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Abstract

We propose two security models for one-round group key
exchange (ORGKE), which are called as g-eCKw and
g-eCK-PFS. The g-eCK-PFS is a stronger variant of g-
eCKw, which particularly formulates perfect forward se-
crecy for ORGKE. A new tripartite ORGKE is proposed
to provide g-eCKw security without random oracles under
standard assumptions, that is also more efficient than its
predecessor by Li and Yang on CANS’13. We also show
how to transform (compile) a g-eCKw secure protocol to
achieve g-eCK-PFS security. In particular, our result en-
ables us to prove the security of the first ORGKE protocol
that achieves perfect forward secrecy without random ora-
cles in a strong security model allowing adversary to com-
promise critical information of session participants such
as long-term or ephemeral private key.

Keywords: Authenticated key exchange, group key ex-
change, perfect forward secrecy standard model, pro-
grammable hash function

1 Introduction

A group authenticated key exchange protocol (GAKE)
enables multiple parties to share a common secret key
over a public network, where the generated key can be
only known by those intended communication partners
can compute that shared key. As a fundamental build-
ing block, GAKE plays an important role in protecting
various kinds of group applications such as digital confer-
ences and file sharing etc. It is well-known that GAKE
is normally generalized from two party authenticated key
exchange (2AKE) protocols, as well as the security no-
tions for GAKE. The first formal GAKE security model
was proposed by Bresson et al. [7] that follows the sem-
inal work of the indistinguishability based 2AKE model
by Bellare and Rogawary [2]. Since then many modi-
fications and improvements on GAKE models appeared
thereafter. The traditional GAKE-security notion defined

in models [4, 5, 9, 20], is made popular in different flavors
depending on whether the protocol provides forward se-
crecy against outsider adversary, i.e. assuming that ad-
versary is not part of the group. Such security notion
does not take into account any protection against insider
attacks, and in fact it is not hard to see that GAKE secure
protocols may be completely insecure against attacks by
malicious insiders.

The insider security was first studied by Katz and
Shin [19], e.g. preventing honest users from computing
different keys and from having distinct views on the iden-
tities of other participants. Several models [8, 15, 16, 19]
have been proposed to augment GAKE security against
insider threats.

Besides consideration of outsider and insider security,
formulating stronger security notions for GAKE recently
has gained much attention of the researchers. Quite a few
attempts have been made in order to enlarge the class of
attacks that a GAKE protocol can resist. Gorantla et
al. (GBG) [16] inspired by two party approaches [21] re-
formulated the key compromise impersonation (KCI) re-
silience attribute for GAKE by considering outsider and
insider KCI attacks respectively. In a successful KCI at-
tack, an adversary with the long-term private key of Alice
can impersonate Bob to Alice without knowledge of Bob’s
long-term private key. Thus resistance to KCI attacks is
important in situations where an adversary wishes to ob-
tain some information possessed by Alice, who is only
willing to divulge this information to Bob (and where the
adversary is not able to obtain Bob’s long-term private
key). The GBG model [16] also consider the leakage of
secret states as in [8, 10] that allows the adversary to
obtain long-term secret keys and secret states indepen-
dently, with a restriction that the leakage of secret states
from sessions for which the adversary is not required to
distinguish the key. Such restriction is quite necessary
since many GAKE protocols are insecure if secret session
states used to compute session key are exposed.

In this paper, we study the security and construc-
tion for one-round group key exchange (ORGKE) that
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only one message was sent (and received) by each ses-
sion participants during key exchange procedure. Due to
the attractive advantage of bandwidth-efficient, ORGKE
has drawn great attention of research community. The
seminal work of ORGKE is the pairing based tripar-
tite protocol introduced by Joux [18]. However it is
unauthenticated and subject to well known man-in-the-
middle attacks. During recent years, some solutions,
e.g. [1, 14, 23, 24, 27], have been made to improve the
original protocol. This has also led the development of
security model for GAKE.

Meantime, the FMSU protocol [14] was proven secure
in a very strong model called as g-eCK (see also in [28])
which is extended from two party eCK model [22] to group
case that captures the security properties concerning re-
silience of KCI attacks, chosen identity and public key
(CIDPK) attacks and leakage of session states, and pro-
vision of wPFS in a single model. The g-eCK model is
considered as one of the strongest GAKE security model
in [14, 24], and it was used to prove the recent GAKE
protocol [24]. However, it fails to model the full perfect
forward secrecy (PFS) for ORGKE. Hence there is an in-
teresting open question whether it is possible to achieve
full PFS within one communication round. As well it is
an open question on how to model PFS for ORGKE. In
contrast to PFS security notion, the wPFS has one more
restriction that an adversary does not modify messages
received by the test session and the session is executed
before the long-term private keys are compromised. So
that wPFS is much weaker than PFS. On the other hand,
the GAKE protocol with PFS may be more appealing.
To our best of knowledge, there is no ORGKE protocol
that can provide PFS without random oracles.

%paragraphContributions We solve the above open
questions by first introducing two security models (called
as g-eCK and g-eCK-PFS) for ORGKE which follow
the idea of modelling approach [12] for two party key
exchange. The g-eCKw model is a variant of g-eCK
model [14]. Whereas the g-eCK-PFS model is developed
from g-eCKw model with particularly modelling the per-
fect forward secrecy. We also show that it is possible to
compile any g-eCKw secure protocols to be g-eCK-PFS
secure by introducing a signature-based protocol transfor-
mation (compiler). In order to illustrate that our models
are reasonable and practical for our analysis, we focus
on three-party one-round key exchange which is a special
class of ORGKE protocols. As a concrete example we
come up with a new provably secure solution without ran-
dom oracles in the g-eCKw model. To be of independent
interesting, the new proposed protocol is more efficient
than previous g-eCK secure protocol without random or-
acles. The security proof for our scheme is also much
simpler which is mainly based on a strong Cube Bilin-
ear Decisional Diffie-Hellman assumption (that is derived
from the Cube Bilinear Decisional Diffie-Hellman assump-
tion used in [24]).

1n 2012, Cremers and Feltz [12] proposed a stronger
security model (referred to as eCKw) to reformulate the

wPFS notion based on a new concept so called origin-
session. The resultant model is claimed to provide a
slightly stronger form of wPFS than eCK model’s. On
the second, they further develop eCKw to model PFS
that yields another new model (which is referred to as
eCK-PFS). More interestingly, it is possible to transform
any eCKw secure protocol to be eCK-PFS secure using
the signature based compiler in [12]. The implication re-
lationship between eCK and eCKw models was studied
in literature [13, 34]. Their results somehow inspire us to
deal with the issue on modelling PFS for ORGAKE. But
unlike their works, our protocol instance is analyzed in
the new proposed model without random oracles.

