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Abstract

Cellular Automata (CA) is one of the important tools to
design cryptographic algorithms, and in the past years
many researchers have explored several cryptographic al-
gorithms based on CA. However, most of reported CA-
based cryptographic algorithms focus on the symmetric
key encryption schemes and few CA-based asymmetric
encryption scheme has been proposed, let alone the CA-
based digital signature scheme. In this paper, to fill this
gap, we present a new digital signature scheme based
on the layered CA technique. Specifically, in the pro-
posed layered CA-based digital signature scheme, we com-
bine the transition rules of some one-dimensional (1D)
reversible CAs to generate the rules of a two-dimensional
(2D) CA, where the reverse of the 1D transition rules are
kept as the private key and the 2D transition rules are
set as the corresponding public key. Based on the hard-
ness assumption of the layered CA reversibility (LCAR)
problem, we formally prove the proposed scheme is se-
mantically secure against chosen-message attack in the
random oracle model.

Keywords: Digital signature, layered cellular automata,
reversible cellular automata, T-shaped neighborhood

1 Introduction

Digital signature is an indispensable technique in modern
information security system [20]. In particular, a digital
signature is a mathematical tool for demonstrating the
authenticity of a digital message. A valid signature can
give a recipient reason to believe that the message was
created by a known signer, such that the signer cannot
deny having signed the message (i.e., authentication) and
the message not changed in transit (i.e., integrity) [18, 21].
Therefore, digital signatures have been widely used for

software distribution, financial transactions, and in other
cases where it is important to detect forgery or tampering
today.

Applying cellular automata (CA) tool to design cryp-
tographic algorithms is a promising technique in modern
cryptography. CA can be regarded as a discrete model
that consists of a number of individual cells, each cell ex-
ists several states and will change its state based on the
states of its neighboring cells by following a prescribed
rule. In general, the overall structure can be viewed as
a parallel processing device. However, the simple struc-
ture will produce complex patterns when iterated several
times. Since most CA can be implanted on very fast hard-
ware and software, as well as its inherent features like
parallelism, locality and homogeneity, CA has become an
important tool to design cryptographic algorithms.

While most of the investigations of CA-based cryp-
tographic algorithms have been focused on traditional
symmetric cryptosystems, few CA-based public key cryp-
tosystem has been found in the literature [5, 11, 15, 24],
and let alone the CA-based digital signature scheme.
Therefore, there is a high desire to design a CA-based
digital signature in the complement of existing RSA and
ElGamal signatures [8, 19, 25].

In this paper, to fill this gap, we would like to present
a new digital signature scheme based on the layered CA
technique [2, 12, 23, 28]. Specifically, in the proposed
CA-based digital signature scheme, we will combine the
transition rules of some one-dimensional (1D) reversible
CAs to generate the rules of a two-dimensional (2D) CA,
where the reverse of the 1D transition rules are kept as
the private key and the 2D transition rules are set as the
corresponding public key. Based on the hardness assump-
tion of the layered CA reversibility (LCAR) problem, we
formally prove the proposed scheme is semantically se-
cure against chosen-message attack in the random oracle



International Journal of Network Security, Vol.18, No.3, PP.544-552, May 2016 545

model [3].
The remainder of this paper is organized as follows. In

Section 2, some preliminaries are introduced, including
some notations, the foundations of digital signature, and
the concept of the cellular automata and its correspond-
ing security assumption. In Section 3, we present our lay-
ered cellular automata based signature scheme, followed
by security analysis in Section 4, and a simple example in
Section 5. In Section 6, we analyze the strengths of the
proposed signature scheme. Finally, we draw our conclu-
sions in Section 7.

2 Preliminaries

2.1 Notations

Let N = {1, 2, 3 . . .} be the set of positive integers. If x
is a string , then |x| denotes its length, while if S is a set
then |S| denotes its cardinality. If k ∈ N then 1k denotes

the string k ones. If S is a set then s
R
←− S denotes the

operation of picking a random element s of S uniformly.

2.2 Foundations of Digital Signature

A digital signature (DS) scheme consists of three algo-
rithms: Key Generation, Signature Generation, and Sig-
nature Verification.

