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Abstract

Internet worms pose a serious threat to the Internet secu-
rity. In order to effectively defend against Internet worms,
this paper proposes a novel epidemic e-SEIQV model
with quarantine and vaccination. Using this e-SEIQV
model, we obtain the basic reproduction number for deter-
mining whether the worm dies out completely. The global
stability of the worm-free equilibrium and the local sta-
bility of endemic equilibrium are proved, and determined
by the basic reproduction number. Besides the impact of
different parameters of this model is studied. Simulation
results show that the number of susceptible and infected
hosts are consistent with the theoretical analysis. The
model provides a theoretical foundation for controlling
and forecasting Internet worms.
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security, stability analysis, vaccination

1 Introduction

Internet worms are malicious codes which can replicate
themselves and propagate via Internet. With the ever
increasing number of Internet applications and the emer-
gence of new technologies, Internet worms have become a
great threat to our work and daily life, and caused tremen-
dous economic losses. Especially, the advent of the Inter-
net of things (IoT) would make the threat increasingly
serious. How to combat Internet worms effectively is an
urgent issue confronted with defenders. Therefore, it is
necessary to comprehend the long-term behavior of worms
and to propose effective strategies to defend against In-

ternet worms. The similarity between the spread of bio-
logical viruses and that of Internet worms encourages re-
searchers to adopt appropriately modified epidemic mod-
els to describe the propagation of worms across the Inter-
net.

Based on the similarity between a malicious worm and
a biological virus, some epidemic models representing
worm propagation were presented to depict the propaga-
tion of worms, e.g., SIR model [17], SIRS model [10, 16],
SIQ model [27], SEIR model [11], SEIRS model [15, 19],
SEIQV model [20], SEIQRS model [28, 9], which assume
that infected hosts in which the worm resides are in an
exposed state and can not infect other hosts. Actually, an
infected host which is in latency can infect other hosts by
means of some methods, e.g., vulnerability seeking. All
the previous models do not take this passive infectivity
into consideration. Recently, Yang et al. [22, 23, 24, 25]
proposed some models, by taking into account the fact
that a host immediately possesses infectivity once it is in-
fected. These models, however, all make an assumption
that exposed hosts and infected hosts have the same in-
fectivity. This is not consistent with the reality. Although
an exposed host also sends scanning packets to find sus-
ceptive hosts with certain vulnerabilities, the number of
scanning packets sent by an exposed host is less than that
of an infected one. Usually, the infection rate of exposed
hosts is less than that of infected ones. Therefore, they
should have different infection rates.

Due to the frequent occurrence of worms over the In-
ternet in the last decade, users usually install some an-
tivirus softwares or firewalls to protect their hosts. Once
a user feels that the performance of his host is degraded
or there exists some useless data in disks (e.g., Witty can
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do it), he will clean worms by antivirus softwares. In or-
der to protect his important files, the user spontaneously
clean worms even if he is not sure the existence of worms
in his host. Additionally, an infected host often repre-
sents more obvious characteristics than an exposed host,
the user could take some more effective measurements,
e.g., patching. Therefore, the cured rate of exposed hosts
would be lower than that of infected ones. The feature
should be considered when modeling Internet worms. Re-
cently, more attention has been paid to the combination
of worm propagation model and countermeasures to study
the prevalence of worms, e.g., quarantine [11, 20] and vac-
cination [4, 5, 14].

In this paper, we propose a new worm attack model, re-
ferred to as e-SEIQV (Susceptible - Exposed - Infectious
- Quarantined - Vaccinated) model, which incorporates
the features mentioned above. Using the basic reproduc-
tion number, we derive the global stabilities of a worm-
free equilibrium and a unique endemic equilibrium by a
Lyapunov function and a geometric approach. Based on
these results and further analysis, some effective methods
for controlling worms are recommended.

The rest of this paper is organized as follows. Section
2 formulates the new model and obtain its basic repro-
duction number. Section 3 proves the global stabilities of
the worm-free equilibrium and the endemic equilibrium.
Section 4 covers the numerical analysis and the simula-
tions. Section 5 summarizes the paper with some future
directions.

