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Abstract

Prediction-error expansion (PEE) is an important re-
versible data hiding technique, which can hide large mes-
sages into digital media with little distortion. In this pa-
per, we propose a nearest neighborhood pixel prediction
algorithm (NNP2) for reversible data hiding algorithms
based on Chinese Remainder Theorem (CRT), in which
a rhombus prediction is applied in NNP2, and predic-
tion errors, the difference between pixels and predictions,
are modified to embed data. Further, CRT is utilized
to adjust the modification size, thus embedding several
bits into one embeddable pixel. Laplacian-like distribu-
tion of prediction errors is exploited to achieve a trade-off
between embedding capacity and visual quality. Experi-
mental results demonstrate that the NNP2 achieves bet-
ter embedding capacity with the same stego image quality
than the conventional methods.

Keywords: Chinese remainder theorem (CRT), lossless
watermarking, reversible data hiding (RDH)

1 Introduction

Reversible data hiding (RDH) techniques embed data into
cover media, and, unlike most data hiding, the hidden
message, as well as the cover data, can be completely re-
covered from the output data [3, 7, 16]. Reversibility of
RDH offers a solution for lossless embedding in some sen-
sitive media, such as medical images, military images, or
artwork images, where even slight modification of these
images is unacceptable due to the risk of a wrong expla-
nation.

Generally, the existing RDH schemes are categorized
into the following domains: compression domain, his-

togram shifting (HS) domain, difference expansion (DE)
domain, and prediction-error expansion (PEE) domain.
For compression domain, Fridrich et al. [6] compressed
and encrypted bit-planes to make space for data embed-
ding. However, large payloads would incur a greater level
of distortion as a result of this method. Later, proposed
generalized LSB (G-LSB) modifies the lowest level of the
host image and achieves capacity-distortion control by
modifying only a small portion of signal samples [14]. Al-
though RDH schemes in compression domain attain high
visual quality, their hiding capacity is relatively limited.

To lower the level of image distortion, the histogram
shifting (HS) technique is employed within reversible data
hiding. For HS domain, proposed histogram-based RDH
scheme that uses pairs of peak points and zero points
to lower image distortion, but lower embedding capac-
ity [14]. In 2009, Tsai et al. [7] used linear prediction
to calculate a residual image and embed data into the
residual values, thus increasing the embedding capacity.
Although this scheme achieves a higher embedding ca-
pacity, it is suitable only for medical images. Later, the
proposed synchronization method solves the problem of
communicating peak points for all histogram modifica-
tion techniques by selecting certain peak points of the
pixel difference histogram [17]. Also, the characteristics
of the human visual system (HVS) are applied to his-
togram modifications to improve the visual quality of the
embedded images, but this limited overall embedding ca-
pacity [11]. Afterwards, Al-Qershi and Khoo proposed
a two-dimensional difference expansion (2D-DE) scheme
and achieved a high hiding capacity of approximately 1
bit per pixel (bpp) [1]. Hereafter, histogram modification
is extended to a pyramidal structure by utilizing global
and local characteristics of host images [9]. This method
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achieves a higher embedding capacity with acceptable vi-
sual quality. Further, Chang and Tai [4] improved his-
togram modification by sorting the prediction. However,
this method of embedding for the White set expanded the
prediction error, thus reducing the number of embeddable
pixels of the Gray set. Note that histogram-based RDH
schemes can achieve good visual quality and adequate em-
bedding capacity, but they need to send pairs of peak and
zero points to the receiver.

For DE domain, Tian [10] proposed a lossless DE al-
gorithm based on the 1-D Haar wavelet transformation
from 2003. The embedding capacity of this DE algorithm
ranges from 0.15 to 1.97 bpp, which is notably higher than
other previous schemes. Kamstra et al. [12] improved
Tians technique by sorting the discrete wavelet transfor-
mation (DWT) coefficients in the low-pass band to make
appropriate difference expansion in the high-pass band.
These aforementioned DE methods achieve high embed-
ding capacity but result in low image quality.

