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Abstract

We discuss the linear complexity of a family of binary
threshold sequence defined by the discrete logarithm of
integers modulo a large prime. It is proved that the linear
complexity is at least the half of their period and under
some special conditions the linear complexity can achieve
maximal.
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1 Introduction

A typical design approach to N -periodic sequences is ap-
plication of cosets (or cyclotomic classes) via a subgroup
of the group of invertible elements moduloN . Well-known
basic examples are the Legendre and Jacobi sequences and
their generalizations, which are related to discrete loga-
rithm, see [4, 6, 8, 9, 10, 11, 12, 13] and references therein.

Let p be an odd prime. The Legendre sequence [9, 11,
16] Sp = {s0, s1, . . . , sp−1} over the finite field F2 = {0, 1}
is defined as

su =

{
0, if

(
u
p

)
= 1 or p|u,

1, otherwise,
u ≥ 0

where
(
·
p

)
is the Legendre symbol. Let g be a (fixed)

primitive root modulo p and ind(n) be the discrete loga-
rithm of n modulo p (to the base g) so that

gind(n) ≡ n (mod p), p - n, 1 ≤ ind(n) ≤ p− 1.

Then we get an equivalent definition of Sp:

su =

{
0, if ind(u) ≡ 0 (mod 2) or p|u,
1, otherwise,

u ≥ 0.

Legendre sequences have strong pseudorandom proper-
ties: equidistribution, optimal correlation, high linear
complexity and k-error linear complexity, see [1, 2, 8, 9,
11, 16].

In particular, Sárközy studied in [19] the following bi-
nary sequence Ep = {e0, e1, . . . , ep−1}, which is called dis-
crete logarithm threshold sequence in [3], over F2 defined
by

eu =

{
0, if 1 ≤ ind(u) ≤ (p− 1)/2,
1, if (p+ 1)/2 ≤ ind(u) ≤ p− 1 or u = 0.

(1)
Gyarmati later extended this construction in [15]. (Note
that [15, 19] actually dealed with the sequences E′p =
{e′0, . . . , e′p−1} ∈ {−1, 1}p defined by e′n = (−1)en , 0 ≤
n ≤ p− 1.)

Sárközy estimated the well-distribution measure and
the correlation measure of order k (see [17] for the no-
tions) for Ep in [19] and Brandstätter and Winterhof es-
timated a lower bound on linear complexity profile of Ep

in terms of the correlation measure of order k in [3]. In
this short article, we will view Ep as a p-periodic sequence
and consider its linear complexity (see below for the no-
tion) under some special conditions. Below we consider
this problem in a general way.

Let p − 1 = 2df for large prime p. The cyclotomic
classes of order 2d give a partition of F∗p = Fp \ {0}
defined by

Dl = {g2di+l (mod p)|i = 0, 1, . . . , f − 1},
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where l = 0, 1, . . . , 2d − 1. Then one can define binary
sequences {eu}u≥0 of period p by setting

eu =

 0, if u (mod p) ∈ D1 ∪ · · · ∪Dd,
1, if u (mod p) ∈ Dd+1 ∪ · · · ∪D2d−1 ∪D0,
1, if p|u,

(2)
where u ≥ 0.

If d = 1, {eu}u≥0 is the complement of Legendre se-
quence. If d = (p − 1)/2, {eu}u≥0 is the discrete loga-
rithm threshold sequence Ep (viewing Ep as a p-periodic
sequence) defined in Equation (1). The k-error linear
complexity (over Fp) of {eu}u≥0 was investigated in [1].
Certain pseudo-random measures of {eu}u≥0 were inves-
tigated in [6]. Below we consider the linear complexity
(over F2) of {eu}u≥0 and hence obtain the linear com-
plexity of Ep as a corollary in some special cases.

