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Abstract

In 2013, Baseri et al. proposed an untraceable off-line
electronic cash scheme from the RSA cryptosystem. They
used a method that injects the expiration date and the
spenders identity onto the coin to prevent double spend-
ing. The authors claimed that the scheme provides the
properties of anonymity, unforgeability, double spend-
ing detection, and date attachability. Unfortunately, we
find that there are security flaws in terms of verifiabil-
ity, unreuseablity, and unforgeability. First, the verifiable
method of e-cash in their scheme is not correct according
to Euler’s Theorem. Second, malicious spenders can in-
ject a false identity in the withdrawal phase due to the
homomorphic property of modular operation. Therefore,
coins can be doubly spent without being detected. Fi-
nally, a malicious spender or merchant can forge valid
coins using existing coins.
Keywords: Electronic cash, off-line, unforgeability, un-
reuseablity, verifiability

1 Introduction

Electronic cash (e-cash) is a more convenient method of
payment in electronic commerce compared with tradi-
tional paper cash. In general, there are three entities
involved in an e-cash scheme: the bank, the spender,
and the merchant. The spender withdraws the e-cash
from his/her account and then pays it to the merchant
for some goods or services. The merchant sends his/her
e-cash to the bank and deposits it in his/her account.
An e-cash scheme should have the properties of unforge-
ability, untraceable, verifiability, unreuseability [12] and
might have properties such as divisibility, transferability,
anonymity revocation, and so on. Depending on whether

the bank attends to the transaction between the spender
and the merchant, the e-cash scheme can be classified
into two categories: on-line and off-line. In an on-line
scheme [2, 8, 10], the bank must attend the transaction
to detect double spending; thus, it exhausts the most
resources of the bank. An off-line scheme is more effi-
cient, because the bank does not attend the transaction.
Therefore, the off-line e-cash scheme is a more attractive
research area.

Since Chaum et al. [3] proposed the first off-line e-
cash scheme, numerous such schemes have been pre-
sented [1, 4, 6, 7, 13]. Unfortunately, there is not a
globally acceptable off-line scheme, and many existing
schemes have security flaws [1, 5, 9]. For example, in
2013, Baseri et al. [1] found that Eslami and Talebi’s
scheme [6] had three faults: attacking double spender de-
tection, forging the expiration, and cheating on exchange
protocol. They proposed a secure untraceable off-line
electronic cash scheme from the RSA cryptosystem. In
order to prevent double spending, they injected the ex-
piration date and the spender’s identity onto the coin in
withdrawal phase. In [1], it was claimed that the au-
thor’s scheme provides the properties of anonymity, un-
forgeability, double spending detection, and date attach-
ability. However, we find that Baseri et al.’s scheme has
some security flaws such as verifiability, double spending
detection, and unforgeability. First, the verifiable method
of e-cash in this scheme is not correct according to Euler’s
Theorem [11], and we revise the flaw in Subsection 3.1.
Second, malicious spenders can withdraw coins without
injected their actual identities using the homomorphic
property of modular operation. Therefore, the bank can-
not detect their identities when double spending occurs.
Finally, a malicious spender or merchant can forge valid
coins using existing coins due to the homomorphic prop-
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erty of modular operation.
The rest of the paper is organized as follows. In Sec-

tion 2, we review Baseri et al.’s scheme [1]. We describe
the flaws of Baseri et al.’s scheme in detail in Section 3,
and the conclusion is given in Section 4.

2 Review of Baseri et al.’s Scheme

Baseri et al.’s [1] scheme has four participants: a central
authority, the bank, the spender, and the merchant. It
also has six phases: initialization, opening an account,
withdrawal, payment, deposit, and exchange. We de-
scribe them as follows, excluding the exchange phase for
simplification.

2.1 Initialization

The central authority (CA) selects two distinct large
primes p and q, computes n = p · q and ϕ(n) = (p −
1) · (q − 1), picks two random numbers g1, g2 ∈R Z∗n with
the same large prime order l. Next, he/she picks two ran-
dom numbers e′B , eB ∈R Z∗ϕ(n) such that e′B < eB and
gcd(e′B , ϕ(n)) = gcd(eB , ϕ(n)) = 1, computes 1/e′B and
1/eB such that e′B ·(1\e′B) = eB ·(1\eB) = 1(modϕ(n)).
Then, CA selects a one-way hash function H, pub-
lishes (g1, g2, n, e′B , eB , H) and keeps (1/e′B , 1/eB , ϕ(n))
secretly.

2.2 Opening an Account

Step 1. Spender → Bank: IDC and a zero knowledge
proof that he/she knows u.

The spender selects u ∈R Z∗eB
, computes IDC =

gu
1 (mod n) such that gu

1 · g2 6= 1(mod n), and gen-
erates a zero knowledge proof that he/she knows the
discrete logarithm of IDC .