2 Model Formulation

The total host populationN is partitioned into five groups
and any host can potentially be in any of these groups at
any time tick t: the susceptible, exposed (latent), infec-
tious, quarantined, vaccinated, with sizes denoted by S,
E, I, Q, V , respectively. The total number of population
N at time t is given by N(t) = S(t)+E(t)+I(t)+Q(t)+
V (t). The dynamical transfer of hosts is depicted in the
following figure.
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Figure 1: Schematic diagram for the flow of Internet
worms

Figure 1 shows the five states and state transition in

e-SEIQV. Based on the compartment model presented in
Figure 1, the e-SEIQV model having infectious force in
the exposed, infected period is described by the following
system of differential equations:

S
′
(t) = Π− β1SE − β2SI − µS,

E
′
(t) = β1SE + β2SI − (µ+ δ1 + ω)E,

I
′
(t) = ωE − (µ+ α+ δ2 + p)I,

Q
′
(t) = pI − (η + µ)Q,

V
′
(t) = δ1E + δ2I + ηQ− µV,

(1)

where Π is a constant recruitment of susceptible hosts.
β1, β2 are the rates of the efficient contact in the latent,
infected period, respectively. The positive parameter µ is
the rate of natural death, α are non-negative constant and
denote the rate of worm-caused death. δ1, δ1, ω are the
transfer rates between the exposed and the vaccinated,
between the infectious and the vaccinated, between the
exposed and the infectious, respectively. The parameter
p denotes the quarantined rate. The parameter η denotes
the transfer rate between the quarantined and the vacci-
nated.

Summing the equations of the system (1), we obtain

N(t)
′

= Π− µN − αI. (2)

Therefore, the total population N may vary with time
t. In the absence of disease, the total population size
N(t) converges to the the equilibrium Π/µ. It follows
from Equation (2) that lim inft→∞N(t) ≤ Π/µ. We thus
study our system (1) in the following feasible region:

Ω = {(S,E, I,Q, V ) ∈ R5
+ : S+E+I+Q+V ≤ Π/µ},

which is a positively invariant set of Model (1). We next
consider the dynamic behavior of Model (1) on Ω.

Firstly, we obtain the basic reproduction number of
Model (1) by the method of next generation matrix [1].
It is easy to see that Model (1) always has a worm-free
equilibrium,P0 = (Π/µ, 0, 0, 0, 0).

Let x = (E, I,Q, V, S)T , then Model (1) can be written
as

dx

dt
= F(x)− V(x),

where

F(x) =


β1SE + β2SI

0
0
0
0

 ,

V(x) =


(µ+ δ1 + ω)E

(µ+ α+ δ2 + p)I − ωE
(η + µ)Q− pI

µV − δ1E − δ2I − ηQ
β1SE + β2SI + µS −Π

 .
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Differentiating F(x) and V(x) with respect to
E, I,Q, V, S and evaluating at the worm-free equilibrium
P0 = (Π/µ, 0, 0, 0, 0), respectively, we have

DF(P0) =

(
F2×2 02×3

03×2 03×3

)
,

DV(P0) =


Y2×2 0 0 0

0 0 0

Y
′

3×2 η + µ 0 0
−η µ 0
0 0 µ

 ,

where

F2×2 =

( β1Π
µ

β2Π
µ

0 0

)
, Y

′

3×2 =

 0 −p
−δ1 −δ2
β1Π
µ

β2Π
µ

 ,

and

Y2×2 =

(
µ+ δ1 + ω 0
−ω µ+ α+ δ2 + p

)
.

Thus, the spectral radius of the next generation matrix
FV−1 can be found as,

ρ(FV−1) =
Π(β1(µ+ α+ δ2 + p) + β2ω)

µ(µ+ α+ δ2 + p)(µ+ δ1 + ω)
.

According to Theorem 2 in [1], the basic reproduction
number of Model (1) is

R0 =
Π(β1(µ+ α+ δ2 + p) + β2ω)

µ(µ+ α+ δ2 + p)(µ+ δ1 + ω)
. (3)

For the concision of notation, let m = µ + α + δ2 + p

and n = µ+ δ1 + ω. Thus R0 = Π(β1m+β2ω)
µmn .