• Key Generation (KG): On input of an unary string 1k

with security parameter k, KG outputs a public and
private key pair (pk, sk). Here, KG is a randomized
algorithm in digital signature.

• Signature Generation (SG): On input of a message m,
the public and private key pair (pk, sk), SG outputs
a signature σ of m with respective to the public key
pk. Note that, SG here is referred as a deterministic
algorithm [25]; when SG is randomized one, some
random input should also be included [8].

• Signature Verification (SV): On input of a purported
signature σ of m with respective to the public key pk,
SV outputs “1” if (m,σ) is valid, and “0” otherwise.
Note that, SV must be a deterministic algorithm in
digital signature.

The above algorithms must satisfy the standard con-
sistency constraint of the digital signature. That is, if a
signature σ ← SG(m, pk, sk) is generated, then we must
have “1”← SV (σ,m, pk).

Security Model of Digital Signature. For digital
signatures, the well-known strong security notion is
existential forgery against adaptive chosen message
attacks (EF-CMA) presented by Goldwasser [9] et al.

In the random oracle model [6], we consider the most
powerful adversary A as follows: i) A is allowed to access
to the signing oracle OS and the random oracle OH ; ii)

A returns a new valid signature σ⋆ on message m⋆, with
a natural restriction that the signature σ⋆ has not been
obtained from the signing oracle OS before.

Definition 1 (Unforgeability). Let DS be a digital sig-
nature, and A be an EF-CMA adversary against DS. We
consider the following random experiments, where k is the
security parameter:

Experiment ExpEF-CMA

DS,A (k)

(pk, sk)← KG(k),

(σ⋆,m⋆)← AOH ,OS (pk)

return SV (pk, σ⋆,m⋆)

We define the success probability of A via

SuccEF-CMA

DS,A (k) = Pr[ExpEF-CMA

DS,A (k) = 1]

Let τ ∈ N, ǫ ∈ [0, 1], we say that DS is (τ, ǫ)-secure if
no EF-CMA adversary A running in time τ has a success
SuccEF-CMA

DS,A (k) ≥ ǫ.

2.3 Concepts of Cellular Automata

2.3.1 Basis of Cellular Automata

A Cellular Automata (CA) is a discrete model in which
space and time are discrete, and consists of grids of cells
in which each cell can exist in a finite number of states.
All cells change their states synchronously, according to
a predefined transition rule that specifies the new state
of each cell based on the old states of the cell and its
neighboring cells. As CA exhibits some inherent features
like parallelism, locality, simplicity, unpredictability and
homogeneity, it is naturally efficient in its hardware and
software implementations [28].

Formally, a CA is often defined by a quadruple
{D,S,N, f} with the dimension D , the state set S , the
neighboring states set N , and the transition rule f .

• Dimension D: define the dimension of CA, which can
be one-dimensional (1D) or two-dimensional (2D),
and a d-dimensional (d ∈ N) CA consists of a d-
dimensional array of identical cells [15]. Most of
existing studies of CA are focused on 1D and 2D
CA [1, 4, 13, 14, 26, 27] as shown in Figure 1.

• State Set S: define a set of possible states of all
cells in a CA, which is often defined as the sets,
such as S1 = {0, 1}, S2 = {0, 1, 2, . . .}, and S3 =
{white, black}.

• Neighboring States N : define a set of neighbor-
ing states based on the existing neighborhood struc-
tures. Currently, the most popular structures are
3-neighborhood, Von Neumann and Moore neighbor-
hood [28], as shown in Figure 1.

• Transition Rule f : define a transition map f : S → S
as the transition rule from one state to another.
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a. 1D CA with 3-Neighborhood 

b. 2D CA with Von 
Neumann Neighborhood

c. 2D CA with Moore 
Neighborhood

Figure 1: Typical neighborhood structure of CA with ra-
dius r = 1

Let st
i ∈ S denote as the state of the i-th cell at t time

step and st+1
i ∈ S be the state of the i cell at t + 1 time

step. Then, the states of all cells in a CA at t time step
can be denoted as St = (st

0, s
t
1, · · · , s

t
i, · · · ), also called a

configuration. As the state of each cell at the next time
step st+1

i is determined by the transition rule along with
its current state st

i and states of its neighboring cells, we
can represent st+1

i by the following formula:

st+1
i = f(st

i−r, · · · , s
t
i−1, s

t
i, s

t
i+1, · · · , s

t
i+r)

where r denotes its neighborhood radius.