In the recent work, Li et al. [24] introduced a new
construction for pairing-based one-round 3AKE protocol.
This protocol is the first one that is provably secure in
the g-eCK model without random oracles. Security of pro-
posed protocol is reduced to the hardness of Cube Bilinear
Decisional Diffie-Hellman (CBDDH) problem for symmet-
ric pairing. However it only satisfies wPFS rather than
PFS. On the other side, this protocol requires many pair-
ing operations for key exchange which might lose practical
interesting. One of the motivations of our works is to im-
prove the efficiency of that protocol.

Some other group key exchange protocols, for instance.
[11, 17, 26, 31, 32] have been recently proposed from dif-
ferent motivations. But none of them can be proven se-
cure in our new proposed models.

2 Preliminaries

In this section, we recall the required definitions for our
result on proposed protocols.

Notations. We let κ ∈ N denote the security parameter
and 1κ the string that consists of κ ones. Let a capital
letter with a ‘hat’ denote an identity; without the hat
the letter denotes the public key of that party. Let [n] =
{1, . . . , n} ⊂ N be the set of integers between 1 and n.

If S is a set, then a
$← S denotes the action of sampling

a uniformly random element from S. Let ‘||’ denote the
operation concatenating two binary strings.

Digital Signature Schemes. A digital signature
scheme Σ is defined by three PPT algorithms
SIG = (SIG.Gen,SIG.Sign,SIG.Vfy) with associated pub-
lic/private key spaces
{PK,SK}, message spaceMSIG and signature space SSIG
in the security parameter κ:

• (sk, pk)
$← SIG.Gen(1κ): this algorithm takes as in-

put the security parameter κ and outputs a (public)
verification key pk ∈ PK and a secret signing key
sk ∈ SK;

• σ $← SIG.Sign(sk,m): the signing algorithm gener-
ates a signature σ ∈ SSIG for message m ∈ MSIG

using signing key sk;
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• {0, 1} ← SIG.Vfy(pk,m, σ): the verification algo-
rithm outputs – on input verification key pk, a mes-
sage m and corresponding signature σ – 1 if σ is a
valid signature for m under key pk, and 0 otherwise.

Definition 1. We say that SIG is (t, εSIG)-secure against
existential forgeries under adaptive chosen-message at-
tacks, if Pr[EXPseuf−cmaΣ,A (κ) = 1] ≤ εSIG for all adver-
saries A running in time at most t in the following exper-
iment:

EXPseuf−cmaSIG,A (κ)

(sk, pk)
$← SIG.Gen(1κ);

(σ∗,m∗) ← ASIG(sk,·), which can make up to q
queries to the signing oracle SIG(sk, ·) with arbitrary
messages m;
return 1, if the following conditions are held:

1) SIG.Vfy(pk,m∗, σ∗) = 1, and

2) (m∗, σ∗) is not among the previously submitted
to SIG(sk, ·) oracle;

output 0, otherwise;

where εSIG is a negligible function in κ, on input mes-
sage m the oracle SIG(sk, ·) returns signature σ ←
SIGsign(sk,m) and the number of queries q is bound by
time t.

Strong Cube Bilinear Decisional Diffie-Hellman
Assumption. We first recall the notion of bilinear
groups. Our pairing based scheme will be parameter-
ized by a symmetric pairing parameter generator, de-
noted by PG.Gen. This is a polynomial time algorithm
that on input a security parameter 1κ, returns the de-
scription of two multiplicative cyclic groups G and GT
of the same prime order p, generator g for G, and a bi-
linear computable pairing e : G × G → GT . We call

PG = (G, g,GT , p, e)
$← PG.Gen(1κ) be a set of symmet-

ric bilinear groups, if the function e is an (admissible)
bilinear map and it holds that:

• Bilinear: ∀(a, b) ∈ G and ∀(x, y) ∈ Zp, we have
e(ax, by) = e(a, b)xy.

• Non-degenerate: e(g, g) 6= 1GT , is a generator of
group GT .

• Efficiency: ∀(a, b) ∈ G, e is efficiently computable.

The strong Cube Bilinear Decisional Diffie-Hellman
(sCBDDH) problem that is formally defined as follows.

Definition 2. We say that the sCBDDH problem relative
to generator PG.Gen is (t, εsCBDDH)-hard, if the probability
bound |Pr[EXPscbddhPG.Gen,A(κ, n) = 1] − 1/2| ≤ εsCBDDH holds
for all adversaries A running in probabilistic polynomial
time t in the following experiment:

EXPscbddhPG.Gen,A(κ, n)

PG = (G, g,GT , p, e)
$← PG.Gen(1κ);

a, γ
$← Z∗p;

b
$← {0, 1}, if b = 1 Γ ← e(g, g)a

3

, otherwise Γ ←
e(g, g)γ ;
b′ ← A(1κ,PG, ga, g1/a,Γ);
if b = b′ then return 1, otherwise return 0;

where εsCBDDH = εsCBDDH(κ) is a negligible function in the
security parameter κ.

General One-round Group Key Exchange. We
present a generic definition of one-round group key ex-
change (ORGKE) to allow us to describe our generic re-
sult for this class of protocols. In a ORGKE protocol, each
party may send a single ‘message’ and this message is al-
ways assumed to be independent of the message sent by
the other party without loss of generality. The indepen-
dence property of sent messages is required since the ses-
sion participants can’t achieve mutual authentication in
one-round and it enables parties to run protocol instances
simultaneously (which is a key feature of one-round pro-
tocol). The key exchange procedure is done within two
pass and a common shared session key is generated to be
known only by session participants.

Let GD := ((ID1, pk
ke
ID1

), . . . , (IDn, pk
ke
IDn

)) be a list
which is used to store the public information of a group
of parties formed as tuple (IDi, pk

ke
IDi

), where n is the size
of the group members which intend to share a key and
pkkeIDi is the public key of party IDi ∈ IDS (i ∈ [n]).
Let T denote the transcript storing the messages sent
and received by a protocol instance at a party which
are sorted orderly. A general PKI-based ORGKE pro-
tocol may consist of four polynomial time algorithms
(ORGKE.Setup,ORGKE.KGen, ORGKE.MF,ORGKE.SKG)
with following semantics:

• pms ← Setup(1κ): This algorithm takes as input a
security parameter κ and outputs a set of system
parameters storing in a variable pms.

