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Abstract

In this paper, we propose a joint random secret sharing
scheme with public verifiability. It is practical in dis-
tributed environment. Utilizing additive homomorphism,
a random secret will be corporately constructed by some
participants, which avoids the need for a mutually trusted
dealer. In addition, we explore the technique of homomor-
phic verification and that of bilinear pairing to allow each
participant to publicly verify whether the received shares
are consistent. The verification process in our scheme is
unconditionally secure and non-interactive without using
Fiat-Shamir technique or any additional zero knowledge
proof, which is simple and higher efficient compared with
previously known. Lastly, as an applied example of our
work, we present how our techniques can be applied to
handle dynamic node-join in mobile ad hoc network.

Keywords: Additive homomorphism, bilinear pairing,
joint random secret sharing, public verifiability, uncon-
ditionally secure

1 Introduction

1.1 Background and Motivation

Secret sharing, invented independently by Shamir [24] and
Blakley [2] in 1979, is a fundamental cryptographic prim-
itive that has been found useful in numerous applications
such as witness encryption [13], access control [15], secure
group communication [10], secure information communi-
cation [16], and cloud storage [4]. In a (k, n) secret sharing
scheme (SSS), a secret s is distributed to n participants
by a dealer in such a way that any k participants or more
can reconstruct the secret s but participants less than k
learn nothing about s with their shares. However, there

are several common drawbacks in the existing SSS [2, 24].

1) A dishonest dealer may distribute a fake share to a
certain participant, and then the participant would
never obtain the true secret subsequently.

2) A malicious participant may submit a fake share,
which makes it the only one who gets to reconstruct
the true secret after observing the shares of honest
participants, whereas the honest cannot obtain the
true secret.

3) A mutually trusted dealer must be needed for gener-
ating and distributing each share to the correspond-
ing participant secretly.

4) It is required that there exists a private channel be-
tween the dealer and each participant during the
share distribution phase.

To address the cheating problems in 1) and 2), a verifi-
able algorithm can be added to SSS, which is called verifi-
able secret sharing scheme (VSSS) [3] and can be used to
verify whether the shares are consistent. VSSS further are
investigated by many other researchers. Feldman [5] and
Pederson [22] proposed a VSSS based on Shamir’s scheme,
respectively, which can effectively detect cheating of the
participants or the dealer. The security of verifiability
in VSSS can be classified into two types: computational
security and unconditional security. The verification pro-
cess in the former is unconditionally secure, whereas that
in the latter is computationally secure. More specifically,
it is based on the hardness of solving the discrete loga-
rithm.

In many general schemes including those discussed
above, there is a dealer whose function is to distribute the
shares among participants. Nevertheless, it is difficult to
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find a trustworthy person or organization as the dealer in
the real world. In addition, the mutually trusted dealer
has too much rights and is easy to suffer from the adver-
sary’s attacks. To deal with the drawbacks in 3), Inge-
marsson and Simmons [11] introduced a new type of SSS
without the assistance of a mutually trusted dealer, which
is called joint random secret sharing scheme (JRSSS). The
basic idea of JRSSS is that each participant also acts as
a dealer to select a sub-secret and to generate sub-shares
for others. The master secret is the summation of all
sub-secrets. However, there is one potential problem in
their design, that is, each participant needs to keep n sub-
shares secretly and the number of shares kept by each
participant is proportional to the number of participants.
Therefore, the cost of storage and management of shares
are expensive. Pederson [23] proposed a solution to over-
come this problem. According to the property of additive
homomorphism defined in [1], each participant only needs
to keep one master share secretly.