PEE domain is actually a specific extension of DE do-
main. In 2007, Thodi and Rodriguez [18] first proposed a
PEE method and embedded messages by expanding the
difference of pixels and predictions. Due to the Laplacian-
like distribution of the prediction-error histogram,

PEE outperforms DE and HS. Afterwards, Hu et al. [8]
proposed efficient compression of location map, and thus
achieved an overall higher capacity. Sachnev et al. [15]
embedded data in prediction errors when sorting by lo-
cal variance. This method combines predicting and sort-
ing and incurs less distortion compared with previous
schemes. Li et al. [13] adaptively embedded one bit
in rough pixels and two bits in smooth pixels to in-
crease the hiding capacity. This method avoids large
prediction-error expansion, thus achieving better image
quality than conventional PEE. Coltuc [5] embedded data
into the current pixel as well as its prediction context.
This scheme obtains higher visual quality than classical
PEE based on median-edge-detector (MED) or gradient-
adjusted-predictor (GAP), since modifying four pixels
minimizes the distortion introduced by data embedding.
Bo et al. [2] generated a sequence consisting of prediction-
error pairs and embedded data by expanding or shifting
the 2D prediction-error histogram based on the sequence.
Embedding in the correlations among prediction-errors
rather than individual prediction-errors reduces the dis-
tortion.

The prior PEE schemes usually embed one bit, or
two bits at most, into an expandable pixel. In this pa-
per, a novel PEE algorithm based on Chinese Remain-
der Theorem is proposed. Compared with the previous
PEE schemes, we first propose to embed six bits at most
into one expandable pixel. In addition, we can adaptively
achieve a trade-off of embedding capacity and visual qual-
ity. Experimental results show that the superiority of
NNP2 over other existing methods.

The rest of this paper is organized as follows. Section 1
introduces the Chinese Remainder Theorem briefly. Sec-
tion 2 presents the proposed NNP2 algorithm. Section 4

presents the experimental results and Section 5 concludes
the paper.

2 Proposed Nearest Neighbor-
hood Pixel Prediction (NNP2)
Algorithm

In this section we briefly explain the Chinese Remainder
Theorem. Following that, our proposed algorithm is ex-
plained in detail.

2.1 Brief Introduction to Chinese Re-
mainder Theorem

Chinese Remainder Theorem (CRT) provides a solu-
tion for a congruence system. A defined modulus
set, {n1, n2, ..., nm}, where m is a positive integer, and
GCD(ni, nj) is equal to 1 for i 6= j, i, j ∈ [0,m]. For a
positive integer X, there exists equations xi = X mod ni,
where i = 1, 2, ...,m. The m-tuple x1, x2, ..., xm is unique
for any X ∈ [0,

∏
ni]. A simple demonstration of CRT is

briefly introduced here.

N = n1 ∗ n2 ∗ ... ∗ nm =

m∏
i=1

ni (1)

Ni = N/ni (2)

ai = N−1i mod ni (3)

X = (

m∑
i=1

xi ∗Ni ∗ ai) mod N. (4)

Equations (1)-(4) above demonstrate the unique so-
lution for the defined congruence system. X in Equa-
tion (4) tallies the m-tuple {x1, x2, ..., xm}. The following
example provides the detail implementation of Chinese
Reminder Theorem In order to find an integer X for the
congruence system, {n1, n2, n3} = {3, 5, 7} with a 3-tuple
x1, x2, x3 = 2, 3, 2. The computation process by using
CRT is as follows.

N = n1 ∗ n2 ∗ n3 = 3 ∗ 5 ∗ 7 = 105.

N1 = N/n1 = 105/3 = 35,

N2 = N/n2 = 105/5 = 21,

N3 = N/n3 = 105/7 = 15.

a1 = 2, a2 = 1, a3 = 1.

X = (

m∑
i=1

xi ∗Ni ∗ ai) mod N

= (2 ∗ 35 ∗ 2 + 3 ∗ 21 ∗ 1 + 2 ∗ 15 ∗ 1) mod 105

= 23.

Verification:

23 mod 3 = 2,

23 mod 5 = 3,

23 mod 7 = 2.
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Figure 1: Rhombus prediction

The above example illustrated the Chinese remainder the-
orem.