Boundary Conditions. Though a CA is an infinite sys-
tem, it should be finite-dimensional in practical ap-
plications. As a result, it is crucial to define the
boundary conditions of a CA. Currently, the bound-
ary conditions, including periodic boundary condi-
tion, mapped boundary condition, and fixed bound-
ary [30], are mostly considered in CA systems, as
shown in Figure 2. Since the periodic boundary
comes closest to simulate an infinite lattice, it has
been widely suggested in many CA systems.

A …… BB A

A …… BA B

A …… B0/1 0/1

a. 1D CA with Periodic Boundary 

b. 1D CA with Mapped Boundary

c. 1D CA with Fixed Boundary

Figure 2: 1D CA with different boundaries, where “A”
is the leftmost cell state, “B” is the rightmost cell state,
and “0/1” is the fixed cell state.

Reversibility. If the transition rule of a CA is reversible,
we say the CA is Reversible CA (RCA)[16]. Other-
wise, the CA is called irreversible. In specific, a CA is

reversible, if and only if each configuration has only
one succeeding state and one preceding state. Due to
the reversibility, many RCA systems have been de-
signed for symmetric cryptosystems [5, 7, 17, 26, 29],
where the same transition rule serves as the secret
key applying into both encryption and decryption
operations. However, irreversible CA, due to irre-
versibility, is not as popular as the RCA in designing
CA-based cryptosystems.

2.3.2 Layered Cellular Automata

Layered CA (LCA) is a special CA, which can be regarded
as a highly parallel system consisting of layers and each
layer is formed by rows of 1D CA, as shown in Figure 3.
The stacked structure of LCA enables the cells in LCA to
hold more complex and various neighborhoods, which has
brought more theoretical interest [2, 12, 23, 28]. Jaberi
et al. [12] use two-layer CA to imitate Pseudo-Neumann
neighborhood structure and generate trackable random
numbers. Kishore et al. [28] propose a block encryption
scheme by using a 8-layer CA, which observably possesses
better confusion and diffusion properties compared with
the well-known AES [22].

1 1 1 2 3 1 0 3

2 3 2 0 0 3 1 1

1 2 1 1 2 0 3 3

3 0 3 1 3 2 1 0

2 0 2 3 1 2 1 3

1 3 1 2 0 1 0 2

1 2 1 3 2 1 0 3

3 0 3 1 3 2 1 0

2 1 1 2 3 1 0 3

1 3 2 0 0 3 1 1

0 2 1 1 2 0 3 3

3 0 3 1 3 2 1 0

2 0 2 3 1 2 1 3

0 3 1 2 0 1 0 2

1 2 1 3 2 1 0 3

0 1 3 2 0 3 2 2

1 1 1 2 3 1 0 3

2 3 2 0 0 3 1 1

1 2 1 1 2 0 3 3

3 0 3 1 3 2 1 0

2 0 2 3 1 2 1 3

1 3 1 2 0 1 0 2

1 2 1 3 2 1 0 3

3 0 3 1 3 2 1 0

2 1 1 2 3 1 0 3

1 3 2 0 0 3 1 1

0 2 1 1 2 0 3 3

3 0 3 1 3 2 1 0

2 0 2 3 1 2 1 3

0 3 1 2 0 1 0 2

1 2 1 3 2 1 0 3

0 1 3 2 0 3 2 2

a.  A 2-layer CA b.  A 2-layer CA with T-shaped 
Neighborhood

Figure 3: 2-layer CA with 1-radius T-shaped neighbor-
hood.

A 2-layer CA with 1-radius T-shaped neighborhood is
shown in Figure 3, where the state of each cell is changed
based on not only itself and its left and right neighbors,
but also the cell at the same position in the other layer.
This neighborhood structure unites two layers of the CA
as a unified system, which can effectively improve the dif-
fusion property. In this work, we will present a new dig-
ital signature scheme based on the LCA with T-shaped
neighborhood structure.