Step 2. Bank → Spender: O1.

The bank checks the zero knowledge proof and com-
putes A = IDC · g2(mod n), and O1 = A1/eB (mod
n).

2.3 Withdrawal

Step 1. Spender → Bank: (ω1, ω2, t).

The spender chooses x1, x2 ∈R Z∗e′B and s, b1, b2 ∈R

Z∗n. Then, the spender computes A′ = As(mod n),
B = gx1

1 · gx2
2 (mod n), ω1 = B · b

e′B
1 (modn), and

ω2 = (A′ + B) · b(eB∗t)
2 (mod n).

Step 2. Bank → Spender: (O2, O3), where O2 =
ω

1/e′B
1 (mod n), and O3 = ω

1/(eB∗t)
2 (mod n).

Step 3. The spender stores (A′, B, s1, s2, s3, t) as his/her
Coin, where s1 = Os

1(modn), s2 = O2/b1(modn),
and s3 = O3/b2(mod n).

Note that s1, s2, and s3 are signatures of A′, B, and
A′ + B, respectively, with the private keys 1/eB , 1/e′B ,
and 1/(eB ∗ t), respectively.

2.4 Payment

Step 1. Spender → Merchant: Coin, where Coin =
(A′, B, s1, s2, s3, t).

Step 2. Merchant →Spender: d.

The merchant checks whether A′ 6= 0, and s1, s2, and
s3 are valid signatures of A′, B, and A′ + B, respec-
tively, and computes d = H(A′, B, IDM , date||time).

Step 3. Spender → Merchant: (r1, r2), where r1 = d ·u ·
s + x1(mod eB), and r2 = d · s + x2(mod eB).

Step 4. The merchant accepts the Coin if equation gr1
1 ·

gr2
2 = (A′)d ·B(mod n) holds.

2.5 Deposit

Step 1. Merchant → Bank: (Coin, r1, r2).

Step 2. The bank checks the merchant’s identity and the
validity of the Coin. If valid, he/she checks whether
the Coin is in the bank’s database; if not, he/she
stores the Coin. If there is another (Coin, r′1, r

′
2) in

the bank’s database, then the bank can detect the
identity of the malicious spender by u = r1−r′1

r2−r′2
(mod

eB), and IDC = gu
1 (mod n).

3 Security Analysis of Baseri et
al.’s Scheme

3.1 Dissatisfying Verifiability

In Steps 3 and 4 of the payment phase, the spender
sends r1 = d · u · s + x1(modeB), and r2 = d · s +
x2(modeB) to the merchant, who accepts the Coin if
gr1
1 · gr2

2 = (A′)d · B(modn) holds. In order to ensure
that gr1

1 · gr2
2 = (A′)d · B(modn) holds, the r1 and r2

should be revised as r1 = d · u · s + x1(modϕ(n)) and
r2 = d · s + x2(mod ϕ(n)), respectively, according to Eu-
ler’s theorem [11], which states that if n and a are co-
prime positive integers, then aϕ(n) = 1(modn). How-
ever, the spender does not know the value ϕ(n). Thus,
we can only adopt an inefficient method to revise them
into r1 = d · u · s + x1, r2 = d · s + x2. Furthermore, the
value in Step 2 of the deposit phase must be modified as
u = ( r1−r′1

r2−r′2
(mod ϕ(n)))(mod eB).

3.2 Attacking Double Spending Detec-
tion

A malicious spender can forge one identity in the with-
drawal phase to avoid being detected when he/she doubly
spends the e-cash. Suppose that the malicious spender
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changes his/her identity IDC into ID∗
C . When double

spending occurs, the bank cannot find who doubly spends
the e-cash even if he/she has computed ID∗

C . There are
two methods to forge the spender’s identity, as described
in the following.

3.2.1 Forging Identity Independently

We first describe how to forge one identity without any
help from a third party.

Step 1. The malicious spender executes the withdrawal
phase similar to Baseri et al.’s scheme except that
he/she changes ω1 and ω2 into ω1 = g1 · be′B

1 (mod n),
and ω2 = g1 · b

(eB∗t)
2 (modn). Of course, the coin

that he/she obtained is not a valid coin, but he/she
can obtain s2 = O2/b1(modn) = g

1/e′B
1 , s3 =

O3/b2(modn) = g
1/(eB∗t)
1 . Then, he/she computes

g
1/eB

1 = st
3(modn), and denotes α1 = g

1/eB

1 (mod
n), β1 = g

1/e′B
1 (mod n), and γ1 = g

1/(eB∗t)
1 (mod n).

Similarly, he/she can obtain α2 = g
1/eB

2 (modn),
β2 = g

1/e′B
2 (mod n), and γ2 = g

1/(eB∗t)
2 (mod n).