2.2 Proposed Nearest Neighborhood
Pixel Prediction (NNP2) Algorithm

In this sub section, we explain the proposed NNP2 algo-
rithm, which uses CRT to embed data into digital images.
NNP2 can embed six bits, at most, into one expandable
pixel by adjusting the modification size, whereas classical
PEE schemes can embed a maximum of two bits in an
expandable pixel. Laplacian-like distribution of predic-
tion errors is employed to achieve a trade-off of embed-
ding capacity and visual quality. Meanwhile, the rhombus
prediction is exploited in order to find more expandable
pixels. Simultaneously, we adopt the histogram shifting
method to prevent overflow and underflow. In addition,
we use a two-phase hiding strategy to transmit the side
information to the receiver. Following sections outline the
details of NNP2.

2.2.1 Rhombus Prediction

In NNP2, we exploit the rhombus prediction to express
the high correlation of neighboring pixels. To calculate
the prediction value of pixel pi,j in Figure 1, the rhom-
bus prediction considers four neighboring pixels, pi,j−1,
pi−1,j , pi,j+1, and pi+1,j . In Figure 1, all pixels of the
host image are partitioned into two categories: ”White”
pixels and ”Black” pixels. A ”White” pixel is predicted
by four neighboring ”Black” pixels. Note that ”White”
and ”Black” pixels are independent and the modification
of ”White” pixels do not influence any ”Black” pixels,
and vice versa. The central pixel, pi,j in Figure 1, can be
predicted by its left, upper, right and lower pixels, pi,j−1,
pi−1,j , pi,j+1, and pi+1,j . The prediction value p′i,j is cal-
culated by Equation (5).

p′i,j = bpi,j−1 + pi−1,j + pi,j+1 + pi+1,j

4
c (5)

2.2.2 Prediction Error Expansion

The data-embedding algorithm for ”White” pixels is de-
scribed as follows. We assume that two primes are p and
q, N = log2 (q), a threshold T = p ∗ (q− 1) and the secret
file is SF .

The following steps demonstrate the prediction error
expansion:

1) Calculate the prediction value p′i,j of ”White” pixel
pi,j using Equation (6).

2) Calculate the absolute value D of the difference be-
tween and using the following equation.

D = |pi,j − p′i,j | (6)

3) If 0 ≤ D < p , read N bits from SF and its decimal
value is S, calculate an integer C by using CRT which
satisfies that D = C mod p and S = C mod q, and
modify pi,j according to those N bits.

wi,j =

{
p′i,j + C ,pi,j ≥ p′i,j
p′i,j − C ,pi,j < p′i,j

(7)

where wi,j is the watermarked pixel value of pi,j .

4) If D ≥ p, shift T unit

wi,j =

{
pi,j + T , pi,j ≥ p′i,j
pi,j − T , pi,j < p′i,j

(8)

where wi,j is the watermarked pixel value of pi,j .

The embedding algorithm calculates the prediction
value of ”White” pixels using ”Black” pixels and em-
beds data into a ”White” pixel. Therefore, after em-
bedding in ”White” pixels, ”Black” pixels are unchanged
and ”White” pixels are modified as the watermarked pix-
els. ”Black” pixels are considered to embed data by using
”White” pixels to calculate their prediction value in the
same way. Therefore, the usage of both ”White” and
”Black” pixels almost double the hiding capacity.

After receiving the watermarked image, the receiver
can extract the hidden message by using the same scan-
ning method as used during the embedding algorithm.
The receiver calculates the absolute value of the differ-
ence C ′ between the watermarked pixel, wi,j , and the
prediction value, p′i,j . Then, the hidden message can be
extracted by

S = C ′ mod (q), 0 ≤ C ′ < p× q (9)

where S is the decimal value of original N secret bits.
Then the original pixel value of wi,j can be recovered by
implementing the following equations,

D =

{
C ′ mod (p) , 0 ≤ C′ < p× q
C ′ − T , p× q ≤ C′

(10)

pi,j =

{
p′i,j + D ,wi,j ≥ p′i,j
p′i,j −D ,wi,j < p′i,j

(11)

Consequently, the receiver can acquire the exact copy of
the original image together with the hidden message.
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Figure 2: Histograms: (a) histogram of host image, (b)
histogram after shifting, and (c) histogram after embed-
ding.

2.2.3 Prevention of Overflow and Underflow

The overflow and underflow problem may occur when wa-
termarked pixels are out of the range of [0, 255]. To pre-
vent these potential issues, we employ a histogram shift-
ing scheme in [8] to shift the histogram from both left and
right sides as shown in Figure 2. Assume that two primes
used in NNP2 are p and q, the maximum modification
size is L = p× q− p. Therefore, we shift the histogram of
host image L units from both left and right sides.

