailed analysis not
done. [18] describes that group members are arranged in
the hierarchical fashion. DH key agreement is applied.
Sponsor not broadcasting blinded keys. But overlapping
members not considered.

[16, 17] described group key formation techniques. It
allows group members to consent on a shared group key.
It is used to protect a shared file system present in the

Figure 11: Average computational cost, group size = 200,
overlapping members = 30

cloud. Any member can be sponsor. Concept of key lock
boxes are used and represented in tree manner. Multiple
members overlapping among different resources (e.g. files)
in terms of group key management not considered. [7,
15, 22, 24, 25] uses TGDH but does not addresses issues
of overlapping members. In [7] Huffman-based join-exit-
tree scheme for contributory key management is proposed.
It mainly concerns with key establishment time. But it
does not concern with overlapping members. [3] describes
key management methods and how it can be applied to
computing scenario. Group key management method is
also mentioned but not in detail. [11] Decisional square
Diffie hellman approach is used. [21] proposes group key
agreement protocol. Computational Diffie-Hellman used.
But does not consider overlapping members.

International Journal of Network Security, Vol.18, Number5, PP.978-986, Sept. 2016 985

Figure 12: Key establishment time, Number of resources
= 2, cm = 50

Figure 13: Key establishment time, Number of resources
= 2, group size = 100

7 Conclusions

Group key is used to secure the access of resource in Cloud
Computing. Group key is formed by tenants using re-
source key tree. TGDH is used to form the group key by
building the key tree. In existing scenario, different key
trees are formed even if tenants are common in multiple
groups to access the resources. It causes computational
overhead. We have proposed advance TGDH in which
key trees may be combined if there are overlapping mem-
bers in groups. Examples and analysis of algorithms are
given. Through the analysis it is observed that compu-
tational overhead with respect to sequential exponenti-
ation operations is decreased by 24% if we combine the
key trees than the separate key trees. It is also observed
that key establishment time for combined key trees is less
compared to separate key trees.

Figure 14: Key establishment time, group size = 200,
overlapping members = 50

References

[1] J. Alves-Foss, “An efficient secure authenticated
group key exchange algorithm for large and dynamic
groups,” in In Proceedings of the 23rd National In-
formation Systems Security Conference, pp. 254–266,
2000.

[2] R. Aparna and B. B. Amberker, “Key management
scheme for multiple simultaneous secure group com-
munication,” in IEEE International Conference on
Internet Multimedia Services Architecture and Ap-
plications, pp. 1–6, 2009.

[3] A. Buchade and R. Ingle, “Key management for
cloud data storage: Methods and comparisons,” in
IEEE Fourth International Conference on Advanced
Computing & Communication Technologies, pp. 263–
270, 2014.

[4] A. Buchade and R. Ingle, “Key trees combining al-
gorithm for overlapping resource access members,”
International Journal of Network Security, vol. 18,
no. 5, pp. 855–860, 2016.

[5] S. D. Dexter, R. Belostotskiy and A. M. Eskicioglu,
“Multilayer multicast key management with thresh-
old cryptography,” in Electronic Imaging, pp. 705–
715, International Society for Optics and Photonics,
2004.

[6] W. Diffie and M. E. Hellman, “New directions in
cryptography,” IEEE Transactions on Information
Theory, vol. 22, no. 6, pp. 644–654, 1976.

[7] X. Gu, J. Yang, J. Lan and Z. Cao, “Huffman-based
join-exit-tree scheme for contributory key manage-
ment,” Computers & Security, vol. 28, no. 1, pp. 29–
39, 2009.

[8] X. Gu, Y. Zhao and J. Yang, “Reducing rekey-
ing time using an integrated group key agreement
scheme,” Journal of Communications and Networks,
vol. 14, no. 4, pp. 418–428, 2012.

[9] H. R. Hassen, A. Bouabdallah, H. Bettahar and
Y. Challal, “Key management for content access con-

International Journal of Network Security, Vol.18, Number5, PP.978-986, Sept. 2016 986

trol in a hierarchy,” Computer Networks, vol. 51,
no. 11, pp. 3197–3219, 2007.

[10] R. Ingle and G. Sivakumar, “Tunable group key
agreement,” in 32nd IEEE Conference on Local
Computer Networks, pp. 1017–1024, 2007.

[11] S. Jarecki, J. Kim and G. Tsudik, “Flexible robust
group key agreement,” IEEE Transactions on Paral-
lel and Distributed Systems, vol. 22, no. 5, pp. 879–
886, 2011.