Based on Pederson’s approach [23], Harn and Lin [7]
introduced a new notion of strong k-consistency of shares
and proposed a verifiable JRSSS (VJRSSS), which en-
ables participants to verify their shares whether to sat-
isfy the security requirements of a (k, n) SSS. However,
in their scheme, shareholders need to utilize 100 verifica-
tion polynomials to verify the strong t-consistency of mas-
ter shares, which makes the verification more complicated
and spends too much time. After that, numerous VJRSSS
were proposed to reduce the computational complexity.
In 2012, Liu et al. [19] updated the scheme of Harn and
Lin [7], in which shareholders utilize the sub-polynomials
of master secret to construct a verification polynomial and
use it to verify master shares. In 2013, Mahmoud [20]
constructed a polynomial differential-based VJRSSS, in
which they calculate the t-th derivative of polynomials
and apply Shamir’s SSS to generate and distribute the
sub verification shares and use Pedersen’s SSS to find the
master verification shares. However, this scheme seems
not to guarantee the strong t-consistency, i.e., it cannot
detect the fact of cheating.

Despite the research results, we observe that partici-
pants in the existing VJRSSS can only verify their own
shares rather than others and only detect the fact of cheat-
ing but not identify who are the cheaters. Though Kaya
et al. [12] designed a VJRSSS which can identify who are
cheaters, their scheme does not hold public vitrifiability,
i.e., the shares cannot be verified by anyone. Stadler [25]
introduced a publicly verifiable secret sharing (PVSS)
scheme, in which not only the participants can verify the
validity of their shares, but also any one can do it from the
public information without revealing shares. Note that
unconditional secrecy is not possible in a PVSS scheme
since the encrypted shares are sent by public channels,
namely, no private channels between the dealer and each
participant are assumed. So, the PVSS schemes overcome
the drawbacks in 4). Recently, Villar and Heidarvand [8]
construct a PVSS scheme using pairing, the verification
of which is unconditionally secure and efficient since the

verification process does not depend on any computa-
tional assumption and is non-interactive without using
Fiat-Shamir technique or any additional zero knowledge
proof. Nevertheless, their scheme requires a mutually
trusted dealer to generate and distribute shares, which
is impractical in a distributed scenario.

1.2 Our Contribution

In this paper, to solve the aforementioned problems,
we first provide a joint random secret sharing scheme
(JRSSS) with public verifiability. Our scheme is based on
the technique of Pedersen’s (k, n) SSS [23] and that of Vil-
lar et al.’s scheme [8]. However, the techniques in [8, 23]
cannot be used in building our JRSSS with public verifia-
bility directly. It is because that the share in verification
equality in [8] is just only one, while in our scheme, that
in verification equality is the summation of n sub-shares.
In order to take advantage of these techniques in [8], we
make a modification on their scheme with homomorphic
verification.

We employ additive homomorphism to avoid the use
of a mutually trusted dealer who selects and distributes
the private shares, and explore homomorphic verification
and the bilinear pairing to allow anyone to publicly verify
whether the shares are consistent. To the best of our
knowledge, our scheme first provides a distributed secret
sharing scenario with public verifiability.

The primary advantages of our scheme are summarized
as follows.

• Cheater identification: our scheme can not only de-
tect the fact of cheating but also identity who are the
cheaters.

• Unconditionally secure verifiability: the verifiability
of our scheme does not depend on any computational
assumption.

• Non-interactive verification: our scheme is non-
interactive without using Fiat-Shamir technique or
any additional zero knowledge proof.

• Homomorphic property : our scheme enjoys homo-
morphic property compatible with public verifiabil-
ity.

1.3 Roadmap

In Section 2, we briefly review the related preliminary.
In Section 3, we present our scheme in detail. The ho-
momorphic property of our scheme is discussed in Sec-
tion 4. Scheme analysis is provided in Section 5, while in
Section 6, a performance comparison of our scheme with
previously known is illustrated. An application of our
scheme is showed in Section 7. Finally, in Section 8, we
summarize our works.
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2 Preliminary

2.1 Review of Pedersen’s JRSSS

In this section, we review a joint random secret sharing
scheme (JRSSS) originally proposed by Pedersen [23], in
which each participant also acts as a dealer. Each par-
ticipant Pi selects a random sub-secret si independently
and the master secret s can be constructed cooperatively
with the help of the homomorphism property [1], where
s =

∑n
i=1 si. We now describe this scheme as follows.

Share Generation.

1) Sub-secret generation:
Each participant Pi selects a random secret si
called as sub-secret.