Security Assumption. In order to construct a new dig-
ital signature scheme from the layered cellular au-
tomata, we should define the computational hard
problem on which we can rely. Kari [15] has proven
that the reversibility of 2D CA is undecidable, i.e.,
there does not exist any efficient algorithm that can
decide whether a given two-dimensional transition
rule is reversible or not [16]. Thus, for a given 2D
transition rule, we can’t decide its reversibility, and
then we also can’t compute its reverse. The 2D tran-
sition rule of a 2-layer CA can be constructed from
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several 1D reversible transition rules [5]. Given these
1D reversible transition rules, we can generate the
2D transition rule and the 2-layer CA is reversible.
However, only given the 2D transition rule, we can-
not gain these 1D reversible transition rules, and the
2-layer CA is irreversible. We call it as LCA Re-
versibility (LCAR) Problem.

Definition 2 (LCAR Problem). Let fi : S1 → S1,
i ∈ {1, 2, 3, . . . , n}, be n reversible transition rules of
1D RCAs, where S1 is state set of these RCAs. De-
fine fca : S2 → S2 be the transition rule of a 2-layer
CA, where S2 is state set of the 2-layer CA, and fca

is constructed by the compound operations of transition
rules fi, i ∈ {1, 2, 3, . . . , n}, i.e., fca = f1 ◦ f2 ◦ · · · ◦ fn,
and then we set S2 = S1. Given any configuration
St

2 = (st
0, s

t
1, · · · , s

t
i, · · · ) of time t of the 2-layer CA,

where st
i ∈ S2, we evolve St

2 by the transition rule fca,
and obtain St+1

2 = fca(St
2). The LCAR problem is that

for given (St+1
2 , fca), computing St

2 is impossible.

Base on the above problem, we give the security as-
sumption of LCA as follows.

Definition 3 (LCAR Assumption). Given any con-
figuration St

2 = (st
0, s

t
1, · · · , s

t
i, · · · ) of a 2-Layer CA, we

evolve St
2 by the transition rule fca and obtain St+1

2 =
fca(St

2). Let A be a probabilistic polynomial-time (PPT)
adversary, which takes (St+1

2 , fca) as input and outputs
St

2. We consider the following random experiment on
LCAR problem of LCA:

Experiment ExpLCAR

A

St+1
2 ← fca(St

2),

S⋆
2 ← A(St+1

2 , fca)

if S⋆
2 = St

2, return 1; and return 0 otherwise

We define the success probability of A via

SuccLCAR

A = Pr[ExpLCAR

A = 1]

Let τ ∈ N, ǫ ∈ [0, 1], we say that LCAR is (τ, ǫ)-secure
if no PPT adversary A running in time τ has a success
SuccLCAR

A ≥ ǫ.

3 Proposed LCA-based Digital

Signature Scheme

In this section, we propose our digital signature scheme
based on CA with T-shaped neighborhood, which mainly
consists of three algorithms, namely: Key Generation
(KG), Signature Generation (SG), and Signature Verifi-
cation(SV).

• KG: Given a security parameter k ∈ N. First, we de-
fine some 1D RCAs with periodic boundary, labeled
CA1, CA2,. . . , CAn, and CAi = (1, S1, Nr, fi), for
i ∈ {1, 2, . . . , n}, where state set S1 = {0, 1, 2, 3} and

Nr is the neighboring state set with radius r. The
transition rule fi : S1 → S1, for 1 ≤ i ≤ n of the
reversible CAi is reversible, and the reverse rule of
fi, denoted f−1

i , is also the map between the state
set S1, i.e. f−1

i : S1 → S1, for 1 ≤ i ≤ n.

2,( , 1)i js − 2,( , )i js 2,( , 1)i js +

2,( 1, )i js +

( )����� � ���� � ���� �� ���� �� ��� �� �, , ,

� � � � ��� �� �� �� � �s f s s s s+
− + +=

Figure 4: 2D CA with 1-radius T-shaped neighborhood,
where st

2,(i,j) denotes the state of the cell at i-th row j-
column.