[12] D. H. Je, J. S. Lee, Y. Park and S. W. Seo,
“Computation-and-storage-efficient key tree man-
agement protocol for secure multicast communica-
tions,” Computer Communications, vol. 33, no. 2,
pp. 136–148, 2010.

[13] Y. Kim, A. Perrig and G. Tsudik, “Tree-based group
key agreement,” ACM Transactions on Information
and System Security, vol. 7, no. 1, pp. 60–96, 2004.

[14] H. S. Koo, O. Kwon, S. W. Ra, et al. “A tree key
graph design scheme for hierarchical multi-group ac-
cess control,” IEEE Communications Letters, vol. 13,
no. 11, pp. 874–876, 2009.

[15] K. Kumar, V. Sumathy, et al. “A novel approach
towards cost effective region-based group key agree-
ment protocol for secure group communication,”
arXiv preprint arXiv: 1007.0087, 2010.

[16] I. Lam, S. Szebeni and L. Buttyán, “Invitation-
oriented tgdh: Key management for dynamic groups
in an asynchronous communication model,” in IEEE
41st International Conference on Parallel Processing
Workshops, pp. 269–276, 2012.

[17] I. Lam, S. Szebeni and L. Buttyán, “Tresorium:
cryptographic file system for dynamic groups over
untrusted cloud storage,” in IEEE 41st Interna-
tional Conference on Parallel Processing Workshops,
pp. 296–303, 2012.

[18] S. A. Mortazavi, A. N. Pour and T. Kato, “An ef-
ficient distributed group key management using hi-
erarchical approach with diffie-hellman and symmet-
ric algorithm: Dhsa,” in IEEE International Sym-
posium on Computer Networks and Distributed Sys-
tems, pp. 49–54, 2011.

[19] B. R. Purushothama and B. B. Amberker, “Group
key management scheme for simultaneous multiple
groups with overlapped membership,” in IEEE Third
International Conference on Communication Sys-
tems and Networks, pp. 1–10, 2011.

[20] M. Rajaram and D. Thilagavathy, “An interval based
contributory key agreement,” in IEEE International
Conference on Wireless Communication and Sensor
Computing, pp. 1–6, 2010.

[21] R. S. Ranjani, D. L. Bhaskari and P. S. Avadhani,
“An extended identity based authenticated asym-
metric group key agreement protocol,” International
Journal of Network Security, vol. 17, no. 5, pp. 510–
516, 2015.

[22] Y. Sun and K. J. Liu, “Hierarchical group ac-
cess control for secure multicast communications,”
IEEE/ACM Transactions on Networking, vol. 15,
no. 6, pp. 1514–1526, 2007.

[23] G. Wang, O. Jie, H. H. Chen and M. Guo, “Ef-
ficient group key management for multi-privileged
groups,” Computer Communications, vol. 30, no. 11,
pp. 2497–2509, 2007.

[24] H. Xiong, X. Zhang, W. Zhu and D. Yao, “Cloudseal:
End-to-end content protection in cloud-based stor-
age and delivery services,” in Security and Privacy
in Communication Networks, pp. 491–500, Springer,
2012.

[25] K. Xue and P. Hong, “A dynamic secure group shar-
ing framework in public cloud computing,” IEEE
Transactions on Cloud Computing, vol. 2, no. 4,
pp. 459–470, 2014.

Rajesh Ingle is adjunct professor at Department of
Computer Engineering, Government College of Engineer-
ing Pune. He is professor in Department of Computer
Engineering, Pune Institute of Computer Technology,
Pune. He has received Ph.D. CSE from Department of
Computer Science and Engineering, Indian Institute of
Technology Bombay, Powai. He has received the B.E.
Computer Engineering from Savitribai Phule University
of Pune, and M.E. Computer Engineering from Gov-
ernment College of Engineering, Savitribai Phule Pune
University. He has also received M.S. Software Systems
from BITS, Pilani, India. He is a senior member of the
IEEE, IEEE Communications Society, and IEEE Com-
puter Society. His research area is distributed system
security, grid middleware, cloud security, multimedia
networks and spontaneously networked environments.

Amar Buchade is research scholar at College of
Engineering, Pune. He has received B.E. and M.E.
in Computer Engineering from Walchand College of
Engineering, Sangli in 2002 and 2005 respectively. His
research area is distributed system, cloud computing and
security.