• (skkeID , pk
ke
ID )

$← ORGKE.KGen(pms, ID): This algo-
rithm takes as input system parameters pms and a
party’s identity ID, and outputs a pair of long-term
private/public key (skkeID , pk

ke
ID ) ∈ (PK,SK) for party

ID.

• mID1

$← ORGKE.MF(pms, skkeID1
, rID1

,GD): This algo-
rithm takes as input system parameters pms and the

sender ID1’s secret key skkeID1
, a randomness rID1

$←
RORGKE and the group information variable GD, and
outputs a message to be sent in a protocol pass, where
RORGKE is the randomness space.1

1We remark that the parameter GD of algorithm ORGKE.MF is
only optional, which can be any empty string if specific protocol
compute the message without knowing any information about its
indented partners.
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• K ← ORGKE.SKG(pms, skkeID1
, rID1 ,GD,T): This al-

gorithm take as the input system parameters pms

and ID1’s secret key skkeID1
, a randomness rID1

$←
RORGKE and the group information GD and a tran-
script T orderly recorded all protocol messages ex-
changed2, and outputs session key K ∈ KORGKE.

For correctness, we require that, on input the same
group description GD = ((ID1, pk

ke
1 ), . . . , (IDn, pk

ke
n ))

and transcript T, algorithm ORGKE.SKG satisfies the
constraint:

– ORGKE.SKG(pms, skkeID1
, rID1 ,GD,T) =

ORGKE.SKG(pms, skkeIDi , rIDi ,GD,T),

where skkeIDi is the secret key of a party IDi ∈ GD who
generates randomness rIDi ∈ RORGKE for i ∈ [n].

Besides these algorithms, each protocol might consist
of other steps such as long-term key registration and mes-
sage exchange, which should be described by each proto-
col independently. The key exchange procedure among n
parties is informally depicted in Figure 1.

Pseudo-Random Functions. Let PRF : KPRF ×
DPRF → RPRF denote a family of deterministic functions,
where KPRF is the key space, DPRF is the domain and
RPRF is the range of PRF for security parameter κ. Let
RL = {(x1, y1), . . . , (xq, yq)} be a list which is used to
record bit strings formed as tuple (xi, yi) ∈ (DPRF,RPRF)
where 1 ≤ i ≤ q and q ∈ N. So that in RL each x is
associated with a y. Let RF : DPRF → RPRF be a stateful
uniform random function, which can be executed at most
a polynomial number of q times and keeps a list RL for
recording each invocation. On input a message x ∈ DPRF,
the function RF(x) is executed as follows:

• If x ∈ RL, then return corresponding y ∈ RL,

• Otherwise return y
$← RPRF and record (x, y) into

RL.

Definition 3. We say that PRF is a (q, t, εPRF)-
secure pseudo-random function family, if it holds that
|Pr[EXPprfPRF,A(κ) = 1] − 1/2| ≤ εPRF for all adversaries
A running in probabilistic polynomial time t and making
at most q oracle queries in the following experiment:

EXPprfPRF,A(κ) F(b, x)

b
$← {0, 1}, k $← KPRF If x /∈ DPRF then return ⊥

b′ ← AF(b,·)(κ) If b = 1 then return PRF(k, x)
if b = b′ then return 1, Otherwise return RF(x)
otherwise return 0.

where εPRF = εPRF(κ) is a negligible function in the secu-
rity parameter κ, and the number of allowed queries q is
bound by t.

2The detail order needs to be specified by each protocol.

Target Collision-Resistant Hash Functions. Let
TCRHF : KTCRHF × MTCRHF → YTCRHF be a family of
keyed-hash functions associated with key space KTCRHF,
message space MTCRHF and hash value space YTCRHF.
The public key hkTCRHF ∈ KTCRHF of a hash function
TCRHF(hkTCRHF, ·) is generated by a PPT algorithm
TCRHF.KG(1κ) on input security parameter κ. If the
hash key hkTCRHF is obvious from the context, we write
TCRHF(m) for TCRHF(hkTCRHF,m).

Definition 4. TCRHF is a (t, εTCRHF)-secure target colli-
sion resistant hash function family if for all t-time adver-
saries A it holds that

Pr


hkTCRHF

$← TCRHF.KG(1κ),

m
$←MTCRHF,

m′ ← A(1κ, hkTCRHF,m),
m 6= m′, m′ ∈MTCRHF,
TCRHF(m) = TCRHF(m′)

 ≤ εTCRHF,

where the probability is over the random bits of A.

3 New Security Models

In this section we present two new strong security model
for one-round group key exchange that are generalized
from the models [12] for two party case. In these mod-
els, the active adversary is provided with an uniform
‘execution environment’ that follows an important re-
search line research [10, 14, 20, 22, 27] which is initiated
by Bellare and Rogaway [2].

Execution Environment. In the execution environ-
ment, we fix a set of honest parties {ID1, . . . , ID`} for
` ∈ N, where IDi (i ∈ [`]) is the identity of a party which is
chosen uniquely from space IDS. Each identity is associ-
ated with a long-term key pair (skIDi , pkIDi) ∈ (SK,PK)
for authentication.

Each honest party IDi can sequentially and concur-
rently execute the protocol multiple times with different
intended partners, this is characterized by a collection of
oracles {πsi : i ∈ [`], s ∈ [d]} for d ∈ N.3 Oracle πsi be-
haves as party IDi carrying out a process to execute the
s-th protocol instance (session), which has access to the
long-term key pair (skIDi , pkIDi) and to all other public
keys. Moreover, we assume each oracle πsi maintains a
list of independent internal state variables with semantics
listed as follows.

• Ψs
i – a variable storing the identities and public keys

of session participants which are sorted lexicograph-
ically in terms of identity, including IDi itself.

• Φsi – a variable denoting the decision Φsi ∈
{accept, reject}.

3An oracle in this paper might be alternatively written as πs
IDi

which is conceptually equivalent to πs
i .
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ID1

(skID1
, pkkeID1

)
$←

ORGKE.KGen(pms, ID1)

ID2 . . .