2 Linear Complexity

We recall that the linear complexity L({st}t≥0) of an N -
periodic sequence {st}t≥0 over F2 is the least order L of
a linear recurrence relation over F2,

st+L = cL−1st+L−1 + · · ·+ c1st+1 + c0st for t ≥ 0

which is satisfied by {st}t≥0 and where c0 =
1, c1, . . . , cL−1 ∈ F2. The polynomial

M(x) = xL + cL−1x
L−1 + · · ·+ c0 ∈ F2[x]

is called the minimal polynomial of {st}t≥0. The gener-
ating polynomial of {st}t≥0 is defined by

S(x) = s0 + s1x+ · · ·+ sN−1x
N−1 ∈ F2[x].

It is easy to see that

M(x) = (xN − 1)/gcd
(
xN − 1, S(x)

)
,

hence

L({st}t≥0) = deg(M(x)) = N−deg
(
gcd(xN − 1, S(x))

)
,

(3)
see, e.g. [18] for details.

Lemma 1. Let p− 1 = 2df and a ∈ F∗p, if a (mod p) ∈
D` for some 0 ≤ ` ≤ 2d− 1, then we have

aDl = {an (mod p)|n ∈ Dl} = Dl+` (mod 2d),

where 0 ≤ l ≤ 2d− 1.

Proof. Since a (mod p) ∈ D`, there exists an integer k0 :
0 ≤ k0 < f such that a ≡ g2dk0+` (mod p). Then we have

aDl =
{
g2dk0+` · g2dk+l (mod p)| 0 ≤ k < f

}
=

{
g2d(k0+k)+(`+l) (mod p)| 0 ≤ k < f

}
= Dl+` (mod 2d).

For 0 ≤ l ≤ 2d− 1, define

Dl(x) =
∑
n∈Dl

xn ∈ F2[x]

and

U(x) = 1 +D0(x) +Dd+1(x) + · · ·+D2d−1(x), (4)

which is the generating polynomial of {eu}u≥0 in Equa-
tion (2).

Lemma 2. Let p− 1 = 2df and a ∈ F∗p, if a (mod p) ∈
D` for some 0 ≤ ` ≤ 2d− 1, then we have

Dl(x
a) ≡ Dl+` (mod 2d)(x) (mod xp − 1),

where 0 ≤ l ≤ 2d− 1.

Proof. By Lemma 1 and the definition of Dl(x), we have

Dl(x
a) =

∑
n∈Dl

xan

=
∑

m∈aDl
xm

≡ Dl+` (mod 2d)(x) (mod xp − 1).

Lemma 3. Let p − 1 = 2df and a ∈ F∗p. For U(x) in
Equation (4), we have

U(βagd

) = U(βa) + 1,

where β ∈ F2 is a primitive p-th root of unity.

Proof. Since gd (mod p) ∈ Dd, using

D0(βa) +D1(βa) + · · ·+D2d−1(βa) =
∑
i∈F∗

p

βai = 1,

we have

U(βagd

)

= 1 +D0(βagd

) +Dd+1(βagd

) + · · ·+D2d−1(βagd

)

= 1 +Dd(βa) +D1(βa) + · · ·+Dd−1(βa)

(by Lemma 2)

= 1 + 1−D0(βa)−Dd+1(βa)− · · · −D2d−1(βa)

= 1 + U(βa).

We note that the operations here (and hereafter) are per-
formed in the algebraic closure F2 of F2.

Now we present main results of linear complexity of
{eu}u≥0. According to Equation (3), we will consider
below the number of n : 0 ≤ n < p such that U(βn) = 0
for β ∈ F2, which is a primitive p-th root of unity.

Proposition 1. Let p− 1 = 2df and {eu}u≥0 be defined
in Equation (2). Then the linear complexity of {eu}u≥0
satisfies

p− 1

2
+ ε(

p+ 1

2
) ≤ L({eu}u≥0) ≤ p− 1 + ε(

p+ 1

2
),

where ε(z) ∈ {0, 1} with ε(z) ≡ z (mod 2).
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Proof. As before, let β ∈ F2 be a primitive p-th root of
unity. If U(βn) = 0 for some n : 0 ≤ n < p, we find

that U(βngd

) = 1 by Lemma 3. We remark that the
map x → xgd on F∗p is injective, so there are at most
(p− 1)/2 many n ∈ F∗p such that U(βn) = 0. Since there
are exactly (p+1)/2 many 1’s in one period of {eu}u≥0, we
have U(1) = (p+ 1)/2 ≡ 0 (mod 2) iff ε(p+1

2 ) = 0. So in
this case, we have the lower bound on linear complexity
L({eu}u≥0) ≥ (p − 1)/2 + ε(p+1

2 ) and the upper bound

L({eu}u≥0) ≤ p− 1 + ε(p+1
2 ) by Equation (3).