Step 2. The spender executes the withdrawal phase sim-
ilar to Baseri et al.’s scheme except that he/she
changes A′ into A′∗ = ga1

1 · ga2
2 (modn), where

a1, a2 ∈R Z∗e′B . Then, he/she computes s∗1 =
αa1

1 · αa2
2 (modn). This is a valid signature of A′∗,

because (s∗1)
eB = (αa1

1 · αa2
2 )eB = ((g1/eB

1 )a1 ·
(g1/eB

2 )a2)eB = ga1
1 · ga2

2 = A′∗(modn). Further-
more, he/she can change r1 and r2 into r∗1 = d·a1+x1

and r∗2 = d · a2 + x2 , respectively, in the pay-
ment phase and can pass all verifications, because
g

r∗1
1 ·gr∗2

2 = gd·a1+x1
1 ·gd·a2+x2

2 = (ga1
1 ·ga2

2 )d ·gx1
1 ·gx2

2 =
(A′∗)d ·B(mod n).

Thus, the spender withdraws a valid coin
(A′∗, B, s∗1, s2, s3) without being injected his/her identity.
If he/she doubly spends the coin, the bank can obtain
(r∗1 , r∗2) and (r∗1

′, r∗2
′) with identical coin (A′∗, B, s∗1, s2, s3)

and compute u∗ = r∗1−r∗1
′

r∗2−r∗2
′ = (a1

a2
mod ϕ(n)))(modeB).

However, the coin does not contain the identity of
spender, and the bank cannot find out who doubly
spends the coin with the value u∗.

3.2.2 Forging Identity Jointly

We give a method for constructing one forging identity if
two malicious spenders collaborate. The attack succeeds
due to the homomorphic property of modular operation.

Step 1. Two malicious spenders C1 and C2 execute the
opening an account phase. At the end of this phase,
they have their identities IDC1 = gu1

1 (mod n), and
IDC2 = gu2

1 (mod n), respectively, and the values
A1, A2, OC1,1, OC2,1.

Step 2. The spenders execute the withdrawal phase sim-
ilar to Baseri et al.’s scheme, except that they work
together to compute A′∗ = Aa1

1 ·Aa2
2 (mod n) instead

of A′ for some a1, a2 ∈R Z∗n, and s∗1 = Oa1
C1,1 ·

Oa2
C2,1(mod n) instead of s1. Here, s∗1 is a valid sig-

nature of A′∗, because (s∗1)
eB = (Oa1

C1,1 · Oa2
C2,1)

eB =
(OeB

C1,1)
a1 · (OeB

C2,1)
a2 = Aa1

1 · Aa2
2 = A′∗(modn).

Furthermore, they work together to compute r∗1 =
d ·(a1 ·u1 +a2 ·u2)+x1 and r∗2 = d ·(a1 +a2)+x2 in-
stead of r1 and r2 in the payment phase and can pass
all verifications since g

r∗1
1 · gr∗2

2 = g
d·(a1·u1+a2·u2)+x1
1 ·

g
d·(a1+a2)+x2
2 = ((gu1

1 · g2)a1(gu2
1 · g2)a2)d · gx1

1 · gx2
2 =

(A′∗)d ·B(mod n).

Thus, they can withdraw a valid coin (A′∗, B, s∗1, s2, s3)
without being injected their actual identities. If they
doubly spend the coin, the bank can obtain (r∗1 , r∗2) and
(r∗′1 , r∗′2 ) with identical coin (A′∗, B, s∗1, s2, s3) and com-
pute u∗ = r∗1−r∗′1

r∗2−r∗′2
= (a1·u1+a2·u2

a1+a2
mod ϕ(n)))(modeB).

However, the coin does not contain the identity of
spender, and the bank cannot find who doubly spend the
coin with the value u∗.

3.3 Attacking Unforgeability

Suppose a malicious spender has a valid coin
(A′, B, s1, s2, s3). He/she can forge valid coins inde-
pendently. Furthermore, a malicious merchant can forge
a valid coin by cheating the spender or with the help of
the spender.

3.3.1 Forging Coins Independently

We first forge a valid coin by a malicious spender inde-
pendently.

Step 1. This is identical to Step 1 in Subsection 3.2.1.

Step 2. With coin (A′, B, s1, s2, s3), the spender picks
two random values a1, a2 ∈R Z∗e′B and computes
A′∗ = A′ ·ga1

1 ·ga2
2 (modn), B∗ = B ·ga1

1 ·ga2
2 (modn),

s∗1 = s1 · αa1
1 · αa2

2 (modn), s∗2 = s2 · βa1
1 · βa2

2 (modn),
and s∗3 = s3 ·γa1

1 ·γa2
2 ( mod n). In the payment phase,

the spender computes r∗1 = d · (u · s + a1) + x1 + a1,
and r∗2 = d · (s + a2) + x2 + a2 because he/she knows
the value of (u, s, x1, x2).