2) Sub-share generation:
For each sub-secret si, the participant Pi selects
a random polynomial fi(x) of degree k− 1 such
that si = fi(0) and uses Shamir’s (k, n) SSS to
generate sub-shares sij such that sij = fi(j).
Later, Pi sends each sij to other participant Pj
secretly, for j = 1, 2, · · · , n.

Secret Reconstruction.

1) Master share generation:
Each participant Pj with n sub-shares sij for
i = 1, 2, · · · , n, computes the master share s′j as

s′j =
∑n
i=1 sij =

∑n
i=1 fi(j).

2) Master secret reconstruction:
With knowledge of any k master shares
s′1, · · · , s′k, the master secret s can be recon-
structed using the Lagrange interpolating for-
mula:

s =

k∑
j=1

s′jλj

=

k∑
j=1

(

n∑
i=1

sijλj)

=

n∑
i=1

si,

where λj =
∏
j 6=i

i
i−j .

2.2 The Homomorphic Property

The homomorphic property of the secret sharing scheme
was introduced by Benaloh [1]. We say that a SSS has
the homomorphic property if the sum of the shares of two
secrets s1 and s2 sent to the participants are shares of
the sum of secrets s1 +s2. Therefore, the participants are
able to recover the sum of secrets only knowing the shares
from s1 and s2.

Let S be the domain of a secret and T be the domain
of the shares corresponding to the secret. FA : T k → S

is an induced function of the (k, n) SSS for each A ⊂
{1, 2, · · · , n} with |A| = k. This function defines the sub-
secret si based on k sub-shares si1, si2, · · · , sik, namely,
si = FA(si1, si2, · · · , sik). Following theorem proves that
each participant only needs to keep one master share se-
cretly and then the master secret can be reconstructed
based on any k master shares or more according to the
property of additive homomorphism.

Theorem 1. With knowledge of any k master shares or
more, participants can reconstruct the master secret using
Shamir’s secret reconstruction algorithm according to the
property of additive homomorphism.

Proof.

s1 = FA(s11, · · · , s1k)

s2 = FA(sn1, · · · , snk)

...

sn = FA(sn1, · · · , snk).

Then, we have

s = s1 + · · ·+ sn

= FA(s11, · · · , s1k) + · · ·+ FA(sn1, · · · , snk)

= FA((s11 + · · ·+ sn1), · · · , (s1k + · · ·+ snk))

= FA(

n∑
i=1

si1, · · · ,
n∑
i=1

sik)

= FA(s′1, · · · , s′k).

Using Lagrange interpolation, the master secret s can be
reconstructed with k master shares s′1, · · · , s′k where s′i =∑n
j=1 sji for i = 1, · · · , k.
In the case of a SSS with public verifiability, we say that

such a scheme has homomorphic property when, beside all
above, the verification of the shares of the new secret s1 +
s2 can be done from the broadcasted public information
about s1 and s2.

2.3 Bilinear Pairing

Assume that G1 and G2 are two groups with the same
prime order q where g is a generator of group G1. A
bilinear pairing e is a function defined by e : G1 ×G1 →
G2. For all a, b ∈ Z∗q , P,Q ∈ G1, we say e is an admissible
bilinear map if the function e satisfies the following three
conditions:

1) Bilinear: e(ga, gb) = e(g, g)ab.

2) Non-degenerate: e(g, g) 6= 1.

3) Computable: e(P,Q) is efficiently computable.

2.4 Related Complexity Assumptions

For security analysis of our proposed scheme, we summa-
rize some important security problems and assumptions
as follows.
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• Computational Diffie-Hellman (CDH) prob-
lem: Given g, ga, gb ∈ G1 for some a, b ∈ Z∗q , the

CDH problem is to compute gab ∈ G1.

• CDH assumption: No probabilistic polynomial
time (PPT) algorithm can solve the CDH problem
with a non-negligible probability.

• Bilinear Diffie-Hellman (BDH) problem:
Given g, ga, gb, gc ∈ G1 for some a, b, c ∈ Z∗q , the

BDH problem is to compute e(g, g)abc ∈ G2.

