
International Journal of Network Security, Vol.18, No.3, PP.433-444, May 2016 433

The Policy Mapping Algorithm for High-speed
Firewall Policy Verifying

Suchart Khummanee and Kitt Tientanopajai
(Corresponding author: Suchart Khummanee)

Department of Computer Engineering, Khon Kaen University

Khon Kaen 40002, Thailand

(Email: khummanee@gmail.com)

(Received Feb. 8, 2015; revised and accepted June 5 & Aug. 12, 2015)

Abstract

In this paper, we have proposed a novel algorithm and
data structures to improve the speed of firewall policy ver-
ification. it is called the policy mapping (PMAP). Time
complexity of the proposed technique is O(1) to verify
incoming-outgoing packets against the firewall policy. Be-
sides, the algorithm is not limited to handle IP network
classes as IPSET which is the top of high-speed firewall
open source today. PMAP can also optimize the firewall
rule decision by employing the firewall decision state dia-
gram (FDSD) to clarify ordering of policy verifying. The
consumed memory of PMAP is reasonable. It consumes
the memory usage around 3.27 GB for maintaining rule
data structures processing the firewall rule at 5,000 rules.

Keywords: Firewall policy, packet matching, packet veri-
fying, policy mapping, policy verifying

1 Introduction

In the realm of network security, firewalls are an essen-
tial tool for protecting against undesirable traffic from
untrusted networks. Generally, firewalls are usually
equipped at the gateway between trusted (Private net-
work) and untrusted networks (Public network) as shown
in Figure 1. Firewalls consider inbound-outbound pack-
ets passing through itself by following the defined poli-
cies (technically called rules). Firewall rules mean the in-
struction sets compounded from various conditions e.g.,
IP address, protocol, port number and action. If a packet
matches one of the defined rules in the firewall, either
accept or deny is selected from the action field. The accept
action allows packets to pass the firewall; on the other
hand, the deny action entirely drops packets to the trash
can as shown in Table 1.

According to Table 1, rule no. 7 (r7) represents that
firewall permits source IP addresses ranging from 10.0.0.0
to 10.0.0.255 (256 hosts) onto destination IP addresses in

Figure 1: The basic firewall operation and installation

the range of 20.0.0.0 to 20.0.0.255 (256 hosts), any source
ports (0 - 65,535), a destination port number 80 and 443,
and TCP or UDP protocol to pass through the firewall.
In contrast, rule no. 4 (r4) always drops every packet
form source IP addresses ranging from 10.0.0.0 to 10.0.0.3
onto destination IP addresses in the range of 20.0.0.0 to
20.0.0.3, any source port, a destination port number 80,
and both protocols. Besides, firewalls always set the final
rule (usually called an implicit denying rule: r8) at the
bottom of the rule list by dropping all packets that are
not matched with the above rules.

Basically, firewall rules are executed from the top to
bottom, denoted as r1 =⇒ r2 =⇒ · · · =⇒ rn. Fire-
walls working in this manner are called Rule-List or Rule-
Base firewalls. For evaluating the effectiveness of Rule-
Base firewall verification, the time complexity has very
slow efficiency, that is O(n), where n is the number of
firewall rules. Nevertheless, memory consuming is quite
small. Rule-Base firewalls are appropriate for individual
persons and small businesses. However, it is not proper
for large companies because firewall rules are usually di-
verse. Chapple et al. [3] surveyed and found that the size
of firewall rule lists ranged from 2 to 17,000 rules, and
an average of rules around 140 - 200 approximately. In a
large organization, a firewall has about 2,000 rules, with
each rule checking between 4 and 7 fields. Thus, the fire-
wall needs to verify rules against 14,000 times per one

International Journal of Network Security, Vol.18, No.3, PP.433-444, May 2016 434

Table 1: Firewall rule examples

No. Source IP Destination IP Source Port Destination Port Protocol Action
r1 10.0.0.10 20.0.0.2 * 21 - 22 TCP, UDP ACCEPT
r2 10.0.0.10 20.0.0.2 5000 23 - 25 TCP, UDP DENY
r3 10.0.0.0-3 20.0.0.2 * 80 TCP, UDP DENY
r4 10.0.0.0-3 20.0.0.0-3 * 80 TCP, UDP DENY
r5 10.0.0.2 20.0.0.2 * 80 - 145 TCP, UDP ACCEPT
r6 10.0.0.* 20.0.0.* * * TCP, UDP ACCEPT
r7 10.0.0.* 20.0.0.* * 80, 443 TCP, UDP ACCEPT
r8 * * * * * DENY

packet in the worst case (7 x 2,000).

To improve performance of firewall rule verification,
Clark and Agah [4] presented a firewall policy diagram
(FPD) and data structures to seek and solve the prob-
lem of a large network behavior in firewall policy. Liu
and Gouda [10] proposed a diverse firewall approach that
produced time complexity as O(nd), where n is the num-
ber of firewall rules and and d is the number of checked
fields. After that Acharya and Gouda [1] claimed that
their liner time algorithm improved on the diverse firewall
from O(nd) to O(nd). For dealing with rules and continu-
ally increasing traffic, researchers tried to solve this prob-
lem. Hamed et al. [6] presented a statistical search tree
model for filtering and matching packets, whose compu-
tational complexity was O(n ∗ log(n)), Gouda and Liu [5]
proposed the firewall decision diagram (FDD) which clar-
ified packet matching and increased the speed of verifying
to O(log(n)). In addition, Puangpronpitag et al. [8] in-
troduced a single domain decision concept to get rid of
firewall rule conflicts and improve the verifying speed to
be O(log(n)) by using tree structure. A tree-rule proposed
on cloud computing by Xiangjian et al. [15], produced a
processing time for O(log(n)). Due to huge traffic of a gi-
gabit in the network today, IPSet [12] which is under the
Netfilter project and the top of high-speed firewall open
source nowadays is O(1) for firewall rule verification. It
rearranges the rules of Rule-Base firewall to groups of
similar behavior like IP addresses in the same class be-
fore deploying the modified groups to a hashing method.
However, one drawback of IPSet is the limitation of IP
class management. It can only be implemented in a IP
Classes C and B – excluding Class A.

According to the weakness of the IPSet as mentioned
above, our research focuses on the firewall policy verifi-
cation because it is the major key to reduce a firewall’s
performance. Consequently, in this paper, we propose the
novel algorithm for high-speed firewall rule verification,
called the policy mapping (PMAP), which is O(1).
PMAP also handles all IP network classes. The rest of
the paper is organized as follows: Section 2 presents the
firewall background, the design of policy mapping and
implementation are explained in Section 3. In Section 4,
we demonstrate the performance evaluation of firewalls,
which is divided into two sorts, i.e., the computation time

and space complexity. In addition, we compare the per-
formance of our proposed model against other firewalls.
Finally, we give conclusions and future work in Section 5.