(skID2
, pkkeID2

)
$←

ORGKE.KGen(pms, ID2)

. . . IDn

(skIDn , pk
ke
IDn

)
$←

ORGKE.KGen(pms, IDn)

rID1

$←RORGKE rID2

$←RORGKE rIDn
$←RORGKE

mID1
:= ORGKE.MF(pms,

skkeID1
, rID1

,GD)

mID1
:= ORGKE.MF(pms,

skkeID1
, rID1

,GD)

mID1
:= ORGKE.MF(pms,

skkeID1
, rID1

,GD)

broadcast (ID1,mID1
) broadcast (ID2,mID2

) broadcast (IDn,mIDn )

each party has T = mID1
||mID2

|| . . . ||mIDn

K := ORGKE.SKG(pms,
skkeID1

, rID1
,GD,T)

K := ORGKE.SKG(pms,
skkeID2

, rID2
,GD,T)

K := ORGKE.SKG(pms,
skkeIDn , rIDn ,GD,T)

Figure 1: General one-round group key exchange

• Ks
i – a variable recording the session key Ks

i ∈
KGAKE.

• stsi – a variable storing the ephemeral keys that allows
to be revealed, e.g. the randomness used to generate
ephemeral public key.

• sT si – a variable recording the transcript of messages
sent by oracle πsi .

• {rT tj } – a set of variables each of which records the
transcript of messages received by oracle πsi from
party IDj ∈ Ψs

i such that j 6= i.

• T si – a variable storing the transcript of all messages
sent and received by πsi during its execution, where
the messages are ordered by round and within each
round lexicographically by the identities of the pur-
ported senders.

All those variables of each oracle are initialized with
empty string which is denoted by the symbol ∅ in the
following. At some point, each oracle πsi may com-
plete the execution always with a decision state Φsi ∈
{accept, reject}. Furthermore, we assume that the ses-
sion key is assigned to the variable Ks

i ( such that Ks
i 6= ∅)

iff oracle πsi has reached an internal state Φsi = accept.

Adversarial Model. An adversary A in our model is
a PPT Turing Machine taking as input the security pa-
rameter 1κ and the public information (e.g. generic de-
scription of above environment), which may interact with
these oracles by issuing the following queries.

• Send(πsi ,m): The adversary can use this query to
send any message m of his own choice to oracle πsi .
The oracle will respond the next message m∗ (if any)
to be sent according to the protocol specification and
its internal states. Oracle πsi would be initiated via
sending the oracle the first message m = (>,Ψs

i ) con-
sisting of a special initialization symbol > and a vari-
able storing partner identities.

• RevealKey(πsi ): Oracle πsi responds with the contents
of variable Ks

i .

• StateReveal(πsi ): Oracle πsi responds with the secret
state stored in variable stsi . We assume that the stsi
only include all ephemeral randomness generated on
host machine (such as personal computer).
Namely, the ephemeral states on secure device (like
the smart card) where the long-term key is stored
are excluded from stsi . This modelling approach is
widely used in literatures [6, 29, 33].

• Corrupt(IDi): Oracle π1
i responds with the long-term

secret key skIDi of party IDi if i ∈ [`]; otherwise a
failure symbol ⊥ is returned.

• EstablishParty(IDτ , pkIDτ ): This query allows the ad-
versary to register an identity IDτ (` < τ and τ ∈ N)
and a static public key pkIDτ on behalf of a party IDτ .
Parties established by this query are called dishonest.

• Test(πsi ): If the oracle has state Φsi = reject or
Ks
i = ∅, then the oracle πsi returns some failure sym-

bol ⊥. Otherwise it flips a fair coin b, samples a
random element K0 from key space KGAKE, and sets
K1 = Ks

i . Finally the key Kb is returned.

We highlight that the exact meaning of the StateReveal
must be defined by each protocol separately, i.e., the con-
tent stored in the variable st during protocol execution.
Our goal is to define the maximum states that can be
leaked from each session.

Secure GAKE Protocols. In order to denote the sit-
uation that two oracles are engaged in an on-line com-
munication, we first define the partnership via matching
sessions.

Definition 5 (Matching sessions). We say that an oracle
πsi has a matching session to oracle πtj, if πsi has sent all
protocol messages and Ψs

i = Ψt
j and T tj = T si . The oracle

πtj is said to be the partner-oracle of πsi .

We also recall the notion of origin session defined
in [12].

Definition 6 (Origin Session). We say that an oracle
πtj has an origin session to oracle πsi , if πtj has sent all
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protocol messages and sT tj = rT si,j. The oracle πtj is said
to be the origin-oracle of πsi .

Please note that if the protocol message does not in-
clude any information about its owner, then the origin-
oracle of an oracle may not come from its intended com-
munication partner.

Correctness. We say a group authenticated key ex-
change (GAKE) protocol Σ is correct, if two oracles πsi
and πtj accept with matching sessions, then both oracles
hold the same session key, i.e. Ks

i = Kt
j .

For the security definition, we need the notion of fresh-
ness of an oracle. in the sequel, we give two freshness
definitions. The difference between those two notions is
that the first one formulates only weak perfect forward se-
crecy and the second one formulates the perfect forward
secrecy. Let πsi be an accepted oracle. Meanwhile, let πtj
be an oracle (if it exists) with intended partner IDi, such
that πsi has a matching session to πtj . Let πlv be an oracle

(if it exists), such that πlv has a origin session to πsi . Let
πMS be a variable storing all partner-oracles of πsi , and
πRO be a variable storing all origin-oracles of πsi .

Definition 7 (g-eCKw Freshness). The oracle πsi is said
to be g-eCKw fresh if none of the following conditions
holds:

1) A queried EstablishParty(IDj , pkIDj ) to some party
IDj ∈ Ψs

i .

2) A queried RevealKey(πsi ).

3) if πMS 6= ∅, A queried RevealKey(πtj) to some oracle
πtj ∈ πMS.

4) A queried both Corrupt(IDi) and StateReveal(πsi ).

5) For some oracle πvl ∈ πRO and some IDj ∈ pidsi (j 6=
i), if sT vl = rT si,j 6= ∅, A queried both Corrupt(IDj)
and StateReveal(πvl ).

6) For some IDj ∈ pidsi (j 6= i), if there is no oracle πtj
such that πtj has an origin session to πsi , A queried
Corrupt(IDj).

Definition 8 (g-eCK-PFS Freshness). The oracle πsi is
said to be g-eCK-PFS fresh if none of the following con-
ditions holds:

1) A queried EstablishParty(IDj , pkIDj ) to some party
IDj ∈ Ψs

i .

2) A queried RevealKey(πsi ).