• BDH assumption: No PPT algorithm can solve
the BDH problem with a non-negligible probability.

3 Proposed Scheme

In this section, we present a joint random secret sharing
scheme with public verifiability. Let si ∈ Z∗q be a ran-
dom sub-secret selected by each participant Pi for i =
1, 2, · · · , n. A random secret s is recovered cooperatively

by any k participants or more where s = e(h
∑

pi∈A
si , h)

and A is the set of participants whose shares all are veri-
fied correctly.

Our scheme consists of three algorithms: share gener-
ation, share verification, and secret reconstruction. The
concrete construction is illustrated as follows.

Share Generation.

1) Setup: Assume that G1 and G2 are two groups
with the same prime order q where q g, h are two
independently generators of group G1. A bilin-
ear pairing e is a function defined by e : G1 ×
G1 → G2. The public parameters Param =
(G1,G2, q, g, h, e) was agreed and published by
all participants. Every participant publishes his
public key yi = hxi and withholds the corre-
sponding secret key xi ∈ Z∗q .

2) Sub-secret generation: Each participant Pi se-
lects a random sub-secret si ∈ Z∗q indepen-
dently.

3) Sub-share generation: Pi chooses a random

polynomial fi(x) =
∑k−1
l=0 ailx

l mod q where
ai0 = fi(0) = si, and uses Shamir’s (k, n) SSS
to generate sub-shares sij for other participant
Pj such that sij = fi(j) for j = 1, 2, · · · , n. Af-
ter that, Pi broadcasts the commitments Cil =
gail for 0 ≤ l ≤ k − 1. Later, he computes
and publishes the encryption Yij = (yj)

sij of
each sub-share sij to other participant Pj for
j = 1, 2, · · · , n.

Finally, each participant Pj receives n encryp-
tions Yij for i = 1, 2, · · · , n.

Share Verification.
Any verifier can check whether each encryption
Yij received by participant Pj are consistent with

sub-share sij by means of checking the equation

e(
∏k−1
l=0 C

jl

il , yj) = e(g, Yij) for i = 1, 2, · · · , n.

Secret Reconstruction.

1) Master share generation: Let A be the set of
participants whose shares all are verified cor-
rectly. Using his own secret key xj , every
participant Pj in the set A decrypts Yij as

Y
xj
−1

ij = hsij = hfi(j). Then, Pj computes

s′j =
∏
pi∈A h

fi(j) = h
∑

pi∈A
fi(j) and saves s′j

as his master share.

2) Master share verification: The master share of
participant Pj ∈ A can be verified by others
with the following verification equation:

e(s′j , yj) =
∏
pi∈A

e(Yij , h).

3) Master secret reconstruction: After the verifica-
tion, then for an arbitrary subset B ⊆ A con-
sisting of k participants whose correct master
shares have pooled, every participant in B can
get master secret s by the following Lagrange
interpolation:

s =

k∏
j=1,pj∈B

= e(s′j , h)λj

=

k∏
j=1,pj∈B

e(h, h)
∑

pi∈A
fi(j)λj

= e(h, h)
∑

pi∈A
(
∑k

j=1,pj∈B
fi(j)λj)

= e(h, h)
∑

pi∈A
fi(0)

= e(h, h)
∑

pi∈A
si ,

where λj =
∏
pj∈B,j 6=i

i
i−j .

4 The Homomorphic Property

Let f1(j) and f2(j) be the sub-shares of sub-secrets s1

and s2 for participant Pj , respectively. Following the
idea from [1], we say that our scheme has the homomor-
phic property since Shamir’s scheme also has it. So we
have f1(j) + f2(j) be the master share of the sum sub-
secret s1 + s2. In relation to the verification process, if
the elements (g, h, yj , Y1j) and (g, h, yj , Y2j) are used in
the verifications of the sub-shares of s1 and s2, respec-
tively, namely, e(hf1(j), yj) = e(Y1j , h) and e(hf2(j), yj) =
e(Y2j , h), then it is easy to prove the homomorphic ver-
ification of master share of the sum sub-secret s1 + s2 if
the equality

e(hf1(j)+f2(j), yj) = e(Y1j , h)e(Y2j , h)

is satisfied.
Note that the property of homomorphic verification is

not achieved if the protocol makes use of a typical zero
knowledge proof in the verification process.
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5 Scheme Analysis

5.1 Correctness

The correctness of this scheme means that:

1) A honest participant can always pass the verification
procedure in both share generation phase and secret
reconstruction phase;

2) At least t honest participants are always able to re-
cover an unique master secret.