Next, we define a 2-layer CA also with periodic
boundary, denoted by CA′ = (2, S2, N

′, fca), where
the state set S2 = {0, 1, 2, 3} = S1 and the transition
rule fca is constructed by the compound operations
of transition rules fi, i ∈ {1, 2, . . . , n}, i.e.,

fca = f1 ◦ f2 ◦ · · · ◦ fn

The neighborhood structure of CA′ is set as T-
shaped neighborhood with radius r′ = 1. In addi-
tion, we set each layer in the 2-layer CA has 64 cells,
and then the 2-layer CA has total 128 cells. Specifi-
cally, we use fi to generate the 2D transition rule fca

by a 2D CA with 1-radius T-shaped neighborhood
structure, as shown in Figure 4. We define the states
of the cells in the CA are come from S2, and let

St
2,(i,j) = (st

2,(i,j−1), s
t
2,(i,j), s

t
2,(i,j+1), s

t
2,(i+1,j))

denote the configuration of the cell at i-th row j-
column at time t, where st

2,(i,j) ∈ S2. As each cell has
four possible states and together with three neigh-
bors, there are total 44 = 256 possible configurations
of each cell. Take each configuration as the input of
the compound operations fca = f1 ◦ f2 ◦ · · · ◦ fn, the
corresponding output is the new state of the central
cell. This procedure can be presented as follows:

we first compute

st+n
1,(i,j) = fn(fn−1(· · · (f2(f1(S

t
1,(i,j))))))

and then let St
2,(i,j) = St

1,(i,j) and st+1
2,(i,j) = st+n

1,(i,j),

where st+n
1,(i,j) ∈ S1, s

t+1
2,(i,j) ∈ S2. Since

fca = f1 ◦ f2 ◦ · · · ◦ fn

we have

st+1
2,(i,j) = fca(St

2,(i,j))
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The map fca : St
2,(i,j) → st+1

2,(i,j) is the 2D transition

rule we need. We define a function Fca : S1 → S1,
where Fca = f−1

n ◦ · · · ◦ f−1
2 ◦ f−1

1 and set the private
key as sk = Fca.

It is obvious that fca = (Fca)−1, i.e., given the f−1
i ,

for i = 1, 2, · · · , n, fca is reversible and we can com-
pute its reverse. However, if we only know the 2D
transition rule fca, we cannot decide its reversibility,
to say nothing of computing its reverse. Therefore,
we set the fca as the corresponding public key pk,
i.e., pk = fca.

Let S denote the message space, owing to the 2-layer
CA with 128 cells, the size of S is |S1|

128 = 4128 =
2256, where |S1| is the cardinality of the state set S1,
the message space is large enough to against exhaus-
tive attack. Besides, we define a secure one-way hash
function H, where H : {0, 1}∗ → S.

• SG: On input of a message m, we compute R1 and
R2, where

R1 = H(m) ∈ S

R2 = F k
ca(R1) ∈ S

i.e. H(m) is evolved by the transition rules in the
private key sk = Fca for k times, where k ∈ N is a
large security parameter. Then we set the signature
of m as σ = R2.

• SV: For the message m and a purported signature
σ, together with the public key pk = fca and security
parameter k, we compute R′

1, where

R′
1 = fk

ca(σ) = fk
ca(R2) = (f1 ◦ f2 ◦ · · · ◦ fn)k(R2)

Then, we check the following equality

R′
1 = H(m)

If it does hold, output ‘1’, the signature σ will be
accepted, and rejected otherwise.

4 Security Analysis

In this section, we will formally prove our proposed sig-
nature scheme satisfies the requirements stated in Sec-
tion 2.2.

Theorem 1. Let A be an adversary which can produce
an existential forgery under chosen-message attacks [10]
within a time τ and success probability ǫ, after qH and qS

queries to the hash function H (modeled as random oracle
OH) and the signing oracle OS respectively. The LCAR
problem can be resolved with another probability ǫ′ within
time τ ′, where ǫ′ ≈ 1

qh+qs+1ǫ, τ ′ = τ + (qh + qs + 1) · Θ

with Θ the time for an fk
ca(·) computation.

Proof. We define a sequence of games G1,G2, · · · , of
modified attack games starting from the actual game
G0. Then, with these incremental games, we reduce a
LCAR problem instance (i.e. given fca and St+1

2 , where
St+1

2 = fca(St
2), compute St

2) to an attack against the
proposed signature scheme. We show that the adversary
A can help us to resolve the LCAR problem.