2 Firewall Background

2.1 The Rule-Base Firewall

Basically, the Rule-Base firewall rule consists of six condi-
tions, which are source IP address (src ip), destination IP
address (dst ip), source port (src port), destination port
(dst port), protocol (pro) and an action (act). The first
five conditions (src ip to pro) are called the predicate,
and an act is called the decision, which is formulated as
follows:

〈predicate〉 → 〈decision〉

〈src ip ∧ dst ip ∧ src port ∧ dst port ∧ pro〉 → 〈act〉

Where ∧ denotes AND operation. src ip and dst ip are
unique addresses used to locate and identify a device
over the network. The unique address is a 32-bit num-
ber (Internet Protocol Version 4: IPv4) consisting of 4
octets (oct) separated by dots such as 192.168.10.100,
200.0.*.* (∗ ∈ Z+

n : n ≥ 0 ∧ n ≤ 255). Indeed, an
IP address can be transformed to the positive integer
(Z+

n : n ≥ 0, n ≤ 232−1) as shown the following equation.

Octet1 × 224 + Octet2 × 216 + Octet3 × 28 + Octet4 × 20

For example, converting an IP address such as
192.168.10.100 to Z+

n , the conversion process can be per-
formed as follows:

192×224+168×216+10×28+100×20 = 3, 232, 238, 180.

src port and dst port are used to distinguish itself from
other applications running over TCP or UDP by reserv-
ing and using a 16-bit port number. The port number
80 [14], for example, is reserved for the Hyper text trans-
fer protocol (HTTP), Domain Name System (DNS) is as-
signed to port number 53, etc. Also, the reserved ports
are called the well-known ports. The last one of the pred-
icates is a standard protocol [7] which defines a method of

International Journal of Network Security, Vol.18, No.3, PP.433-444, May 2016 435

exchanging data over a computer network such as Trans-
mission Control Protocol (TCP) and User Datagram Pro-
tocol (UDP). It has an 8-bit number ranging from 0 - 255,
i.e., the port no. 6 for TCP, no. 17 for UDP respectively.

Finally, act is the decision that is either accept or deny.
The accept allows the traffic or packets that can pass
through the firewalls to the destination networks, while
the others are discarded.

2.2 Defining Rule-based Firewall Rule

Let r denote a firewall rule, and n denote the rule number
(n ∈ Z+ and n 6= 0). We frequently specify the firewall
by writing:

r1 : 〈predicate1〉〈decision1〉 ⇒ 1st rule.
r2 : 〈predicate2〉〈decision2〉 ⇒ 2nd rule.
...
rn : 〈predicaten〉〈decisionn〉 ⇒ the final rule.

Table 1 demonstrates examples of the actual Rule-Base
firewall rules. For the sake of simplicity, we represent the
range of host IP addresses using “-”, and “*” for any range
of IP addresses. In r3, for example, src ip is 10.0.0.0-3,
which represents the range of IP address from 10.0.0.0 -
10.0.0.3 (or 167,772,160 - 167,772,163 in a decimal for-
mat), and 10.0.0.* (src ipr6) substitutes a set of IP ad-
dresses between 10.0.0.0 and 10.0.0.255 (256 hosts).

2.3 Packet Matching vs. Mismatching

Let p denote packets flowing in and out of firewalls, and x
denote the packet number by x ∈ Z+ and x 6= 0. We
can form a set of packets to be px = {p1, p2, ..., px}.
The packet is a formatted unit of data carried by a
packet mode in the computer network. Generally, a
packet consists of two types of data, i.e., control com-
mands and user information (payload). The control com-
mands provide the communication standards that the net-
work needs to deliver the user information, i.e., source
and destination IP addresses, error detection codes, se-
quencing information and so forth. In fact, control com-
mands are set in both headers and trailers of the packet,
and the payload is placed in the middle. In this pa-
per, we only take four key fields from the packet for
verifying against firewall rules, which are src ip, dst ip,
dst port and pro. Assuming that an incoming packet
(p1) flows into the firewall; it is formed from src ip =
10.0.0.10, dst ip = 20.0.0.2, src port = 1,024, dst port
= 21 and pro = TCP. We can rewrite a set of pack-
ets p1 = {src ip1, dst ip1, src port1, dst port1, pro1} =
{10.0.0.101, 20.0.0.21, 10241, 211, TCP1}. The packet
p1 is matched with firewall rules r1, r6 and r8 in the Ta-
ble 1. However, for Rule-Base firewalls, the packet p1 will
be always executed with the top of firewall rules; which
is r1 only.

The Packet Matching Definition. The packet pi
matches the firewall rule rn if (src ippi ∈ src iprn)
∧ (dst ippi

∈ dst iprn) ∧ (src portpi
∈ src portrn)

∧ (dst portpi
∈ dst portrn) ∧ (propi

∈ prorn) =

TRUE. The statement “pi matches rn” is written
pi ∈ rn. For example, given the packet P1 =
{10.0.0.21, 20.0.0.21, 12341, 801, TCP1} and P2 =
{22.2.0.102, 20.0.0.52, 50002, 372, UDP2}, thus P1 ∈
firewall rule r3 − r8 (Table 1), and P2 ∈ r8 only.

The Packet Mismatching Definition. The packet pi
mismatches the firewall rule rn if (src ippi 6∈
src iprn) ∨ (dst ippi 6∈ dst iprn) ∨ (src portpi 6∈
src portrn) ∨ (dst portpi

6∈ dst portrn) ∨ (propi
6∈

prorn) = TRUE. The statement “pi mismatches
rn” is written pi 6∈ rn. For example, let the packet
P3 = {10.0.0.103, 20.0.0.23, 12343, 203, TCP3}, P3 ∈
r6 and r8 only. On the other hand, P3 6∈ r1 − r5 and
r7.

2.4 Firewall Rule Verification

Firewall rule verification is the matching process between
inbound-outbound packets against the defined rules. The
result of matching in a normal case is either an acceptance
or a denial. On the other hand, if firewall rules are
the anomaly or conflict, the matching result is probably
both acceptance and denial simultaneously. We can dis-
tinguish the processing of firewall rules verification into
three steps. Firstly, searching the first firewall rule that
matches with the packet as fast as possible. Secondly,
investigating conflicts of firewall rules. Lastly, analyzing
for vulnerabilities and security risks in the rules. The
performance evaluation of firewall rule verification is pro-
portional to the speed of searching algorithms. For exam-
ple, matching a packet with Rule-Base firewall (Sequen-
tial searching) is O(n), O(log2(n)) for tree structures, and
O(1) for hashing approach, where n is the number of fire-
wall rules.

3 The Policy Mapping Design and
Implementation

In this section, we explain the concept and development
of our policy mapping model. The aims of the model are
to improve the processing time of policy verifying, defeat
limitations of IPSet and suitably consume the memory
space. Thus, we then focus on hashing functions (the
fastest algorithm of searching) to solve the speed of the
firewall rule verification. However, hashing functions have
one major weakness, which is the collision of hashed keys
(key = H (x), H is hashing function and x is the informa-
tion). With the massive size of data or information, the
collision probability of hashed keys will be increasingly
high. To avoid this problem, we deployed arrays to be
the data structure instead of the H (x). Besides, arrays
are also very fast to access and retrieve the stored data
without any collision, and they are also easier to under-
stand and implement array structures.

International Journal of Network Security, Vol.18, No.3, PP.433-444, May 2016 436

3.1 Key Contributions

In this paper, we make four major contributions. First, we
optimize rules of the Rule-Base firewall to a state diagram
in order that the order of rules are cleaned form an am-
biguous packet matching, called the firewall decision state
diagram (FDSD). Second, we present the policy mapping
algorithm (PMAP) and data structures for fast handling
firewall policies. Third, we get rid of limitations of IPSet
and key duplication of hashing function by PMAP. Last,
we conduct extensive experiments to evaluate our pro-
posed model against other models.

3.2 PMAP Design

There are five procedures to be included in the design of
PMAP:

1) Make firewall rules in the traditional style (Rule-
Base) as shown in Step 1 of Figure 2 and Table 2;

2) Build a decision state diagram structure (DSD) from
the rule list from Step 1 by using the firewall decision
state diagram algorithm (FDSD);

3) Map DSD from step 2 to array structures by the pol-
icy mapping algorithm (PMAP);

4) Get the mapped DSD in a format of array data struc-
tures;

5) Test the matching speed of PMAP and evaluate per-
formance.

Step 1: Making Rule-Base Firewall Rules

Among user interfaces of firewalls such as Rule-Base
([2, 12, 13]), tree styles ([15]) and the structured query
language (SQL) ([11]); almost all of firewall interfaces
are Rule-Base. The reason is that it is influenced by
the nature of the reading and writing of humans who
generally read rules from left-to-right and top-to-bottom;
and it is still a popular user interface nowadays. There-
fore, we still use the Rule-Base interface to create firewall
rules in Step 1. In order to simplify our model, we have
presented easy firewall rules that consist of four fields:
src ip, dst ip, dst port and act as shown in Table 2.

The src ip, dst ip and dst port has a maximum scope
in the range from 1 to 100 only. An a means an acceptance
action and d indicates a denial action. For instance, r1
has source IP addresses between 10 and 30 (src ip), des-
tination IP addresses (dst ip) ranging from 20 to 30, a
destination port (dst port) as 80 and an acceptance ac-
tion (a). In real experiments, we have added one field into
firewall rules, that is pro.

Step 2: Building the DSD

The firewall decision state diagram (FDSD) is a great
tool for optimizing confusing Rule-Base firewall rules to a
clearly firewall decision route. For example, in Table 2, as-
sume that a packet pi is composed of src ipi = 15, dst ipi

Table 2: Easy firewall rules for proving PMAP

no. src ip dst ip dst port act
r1 10 - 30 20 - 30 80 a
r2 1 - 15 50 - 60 25 - 30 a
r3 1 - 40 25 - 35 80 d
r4 15 - 45 1 - 100 60 - 90 d

= 25 and dst porti = 80. Thus, pi matches both r1 and r3
but both of them are in conflict (actr1 6= actr3). In case of
this rule base, pi is only matched with r1. However, rule
bases often make administrators confused. To solve the
problem, we demonstrate the FDSD to correct uncertain
rules. This model was adapted from the firewall decision
diagram of Liu [9]. The demonstrations for building DSD
by FDSD are shown in Algorithm 1.

We first start a full description of the FDSD procedure
in Situation 1 (in the black circle) of Figure 3. The FDSD
first reads sets of dst port of r1,2,3,4 from the rule list of
the firewall in Table 2. After that, it builds a start state
(S0) which is a first state of DSD. Next, it makes a new
state (S11) and creates a link from S0 to S11 (S0-S11).
This link means a transition state from S0 to S11 and
contains a set of dst portr1 as {80− 80}. In Situation 2,
FDSD reads dst portr2 form the rule list. The dst portr2
({25-30}) is compared with a set of the transition states
from S0 to S11 (S0-S11 = {80}) which dst portr2 is not
a subset of dst portr1 (dst portr2 * dst portr1). Conse-
quently, FDSD needs to build a new state, namely S12
in Situation 2, and it establishes a transitional link from
S0 to S12 (S0-S12). It assigns a set of dst portr2 to the
S0-S12. In Situation 3 of Figure 3, FDSD reads dst portr3
form firewall rules and compares it with the transitional
state S0-S11 first. As a result, dst portr3 is the subset of
S0-S11 (dst portr3 ⊆ dst portr1 : {80} ⊆ {80}). Hence,
FDSD does not need to take any action. Lastly, FDSD
inserts dst portr4 ({60-90}) to DSD, it verifies dst portr4
with the transitional state S0-S11 and S0-S12 respectively.
The dst portr4 is not subset of S0-S12 but it is a proper
superset of S0-S11 (dst portr4 ⊃ dst portr1 : {60-90} ⊃
{80}). So, FDSD builds a new state S13, and makes a
new transitional state S0-S13 in DSD. FDSD computes
a set which assigns to S0-S13 by S0-S13 = dst portr4 -
dst portr1 ({60-90} - {80} = {60-79, 81-90}). The first
level of DSD is finished in Situation 4 of Figure 3 (dst port
level).

To establish the Level 2 (dst ip level) of DSD, FDSD
reads dst ipr1,2,3,4 from the firewall rules. First, it makes
a new state S21 which is the first state in Level 2 as shown
in Situation 5 of Figure 4. Then it links a new transition
S11-S21 from a state S11 to S21, and sets dst ipr1 to the
link, that is {20-30}. In Situation 6, dst ipr2 ({50-60})
is verified with S11-S21 ({20-30}), the result shows that
dst ipr2 is not a subset of S11-S21 ({50-60} 6⊂ {20-30}).
Consequently, FDSD builds a S22 state, links a new S12-
S22 transition and assigns a set of dst ipr2 ({50-60}) to

International Journal of Network Security, Vol.18, No.3, PP.433-444, May 2016 437

Figure 2: An overview of PMAP design

S0

S11

{80-80}

S0

S11 S12

dst_port

{80-80}

{25-30}

1

S0

S11 S12

{25-30}

2

{80-80}

3

S0

S11 S12

{80-80}

{25-30}

4

S13

{60-79,81-90}

insert dst_portr1{80-80} insert dst_portr2{25-30} insert dst_portr3{80-80} insert dst_portr4{60-90}

The first state in S1x {60 90} {80 80}− − −{80 80} {80 80}− = −{25 30} anyset− ∉

S0-S11

S0-S12

S0-S13

Figure 3: Inserting dst portr1,2,3,4 to Level 1 of DSD (dst port)

the S22 state respectively. Next (Situation 7), a set of
dst ipr3 ({25-35}) is inserted into the DSD. It is compared
with S11-S21 and S12-S22, there are several elements in
dst ipr3 to be members of S11-S21 ({20-30} ∩ {25-35} =
{25, ..., 30}) but none of dst ipr3 elements are in S12-
S22. As a result, FDSD builds a new S23 state, links
a transitive S11-S23 to S23 and sets a set {31-35} ({20-
30} - {25-35} = {31, ..., 35}) to S11-S23 transition. The
last situation (8) of Level 2, the dst ipr4 ({1-100}) is a
superset of S11-S21 and S11-S23 but it is not a subset
of S12-S22 because they are different port numbers (port
numbers of S0-S12 6⊂ S0-S11). So, FDSD needs to build
a new state as S24 and S25, establishes a link S11-S25 to
this state and defines two sets to S11-S25 transition to be
{1-19, 36-100}(dst ipr4 - (S11-S21) - (S11-S23) = {1-100}
- {20-30} - {31-35} = {1-19, 36-100}), and defines a set
to link S13-S24 as {1-100} respectively.

In the last level for building DSD (src ip), the FDSD
feeds src ipr1,2,3,4 to DSD like the previous situation. For
example, src ipr1 is {10-30}, it is processed in a state path
from S0, S11 and S21 respectively as shown in Situation 9
of Figure 5. It suddenly builds the new sate S31 because
it is the first state in this level there. In this state, S31 is
assigned the a that means an acceptance state. Because of
the action of r1 is an acceptance (actr1 = a). According
to Situation 10, FDSD inserts src ipr2 ({1-15}) to the
diagram. The src ipr2 traverses in a path from S0 - S12
- S22 and is not a subset of any state. So, FDSD builds a
new S32 state and assigns the status of this state to be a

(actr2 = accept). Situation 11 in Figure 5, some elements
of src ipr3 ({1-40}) are a subset of S21-S31 ({10-30}) and
some elements are not. Thus, FDSD creates a new S33
state and the S21-S33 transition, assigns the status of this
node to be d. It sets a set of {1-9, 31-40} to the S21-S33
transition (src ipr3 - S21-S31 = {1-40} - {10-30} = {1-
9, 31-40}). For some elements that are not a subset of
S21-S31, the FDSD builds a new state as S34 for storing
a denial action (d) of r3. The last situation of Level 3 is
shown in Situation 12 of Figure 5.

Step 3: Mapping DSD to array data structures

In this section, we fully describe the process of mapping
DSD to arrays applied to maintain clearness of firewall
rules as shown in Algorithm 2.

From the Algorithm 2, the policy mapping (PMAP)
starts by creating an array of one dimension that has the
size equal to 1 x a maximum of the port number (in this
example equal to 1 x 100), namely S0-S1 as shown in
Figure 6. In case of real experiments, we set the size of the
S0-S1 array to be 1 x 65,536 (Maximum port number = 0
- (216−1)). Next, PMAP map sets in a transitional state
S0-S11, S0-S12 and S0-S13 to S0-S1 array respectively. In
case of S0-S11, it has a single destination port, that is
the port number 80 ({80-80}). T1 in Figure 6 shows the
first tree or state path in DSD Level 1 which is used to
mark a position for referring to an array of DSD Level 2.
PMAP sets 1 (T1) to an S0-S1 array in the position 80.

International Journal of Network Security, Vol.18, No.3, PP.433-444, May 2016 438

S0

S11 S12

{80-80}

{25-30}

5

S13

{60-79,81-90}

insert dst_ipr1{20-30}

dst_ip
S21

dst_port

{20-30}

The first set in S2x

S0

S11 S12

{80-80}

{25-30}

6

S13

{60-79,81-90}

insert dst_ipr2{50-60}

S21

{20-30}

S22

{50-60}

S0

S11 S12

{80-80}

{25-30}

7

S13

{60-79,81-90}

insert dst_ipr3{25-35}

S21

{20-30}

S22

{50-60}

S23

{31-35}

S0

S11 S12

{80-80}

{25-30}

8

S13

{60-79,81-90}

insert dst_ipr4{1-100}

S21

{20-30}

S22

{50-60}

S23

{31-35}

S24

{1-100}

{50 60} {20 30}− ⊄ −

{25 35} {20 30}− − − {1 100} {20 30} {31 35}− − − − −

dst_port

dst_ip

S11-S21 S12-S22

S11-S23

S13-S24

S11-S21 S11-S21 S12-S22

S25

{1-19,

36-100}

Figure 4: Inserting dst ipr1,2,3,4 to Level 2 of DSD (dst ip)

S0

S11 S12

{80-80}

{25-30}

9

S13

{60-79,81-90}

insert src_ipr1{10-30}

S21

{20-30}

S22

{50-60}

S23

{31-35}

S24

{1-100}

{10-30}

The first set in S3x

S31

(a)

S0

S11 S12

{80-80}

{25-30}

10

S13

{60-79,81-90}

insert src_ipr2{1-15}

S21

{20-30}

S22

{50-60}

S23

{31-35}

S24

{1-100}

{10-30}

S31

(a)

S32

(a)

{1-15}

{1 15} anyset− ∉

S0

S11 S12

{80-80}

{25-30}

11

S13

{60-79,81-90}

insert src_ipr3{1-40}

S21

{20-30}

S22

{50-60}

S23

{31-35}

S24

{1-100}

{10-30}

S31

(a)

S0

S11 S12

{80-80}

{25-30}

12

S13

{60-79,81-90}

insert src_ipr4{15-45}

S21

{20-30}

S22

{50-60}

S23

{31-35}

S24

{1-100}

{10-30}

S31

(a)

S34

(d)

{1-15}

S33

(d)

{1-9,31-40}

S34

(d)

{1-40}

S33

(d)

{1-9,31-45}

S32

(a)

S32

(a)

{1-15}

{1 40} {10 30}− − −

{1 40} anyset− ∉

{1-45}

S35

(d)

{15-45}

dst_port

dst_ip

src_ip

S21-S31 S21-S31 S22-S32 S21-S31

S23-S34

S22-S32

S24-S35

{1-19,

36-100}

S25 S25

{1-19,

36-100}

S25

{1-19,

36-100}

S25

{1-19,

36-100}

{15-45}

S36

(d)

Figure 5: Inserting src ipr1,2,3,4 to Level 3 of DSD (src ip)

The number 1 refers to S1-S2 array in the row = 1 and
column = dst ippi (pi = any packet) of the next level
demonstrated in Figure 7. The S0-S12, which has the
number of ports between 25 and 30, maps to S0-S1 array
in the position 25 to 30. These positions are set to be 2
(T2 in DSD). Lastly, S0-S13 has two subsets consisting of
{60-79} and {81-90}. They are mapped to S0-S1 array in
position 60 to 79, and 81 to 90 which positions are set to
be 3 (T3 in DSD). The total memory size that maintains
DSD Level 1 is 200 bytes (1 row x 100 ports x unsigned 16-
bit). An array of an unsigned 16-bit can refer to firewall
rules between 1 and 65,536.

Tht map of Level 2 of DSD to S1-S2 array is illustrated
in Figure 7. Firstly, PMAP builds the two dimensional
array named S1-S2 that allocates the memory size as 20
Kb for handling 100 state paths (100 state paths x 100 of
dst ip x unsigned 16-bit). PMAP maps the transitional
state S11-S21, S11-S23, S12-S22 and S13-S24 to the S1-S2
array respectively. The results show that S1-S2[1][20 - 30]
= 1 (T1), S1-S2[1][31 - 35] = 2 (T2), S1-S2[2][50 - 60] =
3 (T3), S1-S2[3][1 - 19] = 4 (T4) and S1-S2[3][36 - 100] =
4 (T4).

Mapping DSD Level 3 to S2-S3 array is displayed in
Figure 8. PMAP maps a transition state S21-S31 to S2-
S3[1][10-30] = a (T1), S21-S33 to S2-S3[1][1-9] = d (T2),
S21-S33 to S2-S3[1][31-45] = d (T2), S23-S34 to S2-S3[2][1-
45] = d (T3), S22-S32 to S2-S3[3][1-15] = a (T4) and fi-
nally S24-S35 to S2-S3[4][15-45] = d (T52) respectively.

Step 4: Getting the completed DSD in array structures

Firewall rules and state paths: A state path is a route
that traverses from the starting state to the accepting
state. For example, in Situation 12 of Figure 5, there are
five state paths. The first state path is traversable from
the starting state (S0) to S11, S21 and S31 (an accept-
ing state) respectively. The second state path is from the
starting state (S0), S11, S21 and S33 (an accepting state)
and so forth. The number of firewall rules always exceeds
the number of state paths (firewall rules ≥ state paths).
For instance, in Table 2, there are four rules; however,
they are generated to five state paths as shown in Situa-
tion 12 of Figure 5.

After Step 3 is complete, the arrays contained the DSD
consist of S0-S1 for DSD Level 1, S1-S2 for DSD Level 2
and S2-S3 of DSD Level 3. The total memory size of ar-
rays is around 40.2 Kb for holding 100 state paths in this
simulation case. However, in the real implementations,
the total size of arrays successively increases following by
the number of state paths. In case of real implementa-
tions, arrays are complicated due to the size of src ip (32
bits), dst ip (32 bits), dst port (16 bits) and pro (8 bits)
as shown in Figure 9. Thus, the total of memory size
for handling 5,000 state paths is 3.2 GB. That is S0-S1
(dst port) = 1 x 65,536 x unsigned 16 bits integer x 5,000
= 655.36 MB; S1-S2 (dst ip) and S2-S3 (src ip) = 256 x
256 x 16 bits x 5,000 x 4 = 2,621.44 MB and S3-S4 (pro)
= 1 x 256 x 16 bits x 5,000 = 2.56 MB.

Step 5: Testing the matching speed and evaluating the
performance

International Journal of Network Security, Vol.18, No.3, PP.433-444, May 2016 439

S0

S11 S12

{80-80}

{25-30}

S13

{60-79,81-90}

T1 T2 T3

Mapping DSD level 1 to

Array S0-S1

0 0 2 2 2 2 0 3 3

[0]

3 1

[25] [26] [30] [60] [79]

3

[81]

0

[90]

0

... [80] ...

3

...

3

T1T2 T2 T2 T2 T3 T3 T3 T3 T3 T3

State path

S0-S1
[100]

S0-S11

S0-S12

S0-S13

Figure 6: Mapping DSD Level 1 to one dimension array (S0-S1)

S0

S11 S12

{80-80}

{25-30}

S13

{60-79,81-90}

S21

{20-30}

S22

{50-60}

S23

{31-35}

S24

{1-100}

State path
T1 T3 T4 T5

0 0 2 2 2 2 0 3 3

[0]

3 1

[25] [26] [30] [60] [79]

3

[81]

0

[90]

0

... [80] ...

3

...

3S0-S1
[100]

Mapping DSD level 2 to

Array S1-S2

S1-S2

0

[1] [100]...

n

5

[1] [100]

3

...

0 0

[1]

0

[100]

2 4

[50]

4 4

[60]

0

...

[1] [20] [30] [31]... [35] [100]

1

S11-S21

S12-S22

S13-S24

T4 T4 T4

T5

S25

T2

{1-19,

36-100}

3 3 1 1 1 2 2 2 3 3

...

T1 T1 T1 T2 T2 T2 T3

Figure 7: Mapping DSD Level 2 to two dimension array (S1-S2)

T1 T2 T3 T4 T5

State path

Mapping DSD level 3 to

Array S2-S3

S2-S3

accept (a) = 1, deny (d) = 2, reject (r) = 3

0 0 2 2 2 2 0 3 3

[0]

3 1

[25] [26] [30] [60] [79]

3

[81]

0

[90]

0

... [80] ...

3

...

3

T1T2 T2 T2 T2 T3 T3 T3 T3 T3 T3

S0-S1

[100]

S1-S2

5

[1] [100]

3

...

0 0

[1]

0

[100]

2 4

[50]

4 4

[60]

0

...

3 3 1 1 1 2 2 2 3

[1] [20] [30] [31]

3

...[35] [100]

1

a (T1)

[10] [30]

d (T2)

[1] [9]

d (T2)

[31] [45]

0

[46] [100]

1

d (T3)

[1] [45]

0

[46] [100]

2

0

[15]

3

[100][45]

d (T6)

[15] [45]

5 0

[100][46]

0

[1]

S0

S11 S12

{80-80}

{25-30}

S13

{60-79,81-90}

S21

{20-30}

S22

{50-60}

S23

{31-35}

S24

{1-100}

{10-30}

S31

(a)

S34

(d)

{1-15}

S33

(d)

{1-9,31-45}

S32

(a)

{1-45}

S35

(d)

{15-45}

S25

{1-19,

36-100}

{15-45}

S36

(d)

T6

d (T4) 0

d (T5)

[15]

4

[100]

0

Figure 8: Mapping DSD Level 3 to two dimension array (S2-S3)

International Journal of Network Security, Vol.18, No.3, PP.433-444, May 2016 440

AND

src_ip dst_ip dst_port pro act

192.168.0.1-2 172.16.5.* 80 TCP a

Firewall rule example

S0-S1

(dst_port)

1

[0] [65535][80]

AND

S0

S11

{80-80}

S22

{172.16.5.0 - 172.16.5.255}

(2,886,731,008 – 2,886,731,263)
T1

T2

T3

{192.168.1.1 - 192.168.1.2}

(3,232,235,777 – 3,232,235,778)

S41

(a)

S33 {6-6}

TCP

FDSD

S1-S2

(dst_ip)

S2-S3

(src_ip)

3

src_ipoct1

sr
c_

ip
o

ct
2

[0] [255]

[2
5
5

]
[0

]

[Number of state paths]

3

3

src_ipoct3

sr
c_

ip
o

ct
4

[0] [255]

[2
5
5

]
[0

]

[Number of state paths]

[2] [2]

[192]

[1
6
8

]

[1
]

[2
]

[3]

[4]

2

dst_ipoct1

d
st

_
ip

o
ct

2

[0] [255]

[2
5
5

]
[0

]

[Number of state paths]

2

2

2

2

2

dst_ipoct3

d
st

_
ip

o
ct

4

[0] [255]

[2
5
5

]
[1

]

[Number of state paths]

[172]

[1]

[1
6
]

[5]

[*
]

[1]
[2]

[3]

S3-S4

(pro)

a

[0] [255]

[Number of state paths]

[3]

[4]

[5]

[6]

Figure 9: Arrays for real implementation

Algorithm 1 Firewall Decision State Diagram (FDSD)

1: Input: Rules {r1, r2, ..., rn}, where n ∈ Z+, n 6= 0
2: Output: A decision state diagram (DSD)
3: if DSD = ∅ then
4: Build S0 (starting state)
5: Set l = 1
6: Set max level = i (i = the number of levels)
7: while l ≤ max level do
8: Set state, path, loop = 1
9: while loop ≤ n do

10: if dst portrloop ⊆ S(l-1)-S(l)path then
11: do nothing and break
12: else
13: Build the state S(l)path
14: Create transitional state S(l-1)-S(l)path
15: temp = S(l-1)-S(l)path−1 - dst portrloop
16: S(l-1)-S1(l)path = temp
17: if l = max level then
18: Set S(l)path = actrloop (acceptance state)
19: end if
20: path = path + 1
21: end if
22: loop = loop + 1
23: end while
24: l = l + 1
25: end while
26: end if
27: Return DSD
28: End

According to Steps 3 and 4 in Figure 2, the firewall rules
are already stored in the arrays. Accessing the rules in
arrays uses indexes which can directly access the data
quickly. So, to operate any instructions on data in ar-
rays is always one instruction (O(1)). The algorithm that
is used for matching firewall rules in arrays is shown in
Algorithm 3 and Figure 10.

3.3 The Policy Mapping Implementation

In this section we reveal the implementation of the policy
mapping approach. The details are as follows.

Hardware and Software Development Tools. The
policy mapping is developed on the Intel 64-bits
processor, Core i7, 2GHz, installed memory (RAM)
8 GB DDR3 and hard disk 750 GB 5400 RPM.
In addition to the software development, we chose
Python language (version 3.4), Numpy and Psutil
to implement our policy mapping running on MS
Windows 8 operating system.

Firewall Rule and Packet Generator. In each per-
formance testing scenario, the firewall rule genera-
tor software generates the random policies (or rules)
from 5 to 5,000 rules, and the intelligently random
packets (10,000 packets per epoch) from the packet
generator software. According to the random packet
algorithm, the algorithm is able to define the ratio of
matched packets between 5 and 95% of packets that
pass though the firewall.

4 The Performance Evaluation

This section details the performance evaluation of the fire-
wall rule matching by comparing several approaches such
as Rule-Base firewall, tree rule, and hashing. We set up
the experimental scenarios as shown in Figure 11.

Firstly, the firewall rule generator software generates a
number of firewall rules from 5, 10, 50, 100, 200, 350, 500,
750, 1,000, 2,000, 3,000, 4,000 and 5,000 respectively for
evaluating the time-space complexity of the algorithms.
The number of generated firewall rules in each round is
executed 30 rounds per algorithm; that is, the number of
generated rules x 30 x the number of tested algorithms
(three algorithms for this paper) = 13 x 30 x 3 = 1,170
rounds.

In the next step, the packet generator generates the in-
telligent random packets for evaluating time-space com-

International Journal of Network Security, Vol.18, No.3, PP.433-444, May 2016 441

src_ip dst_ip dst_port

20 25 80

Incoming packet

0 0 2 2 2 2 0 3 3

[0]

3 1

[25] [26] [30] [60] [79]

3

[81]

0

[90]

0

... [80] ...

3

...

3S0-S1

[100]

0 0 1 1 1 2 2 2 0

[1] [20] [30] [31]

0

...[35] [100]

0 0

[1]

0

[100]

1

2 3

[50]

3 3

[60]

0

...

4 4

[1]

4

[100]

3

[36]

0

...

4

... [19] ...

4 4

S1-S2

a

[10] [30]

d

[1] [9]

d

[31] [45]

0

[46] [100]

1

d

[1] [45]

0

[46] [100]

2

a

[1] [15]

3 0

[100][16]

d

[15] [45]

4 0

[100][46]

0
[1]

S2-S3

[20]

aa

[25]

Figure 10: A packeti matching example

Generate firewall rule 5, 10, 50, 100, 200, 350,

500, 750, 1000, 2000, 3000, 4000, 5,000 rules

Start

Generate 10,000 packets by random the matched

packet between 5 – 95% (Intelligent packets)

Run the policy mapping algorithm,

sequential, binary searching and so on

Calculate time and

space complexity

Calculate the average of

time and space complexity

> 30

round?

No

Yes

Report and analysis

Rule run

out?

No

Yes

Stop

Packet =

10,000?

No

Yes

Figure 11: Performance evaluation for matching rules

plexity of each algorithm by 10,000 packets per round.
The intelligent random packet applies the random algo-
rithm of the packet generator, which is able to designate
the percentage of packet matching with firewall rules. For
example, 10 percent of intelligently packet matching of
10,000 packets is 1,000. In our testing, we chose the ratio
of random for matching packet from 5 to 95 percent.

Next, we execute each algorithm against generated
rules and random packets by a number of tested packets
in each algorithm, which is 4,200,000 packets (13 (gener-
ated rule) x 10,000 (random packet) x 30 (round)). The
chosen algorithms in our experiments are sequential-based
approach (generic or Rule-Base firewall), tree and hashing
(policy mapping) approach. Finally, we record and plot
results (time and space complexity) of each algorithm for
analyzing in the next section.

Table 3: Time for generating firewall rule structures
(Generic = Rule-Base, Tree rule = Tree structure, and
Policy mapping = hashing algorithm)

Time for generating rule structures (sec)
No. Generic Tree rule Policy mapping
5 0.00208 0.00190 0.01566
10 0.00156 0.00476 0.01562
50 0.00625 0.02187 0.04687
100 0.00521 0.07422 0.13188
200 0.01667 0.27411 0.17188
350 0.02761 0.83719 1.00080
500 0.04416 1.66761 1.32480
750 0.07992 3.78536 1.48440
1,000 0.11055 6.39945 1.78319
2,000 0.22052 24.11578 2.14030
3,000 0.22572 50.02818 2.30150
4,000 0.39503 93.91504 2.92790
5,000 0.49315 148.19096 5.62890

4.1 Time Complexity Analysis

We set up the criteria to evaluate the time complexity
of each algorithm in this paper as follows: (i) the time
for generating firewall rule structures, and (ii) the time
for verifying (matching) firewall rules. The generating
time denotes the period of declaring structure variables
for storing the data (rules) including time for collecting
data to the variables. The verifying time refers to the
processing time from the first bounced packet to the last
packet on the firewall. The experimental results of the
generating time is shown in Table 3 and the graph of the
results is illustrated in Figure 12. The results of verifying
time is shown in Table 4 and Figure 13 respectively.

From Table 3, the tree rule firewall spends more time
on generating data structures than other algorithms. The
time complexity will be dramatically grown up from 93.91
to 148.19 seconds while processing firewall rules between
4,000 and 5,000 – as the binary firewall also needs to sort
the data. Similarly, the time generating of policy mapping
also grew up from 2.92 to 5.62 seconds between executing
firewall from 4,000 to 5,000 rules. Because of the majority
of the consumption is spent by mapping the firewall policy
to arrays. On the other hand, the generic firewall is hardly

International Journal of Network Security, Vol.18, No.3, PP.433-444, May 2016 442

Algorithm 2 The Policy Mapping (PMAP)

1: Input: DSD
2: Output: Arrays that maintain firewall policies
3: if DSD 6= ∅ then
4: Set Array Sx-Sy = 0
5: Set l = 1
6: Set max port = p (p = 0 - 65535)
7: Set max level = i (i = the number of levels)
8: Set max src-dstip = k (k = 0 - 232−1)
9: while l ≤ max level do

10: count = Count state node of level l
11: if l = 1 then
12: Set i = 1
13: S(l-1)-S(l) = Create array 1 x p
14: while i ≤ count do
15: Ti = Read set in S(l-1)-S(l)i
16: while Read (Ti) 6= ∅ do
17: Set S(l-1)-S(l)[Ti] = i
18: end while
19: i = i + 1
20: end while
21: end if
22: l = l + 1
23: while l ≤ max level do
24: Set i = 1
25: S(l-1)-S(l) = Create array 1 x max src-dstip x

count
26: while i ≤ count do
27: Ti = Read set in S(l-1)-S(l)i
28: while Read (Ti) 6= ∅ do
29: if l = max level then
30: Set S(l-1)-S(l)[1][Ti][S(l-2)-S(l-1)[i]] =

S(l)count
31: else
32: Set S(l-1)-S(l)[1][Ti][S(l-2)-S(l-1)[i]] = i
33: end if
34: end while
35: i = i + 1
36: end while
37: end while
38: end while
39: end if
40: Return Arrays S0-S1, S1-S2, S2-S3
41: End

changed.

In the case of matching firewall rule (in Figure 13), the
consumed time of the generic firewall increased in a linear
aspect (O(n)), the tree rule firewall is the logarithmic
nature (O(log2n)) and O(1) for policy mapping. Indeed,
policy mapping directly accesses data in any arrays by
using indexes, so the speed of accessing is very fast. From
Table 4, the time of verification of the policy mapping
is faster than a generic and tree rule firewall in every
scenarios, and constant. Although, the policy mapping
is the best of a verifying speed; however, it has a tiny
overhead to access arrays by 3 times in the simulation

Algorithm 3 Matching firewall rules in arrays

1: Input: Array Sx-Sy, Packeti (pi), (i, x, y ∈ Z+ |
i, y 6= 0)

2: Output: a (accept) or d (deny)
3: while TRUE do
4: if (dst port = S0-S1[dst portpi]) != 0 then
5: if (dst ip = S1-S2[dst port][dst ippi]) != 0 then
6: if (result = S2-S3[dst ip][src ippi]) != 0 then
7: return result
8: end if
9: end if

10: end if
11: end while
12: End

Figure 12: Time for creating firewall rule structures

case or 6 times in real experiment. So, the policy mapping
usually consumes a time for verifying to be O(1) x C,
where C = 6 (dst port:S0-S1, dst ip:S1-S2 x 2, src ip:S2-
S3 x 2 and pro:S3-S4).

Table 4: Time for verifying of each algorithm

Time for verifying firewall rule (sec)
No. Generic Tree rule Policy mapping
5 0.06771 0.05505 0.01559
10 0.11094 0.06632 0.01563
50 0.35054 0.07073 0.01563
100 0.44377 0.07949 0.01563
200 1.11984 0.07725 0.01563
350 1.75737 0.07805 0.01562
500 2.68214 0.07985 0.01563
750 4.45257 0.08125 0.01601
1,000 6.55203 0.08453 0.01501
2,000 12.66570 0.08486 0.01563
3,000 13.92543 0.09997 0.01562
4,000 22.35969 0.10676 0.01401
5,000 28.08013 0.10781 0.01801

International Journal of Network Security, Vol.18, No.3, PP.433-444, May 2016 443

Figure 13: Time verifying for each algorithm. (a) com-
paring all algorithms, and (b) correlating between Tree
rule and Policy mapping only

4.2 Space Complexity Analysis

We classify the memory allocation of algorithms to two
groups, which are: (i) the memory space for generating
firewall rule structures, and (ii) the memory for running
firewall. Table 5 and Figure 14 represent the memory for
generating rule structures. From the experimental results,
the tree rule firewall consumed the memory space more
than other algorithms. As running the tree rule firewall
at the rule number 1,000; the memory usage quickly grew
up around 1 GB approximately. Because the memory is
used for building tree structures of rules. In contrast, the
memory usage of generic firewall increased around 4.52
Kb only (at rule no. 1,000); and lightly grew up to 21.52
Kb to execute the firewall rule no. 5,000. The policy
mapping continuously consumed about 131 MB (rule no.
1,000) to 655 MB (rule no. 5,000). Because the policy
mapping needs more memory to build a firewall decision
state diagram (DSD) and arrays. Also, the memory usage
of a tree rule firewall tremendously increased to 22.6 GB
while it processed the rule number 5,000.

Figure 14: Memory usage for creating rule structures

In the last experiment, we estimated the memory usage
of algorithms as shown in Table 6 and Figure 15 by using

Table 5: memory usage for generating rule structures
Memory for generating firewall rule (MB)
No. Generic Tree rule Policy mapping
5 0.00007 0.10 0.66
10 0.00010 0.18 1.32
50 0.00027 3.12 6.56
100 0.00046 10.53 13.11
200 0.00084 43.82 26.21
350 0.00145 126.82 45.88
500 0.00214 257.29 65.54
750 0.00312 587.03 98.31
1,000 0.00452 1,057.98 131.08
2,000 0.00828 4,348.74 262.16
3,000 0.01337 9,918.38 393.25
4,000 0.01697 17,873.39 524.33
5,000 0.02152 22,621.06 655.41

psutil module in Python while each algorithm was run-
ning. Policy mapping consumed the most memory, next
order is the tree rule and the last is the generic firewall
respectively.

Table 6: Memory usage for running firewalls
Memory for running firewalls (MB)

No. Generic Tree rule Policy mapping

5 22.08 22.10 27.12

10 22.16 22.11 32.05

50 22.39 22.42 72.22

100 22.59 23.05 128.82

200 22.65 25.68 228.91

350 22.49 31.71 372.16

500 22.65 41.39 522.22

750 22.98 63.83 772.25

1,000 23.30 95.83 1,022.57

2,000 23.79 316.58 2,029.97

3,000 24.80 663.22 3,030.30

4,000 25.82 1,172.54 4,031.13

5,000 26.57 1,600.76 5,031.65

5 Conclusions and Future Work

The verification techniques of firewall rule are classified
to three major groups: the sequence, tree and hashing.
In case of a sequential approach, which is a primitive ver-
ifying technique, it is easy to understand and implement,
and consumes a small memory space. However, time com-
plexity of a sequence is very slow, that is O(n). In con-
trast, a tree approach is difficult to understand and im-
plement, and it consumes a large memory space – though
it has an excellent processing speed (O(log2n)). The best
speed to verify data is the hashing approach (O(1)), but it
encounters a trouble of key duplication while performing
on enormous data. Unfortunately, it can not satisfacto-
rily be applied to the firewall rule because rules are huge
(≈ 2104−bit). Another disadvantage of hashing functions

International Journal of Network Security, Vol.18, No.3, PP.433-444, May 2016 444

Figure 15: Memory for running firewalls

is that they consume a huge memory space to maintain
data.

In this paper, we propose a new algorithm to speed
up firewall rule verification, called the policy mapping
(PMAP). The distinctive points of the algorithm are: (i)
it is as fast as hashing approaches, (ii) it can perform
without duplicate keys, (iii) it reasonably consumes the
memory space and (iv) it is easy to understand and im-
plement. Our experimental results show that the speed of
the policy mapping is faster than sequential and tree rule
firewalls, and it also consumes a suitable memory space.
Moreover, the policy mapping is as fast as IPSet [12] (top
of the high-speed and popular open source firewall today).
However, the policy mapping is not limited to the IP net-
work class management like IPSet which is only available
for the IP class C and B. Moreover, IPSet always requires
to rearrange rules before deploying to the firewall engine.

In the future work, we will optimize the memory size
of the PMAP to be better.

References

[1] M. G. Acharya, H. B. Gouda, “Projection and divi-
sion: Linear-space verification of firewalls,” in Pro-
ceedings of The International Conference on Dis-
tributed Computing Systems (ICDCS’10), pp. 176–
180, Genova, June 2010.

[2] A. Blyth, “An architecture for an XML enabled
firewall,” International Journal of Network Security,
vol. 8, no. 1, pp. 31–36, 2009.

[3] M. Chapple, A. Striegel, “An analysis of firewall
rulebase (mis) management practices,” ISSA:
The Global Voice of Information Security, 2009.
http://mike.chapple.org/an-analysis-of-firewall-
rulebase-mismanagement-practices/

[4] P. G. Clark and A. Agah, “Firewall policy diagram:
Structures for firewall behavior comprehension,” In-
ternational Journal of Network Security, vol. 17,
no. 2, pp. 150–159, 2013.

[5] M. G. Gouda and A. X. Liu, “Structured firewall
design,” Computer Networks, vol. 51, pp. 1106–1120,
2007.

[6] H. Hamed, A. El-Atawy, and E. Al-Shaer, “On dy-
namic optimization of packet matching in high-speed

firewalls,” IEEE Journal on Selected Areas in Com-
munications, vol. 24, no. 10, pp. 1817–1830, 2006.

[7] IETF, Internet Official Protocol Standards, 2008.
http://tools.ietf.org/html/rfc5000

[8] S. Khummanee, A. Khumseela, and S. Puangpron-
pitag, “Towards a new design of firewall: Anomaly
elimination and fast verifying of firewall rules,” in
Proceedings of The Computer Science and Software
Engineering (JCSSE’13), pp. 93–98, Abu Dhabi,
May 2013.

[9] A. X. Liu, “Formal verification of firewall policies,” in
IEEE International Conference on Communications,
pp. 1494–1498, Beijing, May 2008.

[10] A. X. Liu and M. G. Gouda, “Diverse firewall de-
sign,” IEEE Transaction on Parallel and Distributed
Systems, vol. 19, no. 9, pp. 1237–1251, 2008.

[11] A. X. Liu and M.G. Gouda, “Firewall policy queries,”
IEEE Transactions on Parallel and Distributed Sys-
tems (TPDS), vol. 20, no. 6, pp. 766–777, 2009.

[12] Netfilter, IP Set, Aug. 24, 2015. http://ipset.

netfilter.org/index.html

[13] Netfilter, IPTables, June 25, 2015. http://ipset.

netfilter.org/iptables.man.html

[14] J. Touch, E. Lear, et al., Service Name and
Transport Protocol Port Number Registry, RFC
6335, Aug. 6, 2015. http://www.iana.org/

assignments/service-names-port-numbers/

service-names-port-numbers.xhtml

[15] P. N. Zhiyuan, X. Tan, T. C. He, “Improving cloud
network security using the tree-rule firewall,” Future
Generation Computer Systems, vol. 30, pp. 116–126,
2013.

Suchart Khummanee is a Ph.D student at Khon Kaen
University, Khon Kaen, Thailand. His research is in the
field of Computer Networks and Security.

Kitt Tientanopajai is a full Professor of computer
engineering with Khon Kaen University, Khon Kaen,
Thailand. His research interests focus on Free/Open
Source Software, Information Security, Quality of Service
Routing, Computer Networks and Educational Technol-
ogy.