It is straightforward to check these requirements for
the above protocol.

5.2 Verification of Scheme

In this section, we show that the participants in the pro-
tocol must behave honestly or will be detected. More pre-
cisely, on the one hand, the participants must be honest
in the share generation phase and, on the other hand, the
participants must be honest in the secret reconstruction
phase.

5.2.1 Verification of the Share Generation

In the share generation phase, if Pi passes the verification
procedure, then any qualified sets of k honest participants
will reconstruct the same sub-secret si.

Theorem 2. If Pi passes the verification process in share
generation phase, then there exists a unique polynomial
fi(x) such that the encrypted share of participant Pj is

Yj = y
fi(j)
j for 1 ≤ j ≤ n, i.e., Pi must be honest.

Proof. Assume that the encrypted sub-share of the partic-
ipant Pj sent by Pi is equal to Yij = y

s̄ij
j . If Pi passes the

equation e(
∏k−1
l=0 C

jl

il , yj) = e(g, Yij), then by the defini-
tion Cil = gail , we follow e(g, yj)

fi(j) = e(g, yj)
s̄ij , which

leads to s̄ij = fi(j) for 1 ≤ j ≤ n. Hence, the uniqueness
of fi(x) will be reconstructed by any qualified sets of k
correct sub-shares and then the same sub-secret si = fi(0)
will be recovered.

5.2.2 Verification of the Secret Reconstruction

In the share reconstruction phase, if some participant
gives a different master share, then it means one of the
sub-shares will be decrypted incorrectly. Otherwise, the
master share should derive from n sub-shares decrypted
correctly.

Theorem 3. If Pj passes the verification process in
the secret reconstruction phase, then for any i, hfi(j) =

Y
xj
−1

ij , where xj is the secret key of Pj, i.e., Pj must be
honest.

Proof. Suppose Pj ∈ A sends a different master share

s̄′j = h
∑

pi∈A
fi(j) where one of sub-shares hfi(j) is de-

crypted by another secret key x̄j , namely, hfi(j) = Y
x̄j

ij .

If any other participant accepts Pj ’s master share, then
the following verification equality holds in the share re-
construction phase:

e(s′j , yj) =
∏
pi∈A

e(Yij , h)

e(h
∑

pi∈A
fi(j), yj) =

∏
pi∈A

e(Yij , h)

∏
pi∈A

e(hfi(j), yj) =
∏
pi∈A

e(Yij , h)

∏
pi∈A

e(Y
x̄ij

ij , hxij ) =
∏
pi∈A

e(Yij , h)

∏
pi∈A

e(Yij , h)x̄ijxij =
∏
pi∈A

e(Yij , h).

Thus, the above equality results in x̄jxj = 1 and then
x̄j = x−1

j , which means that the sub-share hfi(j) is de-

crypted correctly by his secret key x−1
j . It follows that

if any other participant accepts the master share of Pj ,
then the master share should derive from n sub-shares
decrypted correctly.

Note that in our scheme, the validity of shares can
be publicly verified without leaking the privacy of shares
and secret in the share verification phase. Furthermore,
the verification process does not depend on any compu-
tational assumption and is non-interactive without using
Fiat-Shamir technique or any additional zero knowledge
proof.

The results in this section are summarized in the fol-
lowing theorem.

Theorem 4. The verification process of our scheme is
unconditionally secure and non-interactive.