The endemic equilibrium P ∗(S∗, E∗, I∗, Q∗, V ∗) of
Model (1) is determined by equations

Π− β1SE − β2SI − µS = 0,

β1SE + β2SI − nE = 0,

ωE −mI = 0,

pI − (η + µ)Q = 0,

δ1E + δ2I + ηQ− µV = 0,

(4)

and

Π− µN − αI = 0. (5)

By some simple computation, we obtain

S = Πωα
(β1m+β2ω)(Π−µN)+αωµ ,

E = m(Π−µN)
ωα ,

I = Π−µN
α ,

Q = p(Π−µN)
α(η+µ) ,

V = [δ1m(η+µ)+ωδ2(η+µ)+ωηp](Π−µN)
ω(η+µ)µα .

(6)

Substituting Equation (6) into the second equation of
the system (1), N satisfies F (N)(Π − µN) = 0, where,
F (N) = [µmnN −Π(mn− ωα)](β1m+ β2ω)− µmnωα.

For R0 > 1, F (0) = −Π(mn − ωα)(β1m + β2ω) −
µmnωα < 0 and F (Π/µ) = µmnωα(R0 − 1), thus
F (N) is monotone increasing and F (Π/µ) > 0. Within
the interval (0,Π/µ), F (N) has only a positive root.
That is, Model (1) has an unique endemic equilibrium
P ∗(S∗, E∗, I∗, Q∗, V ∗), where S∗, E∗, I∗, Q∗, V ∗ are de-
termined by Equation (6).

3 Analysis of Model

3.1 Global Stability of P0

It is easily obtained that the model has a worm-free equi-
librium given by P0 = (Π/µ, 0, 0, 0, 0).

Lemma 1. When R0 < 1, the worm-free equilibrium P0

is locally asymptotically stable in Ω. When R0 > 1, the
worm-free equilibrium P0 is an unstable saddle point.

Proof. The Jacobian matrices of Model (1) at P0 is

J(P0) =


−µ −β1Π

µ −β2Π
µ 0 0

0 β1Π
µ − n

β2Π
µ 0 0

0 ω −m 0 0
0 0 p −(η + µ) 0
0 δ1 δ2 η −µ


It is easily obtained that J(P0) has three negative

eigenvalues λ1 = λ2 = −µ, and λ3 = −(η + µ), the other
eigenvalues of J(0) are determined by the following equa-
tion:

λ2 +(m+n−β1Π/µ)λ+mn−(mβ1 +ωβ2)Π/µ = 0. (7)

When R0 < 1, mn > (mβ1 + ωβ2)Π/µ.

For mn > (mβ1 + ωβ2)Π/µ, we can obtain m + n >
m + β1Π/µ + Πβ2ω/(µm), thus m + n − β1Π/µ > m +
β2Π/µ > 0, which means the Equation (7) has two neg-
ative roots. Therefore, the worm-free equilibrium P0 is
locally asymptotically stable.

When R0 > 1, mn − (mβ1 + ωβ2)Π/µ < 0, which
means the Equation (7) has a positive root and a negative
root. Therefore, the worm-free equilibrium P0 is unstable
saddle point.

Lemma 2. When R0 ≤ 1, the worm-free equilibrium P0

is globally asymptotically stable in Ω. When R0 > 1, all
solutions starting in Ω and sufficiently close to P0 move
away from P0.

Proof. Consider the Lyapunov function

L =
β1m+ β2ω

mn
E +

β2

m
I.
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Its derivative along the solutions to Model (1) is

L
′

= β1m+β2ω
mn (β1SE + β2SI − nE) + β2

m (ωE −mI)

= β1m+β2ω
mn (β1SE + β2SI)− (β1E + β2I)

= (β1E + β2I)(β1m+β2ω
mn S − 1)

≤ (β1E + β2I)(Π(β1m+β2ω)
mnµ − 1)

= (β1E + β2I)(R0 − 1)
≤ 0.

Furthermore, L
′

= 0 if and only if E = I = 0 or
R0 = 1. Thus, the largest compact invariant set in
{(S,E, I,Q, V )|L′

= 0} is the singleton {P0}. When
R0 ≤ 0, the global stability of P0 follows from LaSalle’s
invariance principle [6]. LaSalle’s invariance principle [6]
implies that P0 is globally asymptotically stable in Ω.
When R0 > 1, it follows from the fact L

′
> 0 if E > 0

and I > 0. This completes the proof.

3.2 Global Stability of P ∗

Lemma 3. When R0 > 1, the endemic equilibrium P ∗ is
locally asymptotically stable in Ω.