GAME G0. This is an actual game, in the random or-
acle model [3]. The adversary A is allowed to access
a random oracle OH and a signing oracle OS . More-
over, the public key pk = fca is also available to A.

To break the signature scheme, the adversary A out-
puts its forgery (σ⋆,m⋆) that m⋆ has not been asked
forOS , one then checks whether it is a valid signature
or not. Note that the adversary A asks qs queries to
the signing oracle OS and qh queries to the random
oracle OH , at most qs + qh + 1 queries are asked to
the random oracle during this game, since each sign-
ing query may make such a new query, and the last
verification step does too. We set Forge0 denotes
the event that the forged signature is valid, and set
the same notation Forgen in any game Gn. By def-
inition, the success probability ǫ can be represented
as follows:

ǫ = SuccEF-CMA

DS,A = Pr[Forge0]

GAME G1. In this game, we will simulate the hash or-
acle OH by maintaining a hash list LH.

For a new hash query OH(m), we randomly choose
a new random element r ∈ S, create and append a
record (m,h = fk

ca(r), r) in LH, and respond with
H(m) = h.

In order to implant the challenge St+1
2 = fca(St

2) into
the hash answer, for some query on m∗, we insert a
record (m∗, h∗ = fk−1

ca (St+1
2 ),⊔) into the list LH, and

respond with H(m∗) = h∗.

From the above simulation, we can see this game
is indistinguishable from the actual attack. Conse-
quently,

Pr[Forge1] = Pr[Forge0]

GAME G2. In this game, we simulate the signing oracle
OS . For a signing query OS(m), if m 6= m∗, we
first look up the record (m,h = fk

ca(r), r) in LH, and
return σ = r as the signature to the adversary A.
In the eye of A, σ = r is valid, as it satisfies the
verification equation.

However, if m = m∗, the corresponding record in
LH is (m∗, h∗ = fk−1

ca (St+1
2 ),⊔), we cannot return a

valid value. Thus, we have to terminate the game
and report failure.

Unless the signing query fails, this game is indistin-
guishable from the previous game. Therefore,

Pr[Forge2] = (1−
1

qh + qs + 1
)qs Pr[Forge1]



International Journal of Network Security, Vol.18, No.3, PP.544-552, May 2016 549

GAME G3. In this game, we take a close look at the
valid forgery (σ⋆,m⋆). If m⋆ 6= m∗, we have to termi-
nate the game again, as the returned is irrelevant to
the implanted challenge. However, m⋆ = m∗, we can
convert the adversaryA’s capability to solve the chal-
lenge “ given fca and St+1

2 , where St+1
2 = fca(St

2),
compute St

2” as follows.

Since σ⋆ is valid, i.e., fk
ca(σ⋆) = fk−1

ca (St+1
2 ), we cal-

culate St
2 = σ⋆ as the challenge. Therefore, we have

SuccLCAR

A = Pr[Forge3]

By observing G3 and G2, we can see G3 won’t ter-
minate unless m⋆ = m∗. Therefore, we have

Pr[Forge3] =
1

1 + qh

Pr[Forge2]

As mentioned in GAME G0, the success probability
of attacking the signature scheme is

SuccEF-CMA

DS,A = Pr[Forge0] = ǫ.

By combining all above games, we have

ǫ′ =SuccLCAR

A = Pr[Forge3]

=
1

1 + qh

Pr[Forge2]

=
1

1 + qh

(1−
1

qh + qs + 1
)qs Pr[Forge1]

≈
1

qh + qs + 1
· ǫ

Besides, there are total qh+qs+1 operations of comput-
ing fk

ca(·) in the above games, thus it costs (qh +qs +1)Θ.
Plus the time τ of running the adversary A, the time τ ′ of
resolving LCAR problem is bounded by τ +(qh +qs +1)Θ
in the end. Thus, this completes the proof.

5 A Simple Example

In this section, we give a simple example to demonstrate
the feasibility of our proposed signature scheme. We use
the transition rules of three 1D RCAs to generate the rules
of a 2D CA with T-shaped neighborhood. And set the
reverse rules of the 1D transition rules as the private key
and the constructed 2D rules as the corresponding public
key. Then we use the private key to generate signature
and the public key to verify whether the signature is valid
or not.