5.3 Security of the Scheme

In this section, we present security analysis of the pro-
posed scheme. We first consider the security of the sub-
share hfi(j). Given public information h,Cil, yj , Yij such

that Xij =
∏k−1
l=0 C

jl

il , the difficulty of computing the sub-
share hfi(j) is equivalent to breaking the CDH assump-
tion.

Lemma 1. Under the CDH assumption, it is infeasible
to compute the sub-shares from public information.

Proof. By contradiction, assume that there exists an al-
gorithm A without knowing fi(j), which can compute
the sub-share hfi(j) with a non-negligible probability ε
for the given public information h,Cil, yj , Yij such that

Xij =
∏k−1
l=0 C

jl

il . Then, there exists an attacker can
solve the CDH problem using the algorithm A. Given
α = ga, β = gb for some a, b ∈ Z∗p, we try to compute the

value gab using the capacity of A in the following.
At random, we pick x, y, z and feed h = αx, yj =

hy, Xil = βz, Yij = hyz to A. Since the input to A is
uniformly distributed, we can obtain hfi(j) = gaxbz with
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success probability ε because of Xil = βz = gbz = gfi(j).
By taking gaxbz/xz, we are thus able to compute gab with
the same success probability ε. It is a contradiction to the
CDH assumption.

In the following, we show that participants less than
k learn nothing about the secret S. In other words, if
no more than k− 1 participants can recover the secret, it
implies breaking the BDH assumption.

Lemma 2. Under the BDH assumption, it is infeasible
that any k − 1 participants can cooperatively obtain the
secret in the proposed scheme.

Proof. Recalling that the BDH problem is to compute
e(g, g)abc for given g, ga, gb, gc ∈ G1 where a, b, c ∈ Z∗q . A
natural variant of the standard BDH problem is to com-
pute e(g, g)aab for given g, ga, gb where a, b ∈ Z∗q , which
is called Computational Bilinear Square (CBS) assump-
tion [18].

By contradiction, assume that there exists an al-
gorithm A without knowing all fi(0) ∈ A, which

can compute the master secret s = e(h
∑

pi∈A
si , h) =

e(h
∑

pi∈A
fi(0), h) with a non-negligible probability ε for

the given public information h,Cil, yj , Yij such that Xij =∏k−1
l=0 C

jl

il . Equivalently, without knowing some fi(0) ∈
A, the algorithm A can compute the e(hfi(0), h). Then,
there exists an attacker can solve the variant of the BDH
problem using the algorithm A.

In the following, we show how to set up the sys-
tem such that we can compute e(g, g)aab. Suppose that
participants P1, · · · , Pk−1 are able to break the scheme.
At random, we pick some x, y, x′j ∈ Z∗q and set h =

(ga)x, Ci0 = (gb)y, yj = hx
′
j for j = 1, 2, · · · , n, which

implicitly defines fi(0) as it required that Ci0 = gfi(0).
The values fi(1), fi(2), · · · , fi(k − 1) are chosen at ran-
dom from Z∗q , which fixes a polynomial fi(x). This allows

us to directly compute Yij = y
fi(j)
j and Xij = gfi(j) for

j = 1, 2, · · · , k − 1. Since fi(0) is only given implicitly,
we cannot compute the values fi(k), fi(k + 1), · · · , fi(n).
However, we can use Xij for j = 1, 2, · · · , k − 1 to obtain
Cil for l = 1, 2, · · · , k − 1 by solving k − 1 simultane-

ous equations Xij =
∏k−1
l=0 C

jl

il . When we have computed

these values Cil, we set Yij = (Ci0
∏k−1
l=1 C

jl

il )x
′
j such that

Yij = y
fi(j)
j , as required for j = k, k + 1, · · · , n.

The complete view for the system is now defined.
It is consistent with the private view of participants
P1, · · · , Pk−1, and comes from the right distribution. Sup-
pose that they are able to compute the master secret

s = e(h
∑

pi∈A , h) =
∏
pi∈A e(h, h)fi(0), then can com-

pute e(h, h)fi(0). Since we put h = gax and Ci0 = gby

which implies fi(0) = by, thus we are able to compute
e(h, h)fi(0) = e(g, g)aaxxby with success probability ε. By
taking e(g, g)aaxxby/xxy, we are thus able to compute
e(g, g)aab with the same success probability ε. It is a
contradiction to the variant of the BDH assumption, i.e.,
CBS assumption.