For cryptographic applications, a sequence is required
to have large linear complexity such that it can resist the
Berlekamp-Massey algorithm. Below we discuss some spe-
cial cases, under which the linear complexity of {eu}u≥0
is maximal.

Proposition 2. Let p− 1 = 2df and {eu}u≥0 be defined
in Equation (2). If 2 is a primitive root modulo p, then
the linear complexity of {eu}u≥0 satisfies

L({eu}u≥0) = p− 1 + ε(
p+ 1

2
),

where ε(z) ∈ {0, 1} with ε(z) ≡ z (mod 2).

Proof. When 2 is a primitive root modulo p, we see
that xp−1 + · · · + x + 1 is irreducible and xp − 1 =
(x−1)(xp−1 + · · ·+x+ 1). Since the minimal polynomial
M(x) of {eu}u≥0 satisfies M(x)|(xp − 1), there are only
two choices for M(x):

M(x) = xp − 1 or M(x) = xp−1 + · · ·+ x+ 1.

On the other hand, we find that {eu}u≥0 satisfies the
following recurrence relation

en + en+1 + · · ·+ en+p−1 = (p+ 1)/2, n ≥ 0,

since again there are exactly (p + 1)/2 many 1’s in one
period of {eu}u≥0. Hence ε(p+1

2 ) = 0 implies M(x) =
xp−1 + · · · + x + 1 and L({eu}u≥0) = p − 1, otherwise,
L({eu}u≥0) = p.

When 2 is not a primitive root modulo p, it seems
difficult to determine the linear complexity of {eu}u≥0,
since now xp−1+ · · ·+x+1 is reducible over F2. However,
we have the following partial results.

Proposition 3. Let p− 1 = 2df and {eu}u≥0 be defined
in Equation (2) and suppose that 2 is not a primitive root
modulo p. If 2 ∈ D0 we have

L({eu}u≥0) =
p− 1

2
+ ε(

p+ 1

2
).

And if 2 ∈ D`0 ∪D2d−`0 for some 1 ≤ `0 ≤ d with `0|d or
gcd(`0, d) = 1, we have

L({eu}u≥0) = p− 1 + ε(
p+ 1

2
),

where ε(z) ∈ {0, 1} with ε(z) ≡ z (mod 2).

Proof. Let β ∈ F2 be a primitive p-th root of unity. If
2 ∈ D0, then U(βa) ∈ F2 for all a ∈ F∗p from the fact
(U(βa))2 = U(β2a) = U(βa). So by Lemma 3 for any

a ∈ F∗p either U(βa) = 0 or U(βagd

) = 0, and hence there
are exactly (p − 1)/2 many a ∈ F∗p such that U(βa) = 0,
which implies the value of the linear complexity.

For the second statement, we need to show U(βa) 6∈ F2

for all a ∈ F∗p. Suppose that U(βa0) ∈ F2 for some
a0 ∈ F∗p. Firstly let 2 ∈ D`0 . Using the equation

(U(βa0))2
i+1

= (U(βa0))2
i

for all i ≥ 0, we get

`0∑
k=1

Dk+i`0(βa0) =

d+`0∑
k=d+1

Dk+i`0(βa0), (5)

here and hereafter, the subscripts of D are all modulo 2d.
If gcd(`0, d) = 1, after adjusting the equations above,

we get

`0+j∑
k=1+j

Dk(βa0) +

d+`0+j∑
k=d+1+j

Dk(βa0) = 0

for j = 0, 1, . . . , d− 1. And hence we derive

`0+j∑
k=1+j

Dk(β) +

d+`0+j∑
k=d+1+j

Dk(β) = 0

for j = 0, 1, . . . , d− 1. If d = 1, it contradicts to

D0(β) +D1(β) = 1.