Proof. Replacing S with N −E− I−Q−V in Model (1),
we obtain

E
′
(t) = (β1E + β2I)(N − E − I −Q− V )− nE,

I
′
(t) = ωE −mI,

Q
′
(t) = pI − (η + µ)Q,

V
′
(t) = δ1E + δ2I + ηQ− µV,

N
′
(t) = Π− µN − αI = 0.

(8)

The Jacobian matrices of Model (8) at P ∗ =
(E∗, I∗, Q∗, V ∗, N∗) is

J(P ∗) =


aβ1 − b− n aβ2 − b −b −b b

ω −m 0 0 0
0 p −c 0 0
δ1 δ2 η −µ 0
0 −α 0 0 −µ


where, a = mn

β1m+β2ω
, b = β1E + β2I, and c = η + µ. Its

characteristic equation is det(λI−J(P ∗)) = 0, where I is
the unit matrix. Therefore,

det(λI − J(P ∗))

= (λ1 + µ)(λ2 + (η + µ))(λ3 +Aλ2 +Bλ+ C) = 0,

where,

A = b+m+ µ+ n− β1mn
β1m+β2ω

= b+ µ+m+ β2nω
β1m+β2ω

> 0,

B = b(δ1 +m+ µ+ ω) +mµ+mn

+nµ− (β1m
2n+β1mnµ+β2mnω

β1m+β2ω
)

= b(δ1 +m+ µ+ ω) +mµ+ β2ωnµ
β1m+β2ω

> 0,

C = b(mδ1 + αω +mµ+ δ2ω + ωµ+ pω)

+mnµ− β1m
2nµ+β2mnµω
β1m+β2ω

= b(mδ1 + αω +mµ+ δ2ω + ωµ+ pω) > 0.

By a direct calculation, we obtain that AB − C > 0.
According to the theorem of Routh-Hurwitz, the endemic
equilibrium P ∗ is locally asymptotically stable.

For Model (8), we consider global stability of
the endemic equilibrium P ∗ when α = 0. Since
lim inft→∞N(t) ≤ Π/µ, Model (9) is a four-dimensional
asymptotically autonomous differential system with limit
system

E
′
(t) = (β1E + β2I)(Π

µ − E − I −Q− V )− nE,
I

′
(t) = ωE −mI,

Q
′
(t) = pI − (η + µ)Q,

V
′
(t) = δ1E + δ2I + ηQ− µV.

(9)

Next, we apply the geometrical approach [6] to inves-
tigate the global stability of the endemic equilibrium P ∗

in the region Ω.

Theorem 1. [6] Consider the following systems:
x

′
= f(x), x ∈ Ω. If the following conditions are sat-

isfied:

1) The system (∗) exists a compact absorbing set K ⊂ Ω
and has a unique equilibrium P ∗ in Ω;

2) P ∗ is locally asymptotically stable;

3) The system (∗) satisfies a Poincaré-Bendixson crite-
rion;

4) A periodic orbit of the system (∗) is asymptotically
orbitally stable, then the only equilibrium P ∗ is the
globally asymptotically stable in Ω.

Lemma 4. If R0 > 1, the unique positive equilibrium P ∗

of Model (9) is globally asymptotically stable in Ω.

Proof. We only need to prove that all assumptions of The-
orem 1 hold.

If R0 > 1, then the worm-free equilibrium is unstable
according to Lemma 1. Moreover, the behavior of the lo-
cal dynamics near the region P0 described in Lemma 1
implies that Model (9) is uniformly persistent in the re-
gion Ω. That is, there exists a constant c > 0, such that
any solution (E(t), I(t), Q(t), V (t)) of Model (9) with ini-
tial value (E(0), I(0), Q(0), V (0)) in Ω satisfies

min{lim inf
t→∞

E(t), lim inf
t→∞

I(t), lim inf
t→∞

Q(t), lim inf
t→∞

V (t)} ≥ c.

This can be proved by applying a uniform persistent
result in [3] and by the use of a similar argument as in the
proof in [7]. The uniform persistence of system (9) in the
bounded set Ω is equivalent to the existence of a compact
K ⊂ Ω that is absorbing for system (9). In Section 3,
during the process of obtaining the endemic equilibrium
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P ∗, we can know that P ∗ is the unique equilibrium in the
interval (0,Π/µ). Assumption (1) holds.