By the two lemmas above, we can show that our pro-
posed scheme is secure.

Theorem 5. Under the CDH assumption and BDH as-
sumption, the proposed scheme is secure, that is, 1) only
qualified participants can compute the valid sub-shares; 2)
any participants less than k can not recover the master
secret.

As the proof of Lemma 1 and Lemma 2, the correctness
of Theorem 5 is straightforward.

6 Performance Analysis

6.1 Computational Complexity

Our scheme consists of three phases: share generation,
share verification, and secret reconstruction. For the com-
putation cost, we only consider the “time-consuming com-
putation”, which includes modular exponentiation, mod-
ular multiplication and pairing operation in each phase.

• Share generation: This phase outputs Yij , which
is encryption of sub-share for each participant, and
broadcasts the commitment Cil. These requires
n(k + n) modular exponentiation .

• Share verification: In this phase, the most time-
consuming computation is to verify whether sub-
share Yij is consistent, which needs approximately
n2 pairing operations.

• Secret reconstruction: In this phase, the most time-
consuming computation is to verify whether master
share s′j is consistent, which requires k pairing oper-
ations.

The summation of operations required in our protocol is
n(k + n) modular exponentiation and n2 + k pairing op-
erations.

6.2 Comparison

In this section, we give a comparison of our protocol with
those in [7, 12] in terms of computation cost, security of
verification, and related properties.

As we analyzed in Introduction, the verifiability of
JRSSS [7] is unconditionally secure, however, the scheme
can only detect the fact of cheating but not identify who
are cheaters. On the contrary, the JRSSS [12] can identify
who are cheaters whereas the verification of their scheme
is based on the RSA assumption. In addition, the two
schemes both do not achieve public verifiability.

In [12], the most time-consuming computation is to
verify whether the shares are consistent, which requires
n(n2 + n + k) modular exponentiation. In [7], the most
time-consuming computation is to reconstruct 100 veri-
fication polynomials to verify the strong t-consistency of
master shares, which requires n100k3 modular multiplica-
tive.



International Journal of Network Security, Vol.18, No.5, PP.917-925, Sept. 2016 923

We denote modular multiplicative, pairing operation,
and modular exponentiation by Mm, Mp and Me, re-
spectively. The comparison of our protocol with those
in [7, 12] is shown in Table 1.

We observe that our proposed scheme achieves better
properties and stronger security compared with others.
Although our efficiency is somewhat lower, but as a com-
pensate for that we first provide JRSSS with public ver-
ifiability so far. Furthermore, the verification process in
our proposed scheme is unconditionally secure and non-
interactive without using the Fiat-Shamir’s technique or
any additional zero knowledge proof.

7 Application: Dynamic Node-
Join in Mobile Ad Hoc Network

In a dynamic topology network, the new nodes need to
join or depart it frequently. In this section, using the
techniques in our scheme we describe how to add a new
node in this environment such as mobile ad hoc net-
work(MANET). In MANET, the secret often acts as a
system key and there still exists a same requirement for
security, that is, any k nodes or more can recover the sys-
tem key but nodes less then k lean nothing about it with
their shares. After the new node becomes a legitimate
member of the MANET, it will possess a share whose
format is like others and share the same system key.

There exists a specific dealer to redistribute shares for
a new member-join in traditional secret sharing scheme.
However, this approach is infeasible in MANET since it
is a distributed environment.

If a new node wishes to join the MANET, it must ob-
tain at least k or more nodes approving admission from
current MANET and then a new share can be recon-
structed cooperatively by k nodes. To maintain the essen-
tial security in this process, there are two types of meth-
ods. One is to shuffle the secret sharing polynomial by
regenerating a random polynomial [9, 21]. The other is
to shuffle the partial share by adding blind factor [14, 17].
Nevertheless, these methods lead to a higher computation
and communication cost. Since MANET is composed of
limited calculation ability, communication capacity and
bandwidth, more communications and computation will
consume longer time which leads to lower success rate to
the generation of new shares.