3) If πMS 6= ∅, A queried RevealKey(πtj) to some oracle
πtj ∈ πMS.

4) A queried both Corrupt(IDi) and StateReveal(πsi ).

5) For some oracle πvl ∈ πRO and some IDj ∈ pidsi (j 6=
i), if sT vl = rT si,j 6= ∅, A queried both Corrupt(IDj)
and StateReveal(πvl ).

6) For some IDj ∈ pidsi (j 6= i), if there is no oracle πtj
such that πtj has an origin session to πsi , A queried
Corrupt(IDj) priori to the acceptance of oracle πsi .

Security Experiment EXPGAKE
Σ,A (κ): On input security

parameter 1κ, the security experiment is proceeded as a
game between a challenger C and an adversary A based
on an AKE protocol Σ, where the following steps are per-
formed:

1) At the beginning of the game, the challenger C imple-
ments the collection of oracles {πsi : i ∈ [`], s ∈ [ρ]},
and generates ` long-term key pairs (pkIDi , skIDi) for
all honest parties IDi for i ∈ [`] where the iden-
tity IDi ∈ IDS of each party is chosen uniquely.
C gives adversary A all identities and public keys
{(ID1, pkID1

), . . . , (ID`, pkID`)} as input.

2) A may issue polynomial number of queries as
aforementioned, namely A makes queries: Send,
StateReveal, Corrupt, EstablishParty and RevealKey.

3) At some point, A may issue a Test(πsi ) query on an
oracle πsi during the game with only once.

4) At the end of the game, the A may terminate with
returning a bit b′ as its guess for b of Test query.

5) Finally, 1 is returned if all following conditions hold:

• A has issued a Test query to a fresh oracle πsi
without failure,

• A returned a bit b′ which equals to b of Test-
query;

Otherwise 0 is returned.

Let variable M ∈ {g-eCKw, g-eCK-PFS} denote spe-
cific model.

Definition 9 (GAKE Security). We say that an adver-
sary A (M, t, ε)-breaks the M security of a correct GAKE
protocol Σ, if A runs the AKE security game within time
t, and the following condition holds:

• If a Test query has been issued to a M fresh oracle
πsi , then the probability holds that |Pr[EXPGAKE

Σ,A (κ) =
1]− 1/2| > ε.

We say that a correct GAKE protocol Σ is (M, t, ε)-secure,
if there exists no adversary that (M, t, ε)-breaks the M
security of Σ.

Remark 1. Please note that the freshness of g-eCK
model [28] is defined based on only the notion of match-
ing sessions (MS). Whereas our new proposed models also
make use of the notion of origin session (OS) which has
less restriction than matching sessions. Namely OS only
compares transcript of messages from one protocol move
(e.g. sent or received by an oracle) other than all tran-
script of messages required by MS. Informally speaking,
less restriction in freshness definition would provide more
power to adversary.
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4 A Tripartite AKE Protocol
from Bilinear Maps

In this section we present a three party one-round AKE
protocol based on symmetric bilinear groups, a target col-
lision resistant hash function and a pseudo-random func-
tion family. The new proposed protocol is more efficient
and than its predecessor.

Protocol Description. We describe the protocol in
terms of the following three parts: Setup, long-term key
generation and registration, protocol execution. Please
note that the general algorithms (defined in Section 2)
are implied in specific part.

Setup: The proposed protocol takes as input the fol-
lowing building blocks which are initialized respectively
in terms of the security parameter κ ∈ N: (i) Symmetric

bilinear groups PG = (G, g,GT , p, e)
$← PG.Gen(1κ) and

a set of random values (u0, u1, u2, u3)
$← G and

(U0, U1, U2, U3) = (e(u0g, g), e(u1, g), e(u2, g), e(u3, g),
(ii) a target collision resistant hash function
TCRHF(hkTCRHF, ·) : KTCRHF × G → Zp, where

hkTCRHF
$← TCRHF.KG(1κ), and (iii) a pseudo-random

function family PRF(·, ·) : GT × {0, 1}∗ → KGAKE. The
system parameter variables encompass
pms := (PG, {ui}0≤i≤3, {Ui}0≤i≤3, hkTCRHF).

Construction Idea. Our new protocol is motivated to
improve the efficiency of the LY [24] protocol. We notice
that the consistency check on long-term and ephemeral
public keys in LY scheme requires eight pairing opera-
tions which is quite inefficiency. Hence we try to reduce
the computation cost of the consistency check. Our main
idea is to make use the pre-computation value in the tar-
get group GT , and the inversion of Diffie-Hellman key to
facilitate the validation of a consistency proof. Namely,
we utilize the inversion of a Diffie-Hellman key e.g.
g1/a provided together with the proof of ga, to remove
corresponding exponent a in the target group GT during
verifying process. So that we could use pre-computed
values in target group to build the verification equation.

Long-term Key Generation and Registration: On
input pms, a party Â may run an efficient algorithm

(skÂ, pkÂ)
$← ORGKE.KGen(pms, Â) to generate the

long-term key pair as: skÂ = a
$← Z∗p, pkÂ = (A,A′, tA)

where A = ga, A′ = g1/a, tA := (u0u
hA
1 u

h2
A

2 u
h3
A

3 )a =

(
∑3
i=0 u

hiA
i )a and hA = TCRHF(A).

Protocol Execution: On input pms, the protocol
among parties Â, B̂ and Ĉ is executed as Figure 2.

Comparisons. We summarize the comparisons among
some existing well-known concrete g-eCK secure one-
round AKE protocol (i.e. [24]) in the Table 1 from the
following perspectives: (i) the security model; (ii) the se-
curity assumptions; (iii) number of long-term (LL) and
ephemeral (Eph) keys; (iv) and overall computation cost
of considered protocol. In the table, ‘Exp’ denotes the
exponentiation and ‘ME’ denotes multi-exponentiations,
‘Pair’ denotes pairing evaluation, ‘CBDDH’ denotes the
Cubic Bilinear Decisional Diffie-Hellman assumption,
‘GBDH’ denotes the gap Bilinear Diffie-Hellman assump-
tion and ‘sCBDDH’ denotes the strong Cubic Bilinear
Decisional Diffie-Hellman assumption. Let ‘Rom’ denote
the random oracle model and ‘Std.’ denote the standard
model.

It is noticeable that our scheme reduce four expensive
pairing operations comparing to the construction [33]. It
is remarkable that our new scheme is even more efficient
than the one [27] secure in the random oracle model.
Hence our proposal can provide much more practical in-
teresting.