For d > 1, let

Fj(x) =

`0+j∑
k=1+j

Dk(x) +

d+`0+j∑
k=d+1+j

Dk(x).

For any n ∈ Di, 0 ≤ i ≤ 2d− 1, we derive

Fj(β
n) =

`0+j∑
k=1+j

Dk(βn) +

d+`0+j∑
k=d+1+j

Dk(βn)

=

`0+j∑
k=1+j

Dk+i(β) +

d+`0+j∑
k=d+1+j

Dk+i(β)

= Fj+i(β) = 0

for j = 0, 1, . . . , d − 1. That is to say, each Fj(x) has
at least p − 1 many roots. But we remark that p − 1 =
g(p−1)/2 = gdf ∈ D0 ∪Dd, which implies that there exists
at least one Fj(x) such that its degree is smaller than
p− 1, a contradiction.

If `0|d, from Equation (5) we will get

2d−1∑
k=0

Dk(βa0) = 0,

which contradicts to
∑
i∈F∗

p

βai = 1.
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Secondly, let 2 ∈ D2d−`0 . Using

∑
i∈F∗

p

βai =

2d−1∑
k=0

Dk(βa) = 1

for all a ∈ F∗p, we derive a similar argument as above.

In order to control the generation of {eu}u≥0 easily, we
present the following corollary for special d.

Corollary 1. Let p− 1 = 2df and {eu}u≥0 be defined in
Equation (2). If d is a prime, then the linear complexity
of {eu}u≥0 satisfies

L({eu}u≥0) =

{
p− 1 + ε(p+1

2 ), if 2 6∈ D0,
p−1
2 + ε(p+1

2 ), if 2 ∈ D0,

where ε(z) ∈ {0, 1} with ε(z) ≡ z (mod 2).

Certain related binary sequences have been investi-
gated in the references. As special cases of Corollary 1,
the following cyclotomic sequence of order 4, which is a
complement of {eu}u≥0 (in this case, d = 2), see [8, Chap-
ter 8] or [1], is defined as

fu =

{
0, if u (mod p) ∈ {0} ∪D0 ∪D3,
1, if u (mod p) ∈ D1 ∪D2,

u ≥ 0,

and the cyclotomic sequence of order 6, see [14], is defined
as

hu =

{
0, if u (mod p) ∈ {0} ∪D1 ∪D2 ∪D3,
1, if u (mod p) ∈ D4 ∪D5 ∪D0,

u ≥ 0

which is a slight modification of {eu}u≥0 (in this case,
d = 3). The idea of this article can help us to determine
the linear complexity of {fu}u≥0 and {hu}u≥0.

Corollary 2. Let p − 1 = 2df and {eu}u≥0 be defined
in Equation (2). If d = 4, then the linear complexity of
{eu}u≥0 satisfies

L({eu}u≥0) =

{
p− 1 + ε(p+1

2 ), if 2 6∈ D0,
p−1
2 + ε(p+1

2 ), if 2 ∈ D0,

where ε(z) ∈ {0, 1} with ε(z) ≡ z (mod 2).

Unfortunately, for other composite d, the argument is
more complicated. With notations as in Proposition 3,
when 1 < gcd(`0, d) < `0 experiments show that linear
complexity might take other values except p− 1 + ε(p+1

2 )

and p−1
2 + ε(p+1

2 ), see Table 1. In fact, let ordp(2) be the
order of 2 modulo p. When 2 is not a primitive root of
p, from the fact that xp−1 + · · · + x + 1 can be written
as the product of p−1

ordp(2)
many irreducible polynomials of

degree ordp(2) over F2, see e.g. [8], the linear complexity
of {eu}u≥0 is of the form p−1

2 + k · ordp(2) + ε(p+1
2 ) with

some integer 0 ≤ k ≤ p−1
2·ordp(2) .