According to Lemma 3, we know that the endemic
equilibrium P ∗ is locally asymptotically stable in the re-
gion Ω. Assumption (2) holds.

The Jacobian matrix of Model (9) is denoted by

J(P ∗) =


β1S − b− n β2S − b −b −b

ω −m 0 0
0 p −c 0
δ1 δ2 η −µ

 . (10)

Choosing the matrix H as H = diag(1,−1, 1, 1), it is
easy to prove that HJH has non-positive off-diagonal ele-
ments, thus we can obtain that system (9) is competitive.
This verifies the assumption (3).

The second compound matrix J [2](P ∗) of J(P ∗) can
be calculated as follows:

J [2](P ∗) =


A1 0 0 b b 0
p A2 0 A 0 b
δ2 η A3 0 A −b
0 ω 0 A4 0 0
−δ1 0 ω η A5 0

0 −δ1 0 −δ2 p A6

 (11)

where, A = β2S − b, A1 = −(b+ n+m− β1S),
A2 = −(b+n+η+µ−β1S), A3 = −(b+n+µ−β1S),
A4 = −(m+ η+ µ), A5 = −(m+ µ), A6 = −(η+ 2µ).
The second compound system of Model (9) in a peri-

odic solution can be represented by the following differ-
ential equations:

X
′
(t) = A1X + bL+ bM,

Y
′
(t) = pX +A2Y − (b− β2S)L+ bU,

Z
′
(t) = δ2X + ηY +A3Z − (b− β2S)M − bU,

L
′
(t) = ωY − (m+ η + µ)L,

M
′
(t) = −δ1X + ωZ + ηL− (m+ µ)M,

U
′
(t) = −δ1Y − δ2L+ pM − (η + 2µ)U.

(12)

In order to prove that the system (12) is asymptotically
stable, we consider the following Lyapunov function:

V (X,Y, Z, L,M,U ;E, I,Q, V )

= sup{|X|+ |Y |+ |Z|, E
I

(|L|+ |M |+ |U |)}.

According to the uniform persistence, we obtain that
the orbit of P (t) = (E(t), I(t), Q(t), V (t)) remains a posi-
tive distance from the boundary of Ω, thus, we know that
there exists a constant c satisfying

V (X,Y, Z, L,M,U ;E, I,Q, V )

≥ c sup{|X|, |Y |, |Z|, |L|, |M |, |U |},
for all (X,Y, Z, L,M,U) ∈ R6 and (E, I,Q, V ) ∈ P (t).

For the differential equations in Equation (12), we ob-
tain the following differential inequalities by direct calcu-
lations:

D+(|X|+ |Y |+ |Z|)

≤ −(2µ+ δ1 + ω)(|X|+ |Y |+ |Z|)

+
E

I
(β1S + β2S

I

E
)(|L|+ |M |+ |U |),

D+(|X|+ |Y |+ |Z|)

≤ −(2µ+ δ1 + ω)(|X|+ |Y |+ |Z|)

+
E

I
(β1S + β2S

I

E
)(|L|+ |M |+ |U |),

Then,

D+
E

I
(|L|+ |M |+ |U |) ≤ ωE

I
(|X|+ |Y |+ |Z|)

+(
E

′

E
− I

′

I
− (2µ+ α+ δ2 + p))

E

I
(|L|+ |M |+ |U |).

From the pervious formula, we can obtain

D+|V (t)| ≤ max{g1(t), g2(t)}V (t),

where,

g1(t) = −(2µ+ δ1 + ω) + (β1S + β2S
I

E
),

g2(t) = ω
E

I
+
E

′

E
− I

′

I
− (2µ+ α+ δ2 + p).

From Model (1), we can obtain

E
′

E
= β1S + β2S

I

E
− (µ+ δ1 + ω),

I
′

I
= ω

E

I
− (µ+ α+ δ2 + p).

Therefore,

g1(t) =
E

′

E
− µ, g2(t) =

E
′

E
− µ.

Then,∫ ζ

0

sup{g1(t), g2(t)}dt ≤ lnE(t)|ζ0 − µζ = −µζ < 0,

which implies that (X(t), Y (t), Z(t), L(t),M(t), U(t)) →
0, as t→∞. Thus, the second compound system (12) is
asymptotically stable. This verifies the assumption (4).