Security Result of Proposed Protocol. We show
the security result of our proposed protocol in the g-eCKw
model via the following theorem.

Theorem 1. Suppose that the pseudo-random function
family PRF is (t, εPRF)-secure, the TCRHF is (t, εTCRHF)-
secure and the strong Cub Bilinear Decisional Diffie-
Hellman assumption is (t, εsCBDDH) hard. Then the pro-
posed protocol is (g-eCKw, t, ε)-secure in the sense of Def-

inition 9, such that t ≈ t′ and ε ≤ (ρ`)2

2λ
+ εTCRHF +

14(ρ`)3(εsCBDDH + εPRF).

The proof of this theorem is presented in Appendix A.

5 Protocol Transformation from
g-eCKw to g-eCK-PFS

Next, we proposed a compiler called as SIG(Σ) which
make use of a deterministic SEUF-CMA secure signature
scheme SIG = (SIG.Gen,SIG.Sign,SIG.Vfy) to transform
any g-eCKw secure one-round group key exchange proto-
cols Σ to provide g-eCK-PFS security. Our compiler is
generalized from the CF compiler [12]. Namely we digital
sign each out-going ephemeral key. Moreover, we assume
that the signature scheme is executed on secure device
(where the long-term private key is stored). So that no
state can be revealed from the signature scheme for sim-
plicity (see more discussion about modelling session states
in [33]). The compiler is depicted in Figure 3. In contrast
to the original ORGKE protocol, the transformation only
adds signature to each outgoing message generated by
ORGKE.MF (without changing the session key generation
algorithm).

By applying the SIG(Σ) compiler, we show the resul-
tant protocol is secure in the g-eCK-PFS model as long
as the original protocol Σ is g-eCKw secure.



International Journal of Network Security, Vol.18, No.2, PP.304-315, Mar. 2016 311

Â

skÂ = a
$← Z∗p,

pkÂ = (A,A′, tA) =

(ga, g1/a, (
∑3
i=0 u

hiA
i )a

B̂

skB̂ = b
$← Z∗p,

pkB̂ = (B,B′, tB) =

(gb, g1/b, (
∑3
i=0 u

hiB
i )b

Ĉ

skĈ = c
$← Z∗p,

pkĈ = (C,C′, tC) :=

(gc, g1/c, (
∑3
i=0 u

hiC
i )c

x
$← Z∗p

X := gx, X′ := g1/x
y

$← Z∗p
Y := gy, Y ′ := g1/y

z
$← Z∗p

Z := gz, Z′ := g1/z

hX := TCRHF(X) hY := TCRHF(Y ) hZ := TCRHF(Z)

tX := (
∑3
i=0 u

hiX
i )x tY := (

∑3
i=0 u

hiY
i )y tZ := (

∑3
i=0 u

hiZ
i )z

broadcast (Â, A,A′, tA, X, tX) broadcast (B̂, B,B′, tB , Y, tY ) broadcast (Ĉ, C, C′, tC , Z, tZ)

hB := TCRHF(B)
hC := TCRHF(C)

hA := TCRHF(A)
hC := TCRHF(C)

hA := TCRHF(A)
hB := TCRHF(B)

hY := TCRHF(Y )
hZ := TCRHF(Z)

hX := TCRHF(X)
hZ := TCRHF(Z)

hX := TCRHF(X)
hY := TCRHF(Y )

VB := (
∑3
i=0 U

hiB
i ) VA := (

∑3
i=0 U

hiA
i )U4 VA := (

∑3
i=0 u

hiA
i )

VC := (
∑3
i=0 U

hiC
i ) VC := (

∑3
i=0 U

hiC
i )U4 VB := (

∑3
i=0 U

hiB
i )

VY := (
∑3
i=0 U

hiY
i ) VX := (

∑3
i=0 U

hiX
i ) VX := (

∑3
i=0 U

hiX
i )

VZ := (
∑3
i=0 U

hiZ
i ) VZ := (

∑3
i=0 U

hiZ
i ) VY := (

∑3
i=0 U

hiY
i )

reject if either reject if either reject if either
e(tBB,B

′) 6= VB or e(tAA,A
′) 6= VA or e(tAA,A

′) 6= VA or
e(tCC,C

′) 6= VC or e(tCC,C
′) 6= VC or e(tBB,B

′) 6= VB or
e(tY Y, Y

′) 6= VY or e(tXX,X
′) 6= VX or e(tXX,X

′) 6= VX or
e(tZZ,Z

′) 6= VZ e(tZZ,Z
′) 6= VZ e(tY Y, Y

′) 6= VY

Each party has sid := Â||A||A′||tA||X||X′||tX ||B̂||B||B′||tB ||Y ||Y ′||tY
||Ĉ||C||C′||tC ||Z||Z′||tZ

Each party rejects if some values recorded in sid are identical

ke := PRF(e(BY,CZ)a+x, sid) ke := PRF(e(AX,CZ)b+y, sid) ke := PRF(e(AX,BY )c+z, sid)

Figure 2: One-round tripartite AKE protocol

Table 1: Comparisons

Security Security LL Eph Overall
model assumptions (pk,sk) (pk,sk) cost

[27] g-eCK ROM, GBDH (1,1) (1,1) 9 Exp, 4.Pair
[24] g-eCK Std, TCR, PRF, CBDDH (1,2) (1,2) 2 Exp, 5 ME, 9 Pair

Proposed g-eCKw TCR, PRF, sCBDDH (1,3) (1,3) 3 Exp, 5 ME, 5 Pair

ID1

(skkeID1
, pkkeID1

)
$← ORGKE.KGen(

pms, ID1)

(sksigID1
, pksigID1

)
$← SIG.Gen(1κ)

ID2 . . .