Table 1: Linear complexity of {eu}u≥0 for some p and d
with 1 < gcd(`0, d) < `0

p g d L({eu}u≥0) `0 ordp(2)

31 3 15 25 6 5
73 5 12 55 8 9
127 3 63 119 54 7
151 6 15 120 10 15
241 7 15 193 6 10
337 10 12 253 8 12
337 10 24 293 16 21
601 7 60 551 48 25
631 3 21 540 14 45
881 3 40 826 16 55
911 17 65 819 20 91

Corollary 3. Let Ep be the discrete logarithm thresh-
old sequence (of period p) with the first period defined in
Equation (1). Then the linear complexity of Ep satisfies

L(Ep) ≥ p− 1

2
+ ε(

p+ 1

2
).

In particular,

L(Ep) = p− 1 + ε(
p+ 1

2
)

if (p− 1)/2 is prime or 2 is a primitive root modulo p.

There exist primes p such that L(Ep) 6= p− 1 + ε(p+1
2 )

when (p − 1)/2 is not a prime number. For example, in
Table 1, p = 241, we have (p − 1)/2 = 120 and L(Ep) =
193 6= p− 1 + ε(p+1

2 ).

3 Concluding Remarks

In this work, we have shown that the linear complexity
of a family of discrete logarithm threshold sequences of
period p is at least the half of their period, which can resist
the B-M attack. We also gave some special conditions
under which the linear complexity can achieve maximal.

We remark that we only concentrate on the thresh-
old sequences in terms of the discrete logarithm of in-
tegers modulo p. Recently a family of binary threshold
sequences of period p2 has been defined by using Fermat
quotient and its generalizations, such sequences are re-
lated to discrete logarithm of integers modulo p2 [5, 7, 22].

The idea of this work can also help us to deal with
binary threshold sequences defined by the discrete loga-
rithm of integers modulo pr for r ≥ 3. Actually Ref.[14]
deals with the case of any r ≥ 2 and d = 3. Of course, it is
interesting to study binary threshold sequences in terms
of the discrete logarithm of integers modulo pq, thanks to
the Jacobi sequence and its generalizations investigated
in the literature [6, 10, 12, 20, 21].
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[19] A. Sárközy, “A finite pseudorandom binary se-
quence”, Studia Scientiarum Mathematicarum Hun-
garica, vol. 38, no. 1–4, pp. 377–384, 2001.

[20] T. Yan, “New Binary Sequences of Period pq with
Low Values of Correlation and Large Linear Com-
plexity”, International Journal of Network Security,
vol. 10, no. 3, pp. 185–189, 2010.

[21] T. Yan, X. Du, S. Li and G. Xiao, “Trace represen-
tations and multi-rate constructions of two classes
of generalized cyclotomic sequences”, International
Journal of Network Security, vol. 7, no. 2, pp. 269–
272, 2008.

[22] C. Wu, Z. Chen and X. Du, “Binary Threshold Se-
quences Derived from Carmichael Quotients with
Even Numbers Modulus”, IEICE Transactions on
Fundamentals of Electronics, Communications and
Computer Sciences, vol. E95-A, no. 7, pp. 1197–1199,
2012.

Chenhuang Wu was born in 1981. He received the M.S.
degree in mathematics from Minnan Normal University in
2007. Now he is an associate professor of Putian Univer-
sity. His research interests include stream cipher, elliptic
curve cryptography and digital signatures.

Xiaoni Du was born in 1972. She received the M.S de-
gree in computer science from Lanzhou University in 2000
and Ph.D. degree in cryptography from Xidian Univer-
sity, China, in 2008, respectively. Now she is a professor
of Northwest Normal University. Her research interests
include cryptology and information security.

Zhengtao Jiang was born in 1976. He got doctor de-
gree in 2005, and now he is an associate professor work-
ing for Department of Computer Science, Communication



International Journal of Network Security, Vol.18, No.3, PP.487-492, May 2016 492

University of China. His research interest include: Infor-
mation security, Public opinion analysis, Computational
advertising.