Obviously, s∗1, s∗2, and s∗3 are valid signatures of A′∗,
B∗, and A′∗ + B∗, respectively. We can verify by the
following equations: (s∗1)

eB = (s1 · αa1
1 · αa2

2 )eB = (s1 ·
(g1/eB

1 )a1 · (g1/eB

2 )a2)eB = A′ · ga1
1 · ga2

2 = A′∗(modn),
(s∗2)

e′B = (s2 · βa1
1 · βa2

2 )e′B = B · ga1
1 · ga2

2 = (s2 ·
(g1/e′B

1 )a1 · (g1/e′B
2 )a2)e′B = B · ga1

1 · ga2
2 = B∗(modn), and

(s∗3)
(eB∗t) = (s3 · γa1

1 · γa2
2 )(eB∗t) = (s3 · (g1/(eB∗t)

1 )a1 ·
(g1/(eB∗t)

2 )a2)(eB∗t) = (A′+B)·ga1
1 ·ga2

2 = (A′∗+B∗)( mod
n). Furthermore, the spender can compute (r∗1 , r∗2) which
satisfies g

r∗1
1 · g

r∗2
2 = g

d·(u·s+a1) +x1+a1
1 g

d·(s+a2)+x2 +a2
2 =

((gu·s
1 · gs

2) · (ga1
1 · ga2

2 ))d · ((gx1
1 · gx2

2 ) · (ga1
1 · ga2

2 )) =
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(A′ · ga1
1 · ga2

2 )d · (B · ga1
1 · ga2

2 ) = (A′∗)d ·B∗(modn). Thus,
the coin (A′∗, B∗, s∗1, s

∗
2, s

∗
3) is valid and can be spent with

any merchant.

3.3.2 Forging Coins by Cheating the Spender

The malicious merchant also can generate a valid coin by
cheating the spender. We describe the detailed process as
follows.

Step 1. This is same as Step 1 in Subsection 3.2.1.

Step 2. In the payment phase, when the malicious mer-
chant obtains a valid coin (A′, B, s1, s2, s3), he/she
computes A′∗ = A′ · ga1

1 · ga2
2 (modn), B∗ = B · ga1

1 ·
ga2
2 (modn), d∗ = H(A′∗, B∗, IDM , date||time), and

sends d∗ to the spender. The spender sends r1 =
d∗ · u · s + x1(modeB), and r2 = d∗ · s + x2(modeB)
to the merchant. Then, it is claimed by the merchant
that the value d∗ is not correct or there is a network
fault and stops the transaction. Next, the merchant
computes r∗1 = r1+d·a1+a1, and r∗2 = r2+d·a2+a2.
If the spender is honest, the (r∗1 , r∗2) is valid, because
g

r∗1
1 · gr∗2

2 = gr1+d∗·a1 +a1
1 · gr2+d∗·a2 +a2

2 = (gr1
1 · gr2

2 ) ·
(ga1

1 · ga2
2 )d∗ · ga1

1 · ga2
2 = (A′ · ga1

1 · ga2
2 )d∗(B · ga1

1 ·
ga2
2 ) = (A′∗)d∗ · B∗(modn). Then, he/she computes

s∗1 = s1 · αa1
1 · αa2

2 (modn), s∗2 = s2 · βa1
1 · βa2

2 (modn),
and s∗3 = s3 · γa1

1 · γa2
2 (modn).

According to Step 2 in Subsection 3.3.1, s∗1, s∗2, and s∗3
are valid signatures of A′∗, B∗, and A′∗+B∗ respectively.
Thus, the coin (A′∗, B∗, s∗1, s

∗
2, s

∗
3) with (r∗1 , r∗2) is valid

for the merchant and can be later deposited in the bank.
Furthermore, the spender cannot detect the cheating, be-
cause that he/she can spend his/her coin (A′, B, s1, s2, s3)
normally.

3.3.3 Forging Coins with the Help of the Spender

If there is a malicious merchant colluding with a malicious
spender, they also can forge a valid coin by following the
same process described in Subsection 3.3.2.

4 Conclusions

We review Baseri et al.’s [1] off-line electronic cash scheme
and find three flaws. First, the scheme cannot satisfy ver-
ifiability. Second, malicious spenders can withdraw coins
independently or jointly without being injected his/her
identity, therefore, the bank cannot detect the coins owner
when double spending occurs. This violates the prop-
erty of unreuseability. Finally, a malicious spender can
forge valid coins using existing coins, and a malicious
merchant can forge valid coins by cheating or colluding
with a spender. This violates the property of unforgeabil-
ity. From above, the Baseri et al.’s scheme is not secure.
Presently, we are investigating how Baseri et al.’s method
can be greatly modified to defend all possible kinds of
attacks.
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