• KG: First, we choose a security parameter k = 3,
in fact, k should be a large number, but here we
only choose a small one to simply demonstrate our
scheme. We define three 1D RCAs, labeled CA1,
CA2 and CA3, and CAi = (1, S1, Nr, fi), for i ∈
{1, 2, 3}, where state set S1 = {0, 1, 2, 3} and Nr is
the neighboring state set with radius r = 1/2. The

reversible transition rule fi : S1 → S1, i ∈ {1, 2, 3} is
shown in Table 1.

It can be proved that rule f1, f2 and f3 all self-
reversible, i.e. the reverse of fi is itself, f−1

i = fi.
Since the radius of 1D RCA is 1/2, there is only one
neighbor in its neighborhood besides itself, for each
cell in 1D RCA, we set the right one besides it as its
neighbor. In addition, we specify a direction for each
fi, it is shown in Figure 5.

A0 A1 A0
A1

A1 A0

left  to  right top to bottom right  to  left
( ) *

1 0 1 0,f A A A= ( ) *
2 0 1 0,f A A A= ( ) *

3 0 1 0,f A A A=

Figure 5: The neighborhood and direction of three 1D
rules, where A0 is the state of central cell and A1 is the
state of its neighbor, A∗

0 is the new state of central cell.

Then we define a 2-layer CA also with periodic
boundary, denoted by CA′ = (2, S2, N

′, fca), where
S2 = {0, 1, 2, 3} and the neighborhood structure
of CA′ is set as T-shaped neighborhood with ra-
dius r′ = 1. The transition rule fca constructed
by the compound operations of transition rules fi,
i ∈ {1, 2, 3}, i.e.

fca = f1 ◦ f2 ◦ f3

Specifically, we first define a St
2,(i,j), where

St
2,(i,j) = (st

2,(i,j−1), s
t
2,(i,j), s

t
2,(i,j+1), s

t
2,(i+1,j))

denotes the configuration of the cell at i-th row j-
column at time t, and st

2,(i,j) ∈ S2. Take each pos-

sible configuration St
2,(i,j) as the input of the com-

pound operations fca = f1◦f2◦f3, the corresponding
output is the new state of the central cell.

2 0 3
1

3 2 0
1

3 3 0
2

1 3 0
2

2 0 3
1

1f 2f 3f

:caf 3

Figure 6: A example of generating a 2D transition rule

There is a concrete example of the rule generation
process in Figure 6, and fca : 2031→ 3 is a 1-radius
2D rule. Table 2 shown some 2D rules generated in
this algorithm.

Next, we define a function Fca : S1 → S1, where
Fca = f−1

3 ◦ f−1
2 ◦ f−1

1 , and set it as the private key
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Table 1: The reversible transition rules of three 1D RCAs

X
X

X
X

X
X

X
X

X
X

(st
i, s

t
i+1)

st+1
i f1 f2 f3

00 1 0 2
01 0 1 1
02 3 0 3
03 2 2 0
10 0 1 3
11 2 0 0
12 2 2 1
13 3 3 2
20 3 3 0
21 1 3 3
22 1 1 2
23 0 0 1
30 2 2 1
31 3 2 2
32 0 3 0
33 1 1 3

Table 2: Part of the generated 1-radius 2D rules, fca :
St

2,(i,j) → st+1
2,(i,j)

St
2,(i,j) → st+1

2,(i,j) St
2,(i,j) → st+1

2,(i,j) St
2,(i,j) → st+1

2,(i,j)

0133 → 3 1232 → 3 3221 → 2
1321 → 2 2330 → 3 2222 → 3
3200 → 0 1313 → 2 2210 → 0
2012 → 0 3121 → 3 2121 → 2
2311 → 0 3202 → 1 1122 → 1
3103 → 1 2033 → 0 1202 → 0
1022 → 1 0313 → 1 2012 → 0
0230 → 0 3121 → 3 1012 → 2

of the signature scheme, i.e. sk = Fca, set fca as the
public key pk, i.e. pk = fca.