Herein we employ a more straightforward mechanism
to conduct it by combing the techniques in our scheme
with Hamiltonian ring instead of the aforemention meth-
ods. The detailed is described in Section 7.2.

7.1 Security Requirement

There are security requirement which must be reached in
our node-join protocol.

1) Any k nodes or more can recover the system key but
nodes less then k learn nothing about it with their
shares.

2) Any information about system key cannot be ex-
posed.

3) None but the legal node can get its new share.

4) The shares of old nodes are secure.

7.2 Concrete Protocol

Assume that B is a collaboration of k nodes in MANET,
a new node vr wants to join the MANET. Cooperating
parties v1, · · · , vk ∈ B are arranged in a unclosed Hamil-
tonian ring for computation the new share s′r.

1) New node vr broadcasts/multicasts an joining re-
quest among B.

2) Each node vj ∈ B calculates a partial share pj for vr
as follows.

pj = s
′λj(r)
j = h

∑
Pi∈A

fi(j)λj(r),

where s′j is vj ’s own master share and λj(r) =∑k
vi∈B,j 6=i,i=1

r−i
j−i . Next, each node vj masks its pri-

vate value using vr’s public key yr = hxr as follows.

e(pj , yr) = e(h
∑

Pi∈A
fi(j)λj(r), hxr )

= e(h, h)xr
∑

Pi∈A
fi(j)λj(r).

3) After v1 computes e(p1, yr), it securely sends it to the
next node v2. Upon receiving e(p1, yr), v2 multiplies
it by e(p2, yr), to the product e(p1, yr)e(p2, yr) before
sending it to the next node v3. At the end, last node
vk receives

∏k
j=1 e(pj , yr) and send it to the new node

vr;

4) Using its private key xr, new node vr decrypts the
last product and obtains master share s′r as follows.

s′r =

k∏
j=1

e(pj , yr)
1/xr

= e(h
∑k

j=1(
∑

Pi∈A
fi(j)λj(r)), h)

= e(h
∑

Pi∈A
(
∑k

j=1 fi(j)λj(r)), h)

= e(h
∑

Pi∈A
(
∑k

j=1 fi(j)λj(r)), h)

= e(h
∑

Pi∈A
fi(r), h).

Note that the format of new share is different from that
of old one slightly. The format is e(h

∑
Pi∈A

fi(r), h) in

the former, while that is h
∑

Pi∈A
fi(j) in the latter. This

does not affect the reconstruction of the system key since

there is still a need to calculate e(h
∑

Pi∈A
fi(j), h) before

reconstruction in the latter.
Figure 1 shows how this computation operates. Sup-

pose that the communication channels between vj ∈ B
are secure. For simplicity, we leave out the proof of secu-
rity in this version.
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Table 1: Comparison of three protocols

[12] [7] Our scheme
Computational cost (n3 + n2 + nk)Me (100k3n)Mm (n2 + k)Mp

Security of verification computational unconditional unconditional
Public verifiability no no yes

Cheater identification yes no yes
Communication channels private private public

Figure 1: Dynamic Node-Join in MANET

8 Conclusions

In this paper, to the best of our knowledge, for the first
time we provide a secret sharing scheme with public verifi-
ability in distributed environment. Utilizing additive ho-
momorphism, each participant acts as a dealer to choose
the secret (sub secrets) and generate sub-shares for other
participants, which avoids the need for a mutually trusted
dealer. By this way, a random master secret will be con-
structed by some sub secrets corporately. In addition, we
explore the technique of homomorphic verification and
that of bilinear pairing to allow anyone to publicly verify
whether the received shares are consistent. In the ver-
ification analysis, we show that the verification process
is unconditional secure and non-interactive without using
the Fiat-Shamir’s technique or any additional zero knowl-
edge proof, which makes it simple and efficient. Finally,
we present how our techniques can be applied to handle
dynamic node-join in MANET.
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