We verify all the assumptions of Theorem 1. Therefore,
P ∗ is globally asymptotically stable in Ω.
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4 Numerical Simulations

In this experiment, we choose the Code Red as basic be-
havior of a worm. The Code Red infected 360,000 hosts
on July 19th 2001 [12], thus 360,000 hosts are selected
as the population size. According to the real conditions
of the Code Red worm, the worm’s average scan rate is
s = 358 per minute. Code Red worm’s infection rate
can then be computed as β2 = s/232 = 8.34 × 10−8,
β1 = 8 × 10−8. At the beginning, the number of sus-
ceptible, exposed, infected, quarantined and vaccinated
hosts are S(0) = 359, 985, E(0) = 5, I(0) = 10, Q(0) = 0
and V (0) = 0, respectively. The quarantined rate of in-
fected hosts is p = 0.2 per minute, i.e., on average an
infected host can propagate for about 5 minutes before it
is alarmed and quarantined.

Other parameters in these simulations are given as
follows: Π = 2, 160, µ = 0.006, γ = 0.03, θ = 0.03,
α = 0.005, δ1 = 0.02, δ2 = 0.04, ω = 0.005, η = 0.005,
where R0 = 0.9873 < 1. The worm will gradually disap-
pear according to Theory 2. Figure 2 illustrates the num-
ber of susceptible and infected hosts when R0 is 0.9873.
From Figure 2, we can clearly see that the tendency of
the worm propagation is depressive, which is consistent
with Lemma 2. Finally, the whole population, in the long
term, is in a vaccinated state. In order to effectively de-
fend against such worms, we must adopt some feasible
methods to decrease the infection rate [18, 21] or increase
the following parameters (e.g., the transfer rates between
the exposed and the recovered, between the exposed and
the infectious) to guarantee the basic reproduction num-
ber R0 < 1.
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Figure 2: Globally asymptotically stable worm-free equi-
librium

In the second experiment, the number of susceptible,
exposed, infected, quarantined and vaccinated hosts are
S(0) = 359, 985, E(0) = 5, I(0) = 10, Q(0) = 0 and
V (0) = 0, respectively. When δ2 = 0.01, p = 0.02, ω =
0.08, we can obtain R0 = 6.9397 > 1. For δ2 = 0.01,
p = 0.02, ω = 0.04, R0 = 10.5718 > 1. For δ2 = 0.01,
p = 0.02, ω = 0.02, R0 = 11.2284 > 1. Other parameters
do not vary. We can see the results in Figure 3. As

can be seen from Figure 3, the number of susceptible and
infected hosts eventually become positive values between
0 and Π/µ. S(t), I(t) all approach their steady state,
and the worm persists. This is fully consistent with the
conclusions of Lemma 4.
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Figure 3: Globally asymptotically stable endemic equilib-
rium

With other parameters remaining the same, the quar-
antined rate p is set to different value at each time in order
to state that the number of infected hosts is affected by
every different value of the quarantined rate. Figure 4
shows the effects of changing the quarantined rate (which
vary between 0.1 and 0.9) on worm propagations. As
expected, a larger quarantined rate results in diminishing
the worm propagation speed, and lowering the total num-
ber of infected hosts. Quarantined rate p relies mainly on
the accuracy and detection speed of intrusion detection
algorithms. Some methods have been proposed to reach
the goal, e.g., a pulse quarantine strategy [26], an orches-
tration approach [2].
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5 Conclusion

This paper presented a mathematical model to describe
the dynamical behavior of an e-SEIQV epidemic model
with quarantine and vaccination for Internet worms.
Firstly, by the method of next generation matrix, we give
the basic reproduction number to determine whether the
worm extinguishes. Secondly, the global asymptotic sta-
bilities of our model have been proved by using the Lya-
punov function and a geometric approach. When the ba-
sic reproduction number is less than or equal to one, the
proposed model has only a worm-free equilibrium being
globally stable, which implies the worm dies out eventu-
ally; when the basic reproduction number is larger than
one, our model has a unique endemic equilibrium being
globally stable, which implies that the worm persists in
the whole host population and tends to a steady state.
Finally, some numerical examples are given to verify our
conclusions. Our future work will expand this model to
characterize more features of Internet worms, e.g., taking
delay or impulse into consideration.
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