
International Journal of Network Security, Vol.18, No.2, PP.369-373, Mar. 2016 369

On Using Mersenne Primes in Designing
Cryptoschemes

Moldovyan Alexander Andreevich1, Moldovyan Nicolay Andreevich1,
and Berezin Andrey Nickolaevich2

(Corresponding author: Moldovyan Nicolay Andreevich)

Department of Secure Information Technologies, ITMO University1

Kronverksky pr., 10, St. Petersburg 197101, Russian Federation

Department of Automated Infor. Processing & Control Systems, St. Petersburg State Electrotechnical University2

ul. Professora Popova, 5, St. Petersburg 197376, Russian Federation

(Received July 15, 2013; revised and accepted Jan. 10 & May 9, 2014)

Abstract

The paper proposes justification of using Mersenne primes
in the following cryptoschemes: commutative and public-
key encryption algorithms and zero-knowledge protocol.
The cryptoschemes are based on computational difficulty
of finding discrete logarithm in the finite fields GF (2s),
where s is a sufficiently large prime such that 2s−1 is also
a prime, for example s = 1279, s = 2203, and s = 4253.

Keywords: Binary polynomials, commutative encryption,
discrete logarithm problem, finite fields, Mersenne primes,
public-key encryption, zero-knowledge protocol

1 Introduction

Computational difficulty of the discrete logarithm prob-
lem (DLP) in the finite fields is used in different cryp-
tographic schemes such as public key distribution proto-
cols [2], digital signature protocols [14], blind and col-
lective signature protocols [10, 11], public-encryption al-
gorithms, commutative-encryption algorithms [13], zero-
knowledge protocols for user authentication [7] et al. The
finite fields GF (2s) present some essential advantages for
implementing the cryptoschemes: i) computational com-
plexity of the multiplication operation is comparatively
low; ii) for arbitrary n > 1 the set of all possible n-bit
data blocks can be interpreted as elements of the field
GF (2n). The multiplication operation in GF (2s) is per-
formed as multiplying binary polynomials modulo an ir-
reducible binary polynomial of the degree s. This op-
eration is especially fast in the case of using low weight
irreducible binary polynomials, for example xs + xk + 1,
where k < s/2.

In this paper it is proposed a new design for zero-
knowledge protocols, concrete variants of such protocols,
and a new implementation of the commutative and public-
key encryption algorithm. The proposed cryptoschemes

are characterized in using such finite fields GF (2s) in
which the order of their multiplicative group is a Mersenne
prime 2s − 1. It is justified that this is the best case for
selecting the value s.

2 Zero-knowledge Protocol

Any public key agreement cryptoscheme can be trans-
formed into some zero-knowledge protocol. The idea of
such transformation relates to the possibility of two users’
generating a common secrete value with the help of their
public key exchange. For example, in the Diffie-Hellman
scheme the public key y is generated as follows, using
sufficiently large prime p, such that some another large
prime q divides the number p − 1, and a primitive ele-
ment α modulo p. Some user generates his private key as
a random value k < p− 1 and computes the value

y = αk mod p.

Another user generates his private key as a random
value u < p− 1 and computes his public key R = αu mod
p. Each of them is able to compute the common secret

Z = yu mod p = Rk mod p.

Any other person is not able to compute Z until the
DLP modulo p is solved and value k or value u is com-
puted from the known values p, α, y, and R. Suppose the
first user (claimant) is the person to be authenticated by
the second user (verifier). Suppose also the verifier has
been provided with a trusted copy of claimant’s public
key y. The proposed zero-knowledge protocol, in which
there is used some specified hash function h(∗), includes
the following two steps:

1) The verifier generates a random number u < p − 1
and computes the one pad public key R = αu mod p.
Then he computes common secret Z related to R and



International Journal of Network Security, Vol.18, No.2, PP.369-373, Mar. 2016 370

claimant’s public key y: Z = yu mod p, and hash
function value H = h(Z). Then verifier sends to
claimant the pair of numbers (R,H) that is verifier’s
request.

2) Using his private key k the claimant computes the
values Z ′ = Rk mod p and H ′ = h(Z ′). After that
he compares the values H ′ and H. If H ′ = H, then
the claimant sends to verifier the value Z ′ that is
claimant’s response, otherwise he sends to verifier the
message ”The request (R,H) is not correct”.

On receipt of the response Z ′ the verifier compares
Z ′ with the value Z. If Z ′ = Z, then the verifier ac-
cepts the claimant as valid owner of the public key y,
otherwise the procedure fails. Let us note that comput-
ing the hash function values and comparison of the values
H ′ and H performed by the claimant at Step 2 is suffi-
ciently important. The identity of the values H’ and H
proves that the verifier has computed correctly the value
R and knows the value Z ′, i.e. no information about
the private key x is provided to the verifier with the re-
sponse Z ′. Computation of the hash function values at
the first and second steps prevents the following attack
on the claimant’s private key. The verifier selects a value
R′ having sufficiently small prime order ω modulo p and
sends R′ as his request to the claimant. After receiving
the response Z ′ = R′k mod p the verifier will be able to
compute with the baby-step-giant-step algorithm [9] the
value k′≡k mod ω. If the value p−1 contains many small
prime divisors ri, for example i = 1, 2, ..., g, then such
attack can be performed for the case of sufficiently large
composite value that leads to computing the value k. Re-
garding this attack the most secure prime value p is such
that p = 2q + 1, where q is a prime. For such modulus p
this attack provides to attacker only one bit of the private
key.

Thus, using computations in the ground field GF (p)
one should additionally specify the stage of computing
hash function values from Z and Z ′ in the proposed zero
knowledge protocol. To avoid this computation stage it is
possible to construct a variant of such protocol using com-
putations over binary polynomials modulo an irreducible
polynomial, i.e. to define the zero-knowledge protocol
over the binary field GF (2s) in which the multiplicative
group has prime order 2s − 1 that is one of sufficiently
large Mersenne primes. There are known the follow-
ing values s to which correspond appropriate Mersenne
primes: s = 1279; 2203; 2281; 3217; 4253; 4423; 9689;
9941; 11213 [1]. Other Mersene primes corresponding to
values s ≥ 19937 represent less interest for the considered
application (s = 19937, 21701, 23209, 44497... [1]).

In the public key agreement scheme over the field
GF (2s) the public key is computed as follows y(x) =
(α(x))k mod p(x), where p(x) is some irreducible binary
polynomial of the degree s; y(x) and α(x) are elements of
GF (2s)differentfrom0and1; k < 2s − 1. Respectively
we come to the following protocol that is free from using
the hash functions.

1) The verifier generates a random number u < 2s −
1 and computes the one pad public key R(x) =
(α(x))u mod p(x). Then he computes common se-
cret Z(x) related to R(x) and claimant’s public key
y(x) : Z(x) = (y(x))u mod p(x). Then verifier sends
to claimant the binary polynomial R(x) that is veri-
fier’s request.

2) Using his private key k the claimant computes the
values Z ′(x) = (R(x))k mod p(x) and sends to veri-
fier the value Z ′ that is claimant’s response.

To reduce the computational complexity of the proto-
col one can use the low weight irreducible polynomials
p(x). Table 1 shows the variants of such polynomials.

Table 1: Low weight irreducible binary polynomials [8, 15]

Mersenne p(x)
exponent

1279 x1279 + x216 + 1;x1279 + x418 + 1
2203 x2203 + x14 + x6 + x5 + 1

x2281 + x715 + 1;
2281 x2281 + x915 + 1;

x2281 + x1029 + 1
3217 x3217 + x67 + 1;

x3217 + x576 + 1
4253 x4253 + x21 + x12 + x11 + 1

x4423 + x271 + 1;
x4423 + x369 + 1;

4423 x4423 + x370 + 1;
x4423 + x649 + 1;
x4423 + x1393 + 1;
x9689 + x84 + 1;
x9689 + x471 + 1;

9689 x9689 + x1836 + 1;
x9689 + x2444 + 1;
x9689 + x4187 + 1

9941 x9941 + x29 + x12 + x10 + 1
11213 x11213 + x8218 + x6181 + x2304 + 1

x19937 + x881 + 1;
19937 x19937 + x7083 + 1;

x19937 + x9842 + 1
21701 x21701 + x17777 + x11796 + x5005 + 1

x23209 + x1530 + 1;
23209 x23209 + x6619 + 1;

x23209 + x9739 + 1
44497 x44497 + x8575 + 1;

x44497 + x21034 + 1

3 Commutative Encryption

Encryption algorithm EAK(M), where M is the input
message; K is the encryption key, is called commutative,
if the ciphertext produced by two consecutive encryptions



International Journal of Network Security, Vol.18, No.2, PP.369-373, Mar. 2016 371

with keys K1 and K2 does not depend on the order of
using the keys, i.e.

EAK2
(EAK1

(M)) = EAK1
(EAK2

(M)) .

Analogously to the Pohlig-Hellman algorithm [4] the
commutative encryption algorithm can be defined over
arbitrary finite field GF (ps), where s ≥ 1, having suffi-
ciently large order. The secret key is generated as a pair
of two numbers (e, d). The value e is called encryption
exponent. It is selected as a random number satisfying
the following two conditions: i) gcd(e, ps − 1) = 1; ii)
2λ < e < 2λ+8, where λ is the security parameter defin-
ing the (λ/2)-bit security of the algorithm. For example,
if the 80-bit security is required, then it is selected value
λ = 160 (using smaller values λ defines faster encryption
process). The value d is called decryption exponent. It is
computed as follows:

d = e−1 mod ps − 1.

Encrypting the message M represented as an element
of the field GF (ps) is performed as follows:

C = Me.

Decrypting the ciphertext C is performed as follows
(performance of the decryption procedure does not de-
pend on the selected value λ, since the size of value d
does not depend on λ):

M = Cd.

The following protocol [13] for transmitting the pri-
vate message M via public channel uses the commutative
encryption algorithm.

1) The sender encrypts the message M with his encryp-
tion key es : C1 = Mes and sends cryptogram C1 to
the receiver.

2) The receiver encrypts the cryptogram C1 with his
encryption key er : C1 = Mer and sends cryptogram
C2 to the sender.

3) The sender decrypts the cryptogram C2 with his de-
cryption key ds : C3 = Cds2 and sends cryptogram
C3 to the receiver. Then the receiver recovers the
message M as follows M = Cdr3 .

Correctness. Proof of the protocol:

C3
dr =

(
C2

ds
)dr

= (C1
er )

dsdr

= (Mes)
erdsdr

= Mesds

= M.

Protocols like this one are used, for example, in mental
poker [13].

Security of the described protocol is based on the DLP
in the finite field GF (ps). Indeed, the values C2 and C3

are sent via public channel and the potential attacker can
try to solve the equation C3 = Cds2 with unknown value
ds. Usually this problem is computationally infeasible, if
the order of the fieldGF (ps) is sufficiently large. However,
if the order ω of the encrypted message as element of
GF (ps) is a small value or ω contains only sufficiently
small divisors, then the attacker will be able to solve the
equation C3 = Cds2 that will give him some information
about the key ds. Let such message be called weak. It is
reasonable to use such fields GF (ps) for which the portion
of weak message is negligibly small. The possible case is
the use of the ground fieldGF (p) with characteristic equal
to 2q+1, where q is a prime. For such fields only one weak
message exists M = 2q. The case that is free from weak
message relates to the use of binary fields GF (2s) such
that the value 2s−1 is prime. In this case the order of all
possible messages, except M = 0 and M = 1, have large
prime order ω = 2s − 1.

Thus, commutative encryption algorithm defined over
the finite fields GF (2s) such that their multiplicative
group has order equal to sufficiently large Mersenne prime
2s−1 represents an ideal case relatively existence of weak
messages. Section 2 presents the appropriate values s and
low weight irreducible binary polynomials for defining fast
multiplication operation in the mentioned fields.

4 Public-key Encryption

The ElGamal public-key encryption algorithm [3] uses the
difficulty of the DLP in the fields GF (p) and can be used
for sending a secret message via a public channel to the
owner of the public key y = ak mod p, where k is private
key; p is a large prime; a is a primitive element mod p.
The algorithm performs as follows:

1) The sender generates the single-use private key u
and computes the single-use public key R = au mod
p. Then he computes the single-use secret key
Z = yu mod p and encrypts the message M : C =
MZ mod p, where C is the produced ciphertext.

2) Then the values C and R are send to the owner of
public key y.

The decryption procedure is performed as follows:

1) Using the value R and private key k the receiver com-
putes the single-use secret key Z = Rk mod p.

2) Then he decrypts the ciphertext C and obtains the
message M = CZ−1 mod p.

Suppose except large prime q some small primes ri
(i=1, 2,..., g) divide the number p − 1. Then an ad-
versary can implement some potential known-decrypted-
text attack on the ElGamal algorithm that relates to the
following scenario. The attacker selects a value R′ < p
having composite order ω′ =

∏g
i=1 ri modulo p, generates



International Journal of Network Security, Vol.18, No.2, PP.369-373, Mar. 2016 372

a random value C < p, and then sends the values R′ and
C to the owner of the public key y. The receiver com-
putes the value M ′ = (CZ ′−1 mod p) = (CR′−k mod p)
that become some way known to the attacker. The last
computes the value Z ′ = (CM ′−1 mod p) = (R′k mod p).
Then using the baby-step-giant-step algorithm [9] the at-
tacker obtains the value k′ ≡ k mod ω′. If ω′ > q > k,
then k′ = k. If ω′ < k, then k = k′ + ηω′, where η is
a natural number such that η < k. Evidently, finding
η is easier than finding the private key k, therefore one
can claim that the known decrypted text attack provides
computing at least part of the private key. The highest
security of the ElGamal algorithm is provided in the case
of using the prime values p such that p = 2q + 1, where
q is also a prime. In the last case the considered attack
outputs only one bit of the information about the private
key k.

One can propose the following modification of the El-
Gamal algorithm for which the known-decrypted-text at-
tack outputs no information about k.

Full security against the mentioned known-decrypted-
text attack is provided with using binary finite fields
GF (2s), where s is sufficiently large Mersenn exponent
and multiplication is defined modulo an irreducible bi-
nary polynomial π(x) having the degree s. Correspond-
ingly the message M is interpreted as a binary polynomial
M(x) of the degree m < s and instead of the integer a in
the ElGamal algorithm it is used any binary polynomial
α(x), except 0 and 1 (indeed, each of such polynimials
α(x) has prime order equal to 2s−1). Thus, the public key
is computed as the polynomial χ(x) = (α(x))k mod π(x),
where k is the private key, and the public-key encryption
is performed as follows:

1) The sender generates at random the single-use pri-
vate key u < 2s − 1 and computes the single-use
public key ρ(x) = (α(x))u mod π(x). Then he com-
putes the single-use secret key as the polynomial
ζ(x) = (χ(x))u mod π(x) and encrypts the message
M(x) : C(x) = M(x)ζ(x) mod π(x), where C(x) is
the ciphertext.

2) Then the values C(x) and ρ(x) are sent to the owner
of public key y, i.e. to the receiver of the message
M(x).

The decryption procedure is performed as follows:

1) Using the single-use public key ρ(x) the receiver com-
putes the value ζ(x) = (ρ(x))k mod π(x).

2) Then he decrypts the ciphertext C(x) and obtains
the message M(x) = C(x)(ζ(x))−1 mod π(x).

5 Conclusions

In this paper it has been proposed a new construction of
the zero-knowledge protocol, which is based on the pub-
lic key agreement scheme. The most simple design of the

proposed protocol relates to the case of using binary fi-
nite fields GF (2s) for which the value 2s−1 is a Mersenne
prime. It has been also shown that such fields represent
significant interest for using them in the commutative and
public-key encryption algorithms. Besides, potential ap-
plication of the Mersenne primes relates to the deniable-
encryption schemes [5, 6], especially to the method [12]
providing bi-deniability and high performance, however
the last represents a topic of individual research though.

Acknowledgments

This work was supported by Government of Russian Fed-
eration, Grant 074-U01.

References

[1] R. Crandall and C. Pomerance, Prime Numbers -
A Computational Perspective, New York: Springer,
2002.

[2] W. Diffie and M. Hellman, “New directions in cryp-
tography,” IEEE Transactions on Information The-
ory, vol. 22, no. 6, pp. 644–654, 1976.

[3] T. ElGamal, “A public key cryptosystem and a sig-
nature scheme based on discrete logarithms,” IEEE
Transactions on Information Theory, vol. 31, no. 4,
pp. 469–472, 1985.

[4] M. E. Hellman and S. C. Pohlig, Exponentiation
Cryptographic Apparatus and Method, US Patent 4,
424, 414, 1984.

[5] M. H. Ibrahim, “A method for obtaining deni-
able public-key encryption,” International Journal of
Network Security, vol. 8, no. 1, pp. 1–9, 2009.

[6] M. H. Ibrahim, “Receiver-deniable public-key en-
cryption,” International Journal of Network Secu-
rity, vol. 8, no. 2, pp. 159–165, 2009.

[7] ISO/IEC, Information Technology - Security Tech-
niques - Entity Authentication, Part 5: Mechanisms
Using Zero-knowledge Techniques, ISO/IEC 9798-
5:2009(E), 2009.

[8] Y. Kurita and M. Matsumoto, “Primitive t-nomials
(t = 3, 5) over GF (2) whose degree is a Mersenne
exponent ≤ 44497,” Mathematics of Computation,
vol. 56, no. 194, pp. 817–821, 1991.

[9] A. J. Menezes, S. A. Vanstone, and P. C. Oorschot,
Handbook of Applied Cryptography, CRC Press, 1996.

[10] N. A. Moldovyan, “Blind signature protocols from
digital signature standards,” International Journal
of Network Security, vol. 13, no. 1, pp. 22–30, 2011.

[11] N. A. Moldovyan and A. A. Moldovyan, “Blind col-
lective signature protocol based on discrete logarithm
problem,” International Journal of Network Secu-
rity, vol. 11, no. 2, pp. 106–113, 2010.

[12] N. A. Moldovyan and A. A. Moldovyan, “Practi-
cal method for bi-deniable public-key encryption,”
Quasigroups and Related Systems, vol. 22, no. 2,
pp. 277–282, 2014.



International Journal of Network Security, Vol.18, No.2, PP.369-373, Mar. 2016 373

[13] B. Schneier, Applied Cryptography: Protocols, Algo-
rithms, and Source Code, New York: John Wiley,
1996.

[14] C. P. Schnorr, “Efficient signature generation by
smart cards,” Journal of Cryptology, vol. 4, no. 3,
pp. 161–174, 1991.

[15] N. Zierler, “Primitive trinomials whose degree is
a Mersenne exponent,” Information and Control,
vol. 15, no. 1, pp. 67–69, 1969.

Dr. Alexander A. Moldovyan is a Professsor at
the ITMO University. His research interests include
information security and cryptographic protocols. He
has authored or co-authored more than 60 inventions
and 220 scientific articles, books, and reports. He
received his Ph.D. (1996) from the St. Petersburg State
Electrotechnical University (SPSEU).

Dr. Nikolay A. Moldovyan is an honored inventor of
Russia (2002). His research interests include information
security and cryptology. He has authored or co-authored
more than 70 inventions and 230 scientific articles,
books, and reports. He received his Ph.D. (1981) from
the Academy of Sciences of Moldova. Contact him at:
nmold@mail.ru.

Andrey N. Berezin received his M.S. degree (2012)
in Computer Security from the SPSEU, Russia. He is
a Ph.D researcher at the SPSEU. His current research
interests include information security and cryptology.