Besides, we define a secure one-way hash function H,
where H : {0, 1}∗ → S, S denotes the message space
of the signature scheme.

• SG: For a message m = 01100101 and security pa-
rameter k = 3, we first compute R1 = H(m) =
13203102, and arrange the 13203102 into a 2-layer
CA, which has four cells in each layer, as shown
in Figure 7. Then, for each cell in the 2-layer CA,
taking its configuration as the input of the function
Fca = f−1

3 ◦f
−1
2 ◦f

−1
1 = f3◦f2◦f1, and evolved k = 3

times, the corresponding output is its new state, all
new states make up of the signature. So, the signa-
ture of m is σ = F 3

ca(R1) = 12322113.

(a). The structure of 2-layer CA (b). The second layer
3 1 0 2
1 3 2 0

3 1 0 2

Figure 7: 2-layer CA

• SV: For the message m = 01100101 and a signature
σ = 12322113, together with the public key pk = fca

and security parameter k = 3, we compute R′
1, where

R′
1 = f3

ca(σ) = f3
ca(12322113) = 13203102.

It is obvious that the following equality is hold, so
the signature σ = 12322113 is valid.

R′
1 = H(m).

6 Comparison

The simple example in the last section has shown the fea-
sibility of the proposed signature scheme. In this section,
we will exhibit its strengths by giving a comparison be-
tween the proposed scheme and RSA signature algorithm.

Table 3: The key space and timing analysis between the
proposed scheme and RSA, where 1D and 2D denote the
1D and 2D CAs used in KG algorithm, respectively

State
number

Radius Key
space

Time
(ms)1D 2D

The
proposed
scheme

2 r = 1
r′ = 1 216

r′ = 2 2128 15.6
r′ = 3 21024 218.4

4
r = 1

2

r′ = 1 2512 31
r′ = 2 232768 4274

RSA 21024 4708

Since the number and radius of the CAs in our pro-
posed signature scheme are not appointed, we can achieve
different size key space by changing the radius and state
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Table 4: Average execution time for the proposed scheme
and RSA-1024

proposed scheme RSA-1024
Signature 3.91 ms 4.26 ms

Verification 2.35 ms 2.77 ms

number. In the proposed scheme, we use n reversible rules
of some 1D CAs with r-radius to generate the transition
rule of a 4-state and r′-radius 2D CA, so there will be

44(3r
′+1)

possible rules generated as the public key, i.e.

the size of the key space is 44(3r
′+1)

. Of course, the state
number can be changed according to the concrete appli-
cations. Table 3 shows the different key space size and the
time of generating the public key with the state number
and radius r and r′ changed. It’s observed that we can
get a larger key space in less time when compared with
RSA-1024.

Because the key space of the RSA-1024 algorithm is
21024, as well as the plaintext space and the ciphertext
space, here we set n = 4, r′ = 3 and the state number
is 2 such that the key space of the proposed scheme is

22(3r
′+1)

= 21024. Now, we randomly choose 100 messages
from the plaintext space and sign them to get the signa-
tures, and then verify these signatures. All the signature
and verification processes are executed by the RSA-1024
and the proposed scheme on an Intel Core 2 Duo 2.0 GHZ,
in C++ platform. The average execution time of the 100
signature and verification processes are calculated sepa-
rately and the results are tabulated in Table 4. It’s obvi-
ous that the time taken by our proposed signature scheme
is less than RSA-1024 algorithm, which obviously shows
the efficiency of our proposed signature scheme.

7 Conclusions

In this paper, we have formally defined the digital sig-
nature, then proposed a new CA-based digital signature
scheme based on the hardness assumption of the LCAR
problem. We use the transition rules of some 1D RCAs
to construct the transition rules of a 2D CA, as the re-
versibility of 2D CA is undecidable, we set the constructed
2D transition rules as the public key, the rules of 1D
RCAs as the private key. And we have formally shown the
proposed signature scheme is semantically secure against
chosen-message attacks in the oracle model. Moreover,
the proposed scheme is developed with a simple example,
and analysis of the key space and efficiency are also car-
ried out along with RSA-1024 algorithm, the results show
that the proposed signature scheme is more efficient than
RSA-1024.
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