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Abstract

Verifiable computation allows a computationally weak
client to outsource evaluation of a function on many in-
puts to a powerful but untrusted server. The client in-
vests a large amount of off-line computation in an amor-
tized manner to obtain an encoding of its function which
is then given to the server. The server returns both the
evaluation result of the function on the client’s input and
a proof with which the client can verify the correctness
of the evaluation using substantially less effort than do-
ing the evaluation on its own from scratch. In this paper
a verifiable delegation of polynomials is proposed based
on the integer factorization problem. In the computation
procedure, the computation polynomial and the verifica-
tion polynomial are distinguishable, the wrong result and
the result of other inputs will incur a validation failure .
And last, the client can verify the result efficiently.

Keywords: Cloud computing, integer factorization, verifi-
able computation, verifiable delegation

1 Introduction

Cloud computing [8, 13, 18, 19, 21] is a type of com-
puting that relies on sharing computing resources rather
than having local servers or personal devices to handle
applications. Cloud computing has provided plenty of
convenience for the resource-constrained clients. Out-
sourced computations are widely used due to the rise
of cloud computing. The complex computing tasks of
users whose computing resources are limited can be out-
sourced to the cloud server. For instance, a large number
of real-time updated data should be computed, but the
resource-constrained clients are unable to deal with. The
computations have to be outsourced to cloud server, nev-
ertheless, in this situation, clients lose the ability to con-
trol their data which may be sensitive and highly interest
related. The growing desire to outsource computational
tasks from a relatively weak client to a computationally
more powerful servers and the problem of dishonest work-

ers who modify their clients’ software to return plausible
results without performing the actual computation moti-
vated the formalization of the notion of Verifiable Com-
putation [6, 15, 16].

Verifiable computation enables a computer to offload
the computation of some function, to other probably un-
trusted servers, while maintaining verifiable results. The
servers evaluate the function and return the result with
a proof that the computation of the function was carried
out correctly.

To ensure that the computation results are correct, the
server must provide the results together with a certificate
of its correctness. In the progress of outsouring compu-
tation, cryptographic techniques [20] are often used. For
the resource-constrained clients, the verification of such
correctness proof must be much easier than the original
computation. If the verification takes more time of com-
putation, the client could perform the computation on
its own without interacting with the server. So verifiable
computation should at least satisfy the flowing three basic
requirements.

1) Server cannot cheat the client with a random value
without computing the outsourced function.

2) Server cannot cheat the client with the computing
result of other input values.

3) The verification of client should be efficient.

The main results of this paper are two aspects, the
function obfuscation technic and the secure scheme for
verifiable delegation of polynomials. The function ob-
fuscation technique which is based on the large integer
factorization will make an efficient computation polyno-
mial mix in the outsourcing polynomials, and due to the
difficulty of large integer factorization the server cannot
recognize the polynomial which is mixed in. The secure
scheme for verifiable delegation of polynomials is based on
this technic, with the mixed efficient computation polyno-
mial client can easily verify the result returned by server.
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1.1 Related Work

In 2001, secure outsourcing for scientific computing and
numerical calculation are studied for the first time by
Atallah, Pantazopoulos and Rice [2], and they put for-
ward a lot of suitable camouflage technology for scientific
computing, such as, matrix multiplication, inequality, lin-
ear equations, etc. These technologies ensure the privacy
of user’s data, but this does not solve the problem of the
verifiability of computing results. In 2005, the formal se-
curity definition of outsourcing has been presented for the
first time by Hohenberger and Lysyanskaya [12] , and two
provably secure outsourcing schemes are proposed, the ba-
sic outsourcing scheme of modular exponentiation and the
CCA2 security outsourcing encryption scheme. In 2008,
Benjamin and Atallah [5] constructed a verifiable secure
outsourcing scheme for linear algebraic calculation by us-
ing semantic security based homomorphic encryption. In
2009, Gentry [10] proposed the fully homomorphic en-
cryption scheme for the first time based on ideal lattices.
But the efficiency is low.

In 2010, Atallah and Frikken [1] proposed a single
server verifiable outsourcing scheme based on Shamir se-
cret sharing scheme, and Gennaro, Gentry and Parno
proposed an outsourcing computation scheme for arbi-
trary function F with non-interactive verification based
on fully homomorphic encryption. In 2011, Chung, Kalai
and Liu [7] proposed an outsourcing model, and puts for-
ward the idea of memory delegation. In this scheme the
user can change the outsourcing data in memory, how-
ever the data flow cannot be arbitrarily long. And