(skkeID2
, pkID2

)
$← ORGKE.KGen(

pms, ID2)

(sksigID2
, pksigID2

)
$← SIG.Gen(1κ)

. . . IDn

(skkeIDn , pkIDn )
$← ORGKE.KGen(

pms, IDn)

(sksigID2
, pksigIDn

)
$← SIG.Gen(1κ)

rID1

$← RORGKE rID2

$← RORGKE rIDn
$← RORGKE

mID1
:= ORGKE.MF(pms,

skkeID1
, rID1

,GD)

mID1
:= ORGKE.MF(pms,

skkeID1
, rID1

,GD)

mID1
:= ORGKE.MF(pms,

skkeID1
, rID1

,GD)

σID1
:=

SIG.Sign(sksigID1
,mID1

)

σID2
:=

SIG.Sign(sksigID2
,mID2

)

σIDn :=

SIG.Sign(sksigIDn
,mIDn )

broadcast (ID1,mID1
, σID1

) broadcast (ID2,mID2
, σID2

) broadcast (IDn,mIDn , σIDn )

each party has T = mID1
||σID1

||mID2
||σID2

|| . . . ||mIDn ||σIDn

each party IDi(1 ≤ i ≤ n) rejects if one of the received signatures

σIDj
∈ {σID1

, . . . , σIDn}j 6=i is invalid i.e. SIG.Vfy(pksigIDj
,mIDj

, σIDj
) 6= 1

K := ORGKE.SKG(pms,

skkeID1
, rID1

,GD,T)

K := ORGKE.SKG(pms,

skkeID2
, rID2

,GD,T)

K := ORGKE.SKG(pms,

skkeIDn , rIDn ,GD,T)

Figure 3: Signature-based generic compiler

Theorem 2. For any ORGKE protocol Σ, if Σ is
(g-eCKw, t, εg-eCKw)-secure and the signature scheme SIG
is deterministic and (t, εSIG)-secure, then the protocol
SIG(Σ) is (g-eCK-PFS, t′, εg-eCK-PFS)-secure, such that

t ≈ t′ and ε′ ≤ ` · εSIG + 2 · εg-eCKw.

The proof of this theorem is shown in Appendix B.
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6 Conclusions

We have shown how to model perfect forward secrecy for
on one-round group key exchange by introducing two new
security models called as g-eCKw and g-eCK-PFS. We
also showed a new practical construction for one-round
group key exchange protocol which is the first one which
can be proven g-eCKw secure in the standard model. Our
proposal is more efficient than previous g-eCK secure pro-
tocol without random oracles. Our construction idea (in
particular for the new consistency check) can be applied
to other pairing based protocols with weak programmable
hash function that may yield more efficient schemes. Fur-
thermore, it is possible to transform our proposal or any
other g-eCKw secure protocols to satisfy g-eCK-PFS se-
curity following the new compiler. It is an interesting
open problem to formally consider generic constructions
for g-eCKw secure AKE in the standard model.
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A Proof of Theorem 1

The proof of this Theorem 1 is quite similar to the [24, 25,
Theorem 1]. We only show a proof idea here to avoid
repetition.

Let oracle πs
∗

ID1
be the test oracle with intended com-

munication partners ID2 and ID3. To prove the secu-
rity of a protocol in the g-eCK model, it is necessary to
show the proof under all possible freshness cases (rele-
vant to StateReveal and Corrupt queries) which are for-
mulated by Definition 7. Following the similar approach
in [24], we may obtain 14 detailed freshness cases at all.
In each freshness case, there are three distinct (long-term
or ephemeral) secrets from test oracle or its partner oracle
or origin-oracle are not compromised by adversary. The
proof proceeds in a sequence of games, following [30, 3].
Let Sδ be the event that the adversary wins the security
experiment in Game δ. Let ADVδ := Pr[Sδ]− 1/2 denote
the advantage of A in Game δ.

Game 0 This is the original game with adversary A.
The system parameters are chosen honestly by challenger
as protocol specification. Thus we have that Pr[S0] =
1/2 + ε = 1/2 + ADV0.

Game 1 In this game we want to make sure that the
received ephemeral keys are correctly formed. Techni-
cally, we add an abort condition, namely the challenger
proceeds exactly as before, but it aborts if there exist
two distinct (either ephemeral or long-term) public keys
W and N such that TCRHF(W ) = TCRHF(N). Mean-
while the probability that two oracles output the same
ephemeral key is bound by birthday paradox. Accord-
ing to the security property of underlying hash function.

Thus we have ADV0 ≤ ADV1 + (ρ`)2

2λ
+ εTCRHF.

Game 2 This game proceeds as previous game, but C
aborts if one of the following guesses fails: (i) the fresh-
ness case occurred to test oracle from all 14 possibili-
ties, (ii) the test oracle, (iii) the intended communica-
tion partners of test oracle, and (iv) every oracles (if they
exist in terms of specific guessed freshness case) which
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have origin-session to test oracle. The probability that all
above guesses of C are correct is at least 1

14ρ3`3 . Thus we

have that ADV1 ≤ 14(ρ`)3 · ADV2.

Game 3 Please note that the g-eCKw freshness defini-
tion guarantees that for our protocol there are at least 3
Diffie-Hellman (DH) keys from all session participants of
fresh test oracle are not compromised by adversary. We
call such guessed 3 uncompromised DH keys as target DH
keys. This game is proceeded as previous game, but the
challenger C replaces the key material ksi with random

value k̃si for oracles {πsi : i ∈ [`], s ∈ [ρ]} which satisfy the
following conditions:

• The ksi is computed involving the 3 target DH keys
which are guessed by C for test oracle, and

• Those target DH keys used by πsi are from 3 distinct
parties.

The above two conditions ensure that the changed key
materials of oracles can not be trivially generated by ad-
versary. This also enables us to embed sCBDDH challenge
instance into the simulation of all oracles satisfying above
conditions. The second condition is used to exclude the
situation that the DH keys from some party are all com-
promised in which case the adversary can simply compute
the session key.

The proof in this game is quite similar to the proof
of [25, Theorem 1] but the sCBDDH challenge instance is
involved instead of CBDDH. By applying the security of
sCBDDH assumption, we therefore obtain that ADV2 ≤
ADV3 + εsCBDDH.

Game 4 In this game, we change function PRF(k̃∗i , ·)
to a truly random function for test oracle and its partner
oracles (if they exist). Exploiting the security of PRF, we
have that ADV3 ≤ ADV4 + εPRF.

Note that in this game the session key returned by Test-
query is totally a truly random value which is independent
to the bit b and any messages. Thus the advantage that
the adversary wins this game is ADV4 = 0.

Sum up the probabilities from Game 0 to Game 4, we
proved this theorem.

B Proof of Theorem 2

Since a correct g-eCKw protocol must also be g-eCK-PFS
protocol. In the sequel, we wish to show that the adver-
sary is unable to distinguish random value from the ses-
sion key of any g-eCK-PFS oracle. Please first note that
the g-eCKw freshness and g-eCK-PFS freshness only dif-
fer in the last condition, i.e. when there is no origin-oracle
to test oracle. In other freshness cases, those two freshness
notions are the same. Hence, if we can show that the test
oracle always has origin-oracle before its intended partner
is corrupt, then the proof would go through.