After shifting all potential overflow and underflow pix-
els, we should construct a one-bit location map to record
the histogram shifting information. If a pixel’s grayscale
value is in the range of [L, 255-L], then we assign a ”0”
as its location information; otherwise, a ”1” is assigned
to it. We compress the location map by using the run
length-coding algorithm, which can achieve great com-
pression efficiency for overflow and underflow pixels when

their numbers are few and consecutive. In NNP2, the
maximum modification size is L. Therefore, shifting the
histogram of the host image from both the left and right
side by L units can prevent overflow and underflow. Note
that the extra information including p, q, and the location
map should be transmitted to the receiver to extract the
hidden message and recover the host image correctly. For
this purpose, we adopt a two-stage embedding strategy
to embed extra information together with secret data.

2.2.4 Upper Bound of p and q

NNP2 uses two primes, p and q, to adjust the range of
embeddable pixels and the number of secret bits one em-
beddable pixel can embed. The larger the p and q values
are, the higher the embedding capacity is. However, to
prevent overflow and underflow, the histogram of host im-
age is shifted L = p × q − p units. Pixels with values in
[0, L-1] are shifted to [L, 2L-1], and pixels with values in
[256-L, 255] are shifted to [256-2L, 255-L]. To distinguish
overflow pixels from underflow pixels, p and q must satisfy
that 2L− 1 < 256− 2L, namely p× q − p < 257/4.

Based on the above condition, while p and q are both
integers, we can derive that p × q − p < 64. We set q as
a multiple of 2, such as 2, 4, 8, 16, 32 or 64, which means
one pixel can embed 6 bits at most.

2.2.5 Two-stage Embedding

Extra information, namely two primes, p and q, and the
location map, are sent to the receiver to extract hidden
message and recover the host image. Note that L = p ×
q − p, and there is no need to transmit. Assume that
|LM | is the size of the location map. The LSB values of
the first 2×6+ |LM | pixels of the watermarked image are
replaced with p, q(2×6 bits) and the location map (|LM |
bits). The original 2 × 6 + |LM | LSB values are added
to the payload. Therefore, the pure capacity, C, which
excludes all extra information, is

C = |Ns| − |EI| (12)

where |Ns| is the number of secret bits and |EI| is the
size of extra information.

3 Experimental Results and Dis-
cussion

We have conducted several experiments to evaluate the
performance of NNP2 and compare it with some existing
RDH algorithms. Figure 3 shows six typical grayscale
images of size 512× 512 that were used as test images.

Table 1 shows the pure payload, C, and the PSNR of
different test images when p and q are set to be 1 and 2.
We can see that the number of expandable pixels, Ne, is
highly variable between different images. Smoother im-
ages, such as F-16, result in a larger Ne than that of more
complex images, like Baboon. We also have observed that
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Table 1: Embedding capacity and PSNR for six test images with p = 1 and q = 2

Host image Ne Pure capacity Extra information PSNR Bit rate
(512× 512) C (bits) |EI| (bits) (dB) (bpp)
Lena 34096 34037 32 48.42 0.1298
Baboon 9625 9493 132 48.22 0.0362
Boat 33432 33400 32 48.42 0.1274
F-16 53199 53167 32 48.60 0.2028
Peppers 20250 20218 32 48.30 0.0771
GoldHill 24245 24213 32 48.34 0.0924

Figure 3: Six test images

all test images except for Baboon have no pixels out of
the range [1, 254]. For Lena, the size of location map is
|LM | = 20 bits when we use the run-length coding al-
gorithm to compress the location map. Thus, the size of
extra information is |EI| = (2× 6) + |LM | = 32 bits.

Table 2 shows several experiments to evaluate the pure
embedding capacity versus the PSNR change with differ-
ent p and same q. An expandable pixel, which can only
embed one bit for q, is constantly equal to 2, while p is
equal to 2i + 1, i[0, 6], which is the threshold of expand-
able pixels whose absolute value of prediction errors are
less than p. We can see that the average PSNR values
decrease with increasing p values. However, the growth
of the pure embedding capacity is smaller when the size
of extra information is growing increasingly larger. In Ta-
ble 3, we assign p a constant value of 1, and q changes
from 2 to 64. This means that only a pixel with a predic-
tion error of 0 is expandable, and one pixel embeds 1 to 6
bits. We observed that the pure embedding capacity will
increase and then decrease while q changes from 2 to 64.
The embedding capacity increase first for one pixel can
embed several bits, but when q is much bigger, the size
of extra information increases faster, and the embedding
capacity decreases. By adjusting the values of p and q,
NNP2 can adaptively achieve a high embedding capacity

Figure 4: Performance of test images with optimal p and
q

with little loss of visual quality.

Figure 4 presents the performance of NNP2 for test im-
ages with optimal p and q values. We can see from the
figure that smooth images, like F-16, achieve higher em-
bedding capacity with the same PSNR values, while com-
plex images, like Baboon, will experience severe distortion
when the embedding capacity is higher. Therefore, when
implementing NNP2 , images with high correlation per-
form better than those with low correlation.

We also compare the embedding capacity (bpp) versus
image quality (dB) of NNP2 with that of existing RDH
schemes for Lena, as shown in Figure 5. NNP2 can em-
bed six bits at most, rather than one or two bits, into the
prediction error and shift all the non-embeddable pixels.
It should be noted that [12] and [8] are histogram-based
RDH schemes, which embed data into peak points and
just shift the pixels between peak points and zero points
rather than all non-embeddable pixels, thus achieving a
high embedding capacity while keeping a low distortion
rate. Based on the above reasons, the PSNR of NNP2

is lower than that of the compared methods [12] and [8]
when embedding the same number of bits into one ex-
pandable pixel. However, proposed algorithm can achieve
a trade-off between the embeddable pixels and the num-
ber of secret bits that one embeddable pixel can embed.
It should be noted that the proposed NNP2 achieved a
higher embedding capacity than those of existing schemes
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Table 2: Pure embedding capacity for test images with q = 2

Host image p = 1 p = 3 p = 5 p = 7 p = 9 p = 11 p = 13
(512× 512)
Lena 0.1298 0.5288 0.7424 0.8468 0.8998 0.9316 0.9509
Baboon 0.0362 0.1876 0.3117 0.4140 0.4968 0.5627 0.6151
Boat 0.1247 0.5156 0.7165 0.8152 0.8724 0.9089 0.9332
F-16 0.2028 0.6505 0.8039 0.8729 0.9111 0.9355 0.9522
Peppers 0.0771 0.3405 0.5329 0.6474 0.7045 0.7409 0.7671
GoldHill 0.0924 0.4047 0.6129 0.7461 0.8270 0.8799 0.9143
Average PSNR 48.38 39.69 35.81 33.24 31.30 29.72 28.38

Table 3: Pure embedding capacity for test images with p = 1

Host image q = 2 q = 4 q = 8 q = 16 p = 32 p = 64
(512× 512)
Lena 0.1298 0.2374 0.3106 0.3680 0.4025 0.0939
Baboon 0.0362 0.0707 0.0914 0.1069 0.0541 -0.8490
Boat 0.1247 0.2298 0.3081 0.3663 0.2778 0.2048
F-16 0.2028 0.3561 0.4536 0.5394 0.5939 0.1090
Peppers 0.0771 0.1347 0.1360 0.0945 0.1098 -0.1639
GoldHill 0.0924 0.1726 0.2338 0.2751 0.1826 -0.1671
Average PSNR 48.38 38.87 31.49 24.84 18.52 12.34

Figure 5: Performance comparison for Lena of NNP2 and
existing RDH schemes

with low distortion. As a result, NNP2 can obtain better
performance in RDH schemes by adjusting the embedding
capacity and image quality.

4 Conclusions

In this paper, we proposed NNP2 to embed data into
prediction errors by using CRT to control the modifica-
tion size. Laplacian-like distribution of prediction errors,
which is centered with 0, increases the embedding abil-
ity of NNP2. Also, we control the number of embeddable
pixels by adjusting the threshold of prediction errors and

embed one to six bits at most into one embeddable pixel
that leads to the best performance. We also adopt a two-
stage strategy to embed the extra information, rather
than sending it to the receiver in an open way. In ad-
dition, we use a histogram shifting technique to prevent
overflow and underflow. As a result, NNP2 outperformed
the compared algorithms.
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