In the following, we use the superscript ‘*’ to highlight
corresponding values processed in test oracle πs

∗

i which
has intended communication partner IDu. Let πsi be an
accepted oracle with intended partner IDj . Let πtj be an
oracle (if it exists) with intended partner IDi, such that
πsi has a matching session to πtj . Let πlv be an oracle (if it

exists), such that πlv has a origin session to πsi . Let Sδ be
the event that the adversary wins the security experiment
under the Game δ and one of the above freshness cases.
Let ADVδ := Pr[Sδ] − 1/2 denote the advantage of A in
Game δ. We consider the following sequence of games.

Game 0 This is the original g-eCK-PFS security game
with adversary A. Thus we have that Pr[S0] = 1/2 + ε =
1/2 + ADV0.

Game 1 In this game, the challenger proceeds exactly
like previous game, except that we add a abortion rule.
The challenger raises event aborttrans and aborts, if during
the simulation either the message mIDi replied by an ora-
cle πsi but it has been sample by another oracle πwu or sent
by adversary before. Since there are ρ` such values would
be sampled randomly. We claim that the event aborttrans
occurs with probability Pr[aborttrans] ≤ εg-eCKw. We elab-
orate the proof as follows. Please first recall that if the
test oracle πs

∗

i (generating message ms∗

IDi
) is fresh then

the adversary is not allowed to issue both Corrupt(IDi)
and StateReveal(πs

∗

i ), as otherwise the security is trivially
broken. However, consider the case that the adversary
issued Corrupt(IDi), and at the same time there is an-
other oracle πtj which outputs the same messages as the
one generated by test oracle. Then the adversary can is-
sue StateReveal(πtj) to learn the ephemeral secret relative

to ms∗

IDi
without violating the g-eCK-PFS of test oracle.

Furthermore, the probability that the collisions among
the messages generated by ORGKE.MF in either proto-
col Σ or SIG(Σ) is the same. The security of Σ in the
g-eCKw model, implies the collision probability among
outgoing messages is negligible. We therefore have that
ADV0 ≤ ADV1 + εg-eCKw.

Game 2 This game proceeds exactly as before, but
the challenger raises event abortsig and aborts if a fresh
oracle πsi with intended communication partner IDj re-
ceived a message mIDj which is not sent by any oracle
of IDj but the signature computed over mIDj subject-

ing to SIG.Vfy(pksigIDj
,mIDj , σIDj ) = 1. We have ADV1 ≤

ADV2 + Pr[abortsig].
If the event abortsig happens with non-negligible prob-

ability, then we could construct a signature forger F as
follows. The forger F receives as input a public key pk∗,
and runs the adversary A as a subroutine and simulates

the challenger for A. It first guesses an index θ
$← [`]

pointing to the public key for which the adversary is able
to forge, and sets pkIDθ = pk∗. Next F generates all other
long-term public/secret keys honestly as the challenger in
the previous game. The F guesses the party IDj (such
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that θ = j) correctly with probability 1/`. Then the F
proceeds as the challenger in Game 2, except that it uses
its chosen-message oracle to generate a signature under
pkIDθ for the oracles of party IDθ.

The F can use the signature received by πsi to break the
SEUF-CMA security of the underlying signature scheme
with success probability εSIG. So the event abortsig hap-

pens with the probability
Pr[abortsig]

` ≤ εSIG. Therefore we
have ADV1 ≤ ADV2 + ` · εSIG.

So in Game 2 each accepting g-eCKw fresh oracle πsi
with intended communication partner IDj , there always
exists an oracle πtj which has origin session to πsi . That
means the last condition of both g-eCK-PFS freshness and
g-eCKw freshness would never occurred in this game.

Game 3 This game is proceeded as previous game, but
the challenger C replaces the session key of test oracle
and its partner oracle (if it exists) with a uniform random
value. If there exists an adversary A can distinguish the
Game 3 from Game 2 then we can use it to construct an
adversary B to break the g-eCKw-security of Σ.

Intuitively, the security reduction from g-eCK-PFS to
g-eCKw is possible in this game, since both g-eCK-PFS
and g-eCKw encompass the same freshness cases (related
to StateReveal and Corrupt queries) when the test oracle
has origin-oracle. We elaborate the simulation as follows.
Let B be an adversary which interacts with an g-eCKw
challenger C and tries to breaks the g-eCKw security of
Σ in the g-eCKw security game. B runs A (who is a
successful g-eCK-PFS attacker) as subroutine and sim-
ulates the challenger for A as previous game. For each
party IDi (i ∈ [`]), B generate an extra pair of long-term

keys (sksigIDi
, pksigID )

$← SIG.Gen(1κ) and gives all public
keys to A at beginning of the game. For every oracle
{πsi : i ∈ [`], s ∈ [d]} simulated by C, B keeps corre-

sponding a dummy oracle πs
′

i and the adversary A is able
to interacts with those dummy oracles simulated by B.
Specifically, a dummy oracle proceeds as follows:

• For any Send(πs
′

i ,m) query from A, if m 6= (>, ĨDj)
and the signature in m is valid then B peels off the
signature value from m to obtain a truncated mes-
sage m′ and issues m∗ ← Send(πsi ,m). Meanwhile

if m(>, ĨDj) then B just issues m∗ ← Send(πsi ,m).

To this end, B does σm∗
$← SIG.Sign(skIDi ,m

∗) and
returns (m∗, σm∗) to A.

• For any Corrupt(IDi) (i ∈ [`]) query, B asks
Corrupt(IDi) to C to obtain skkeIDi and returns

(skkeIDi , sk
sig
IDi

) to A.

• For any other oracles queries on πs
′

i (including Test
query), B just asks corresponding oracles queries on
πsi to C and returns the results to A.

So that B is able to perfectly simulate the environment
for A. If the session key returned by Test query is a true
key, then the simulation is exactly the same as previous

game, otherwise it is equivalent to this game. Finally, B
returns what A returns to C. If A wins the game with
non-negligible probability, so does B. Thus we have that
ADV2 ≤ ADV3 + εg-eCKw.

In this game, the session key given to adversary is
independent of the bit b of Test query, thus Pr[S1

3] = 0.
Sum up the probabilities from Game 0 to Game 3, we
proved this theorem.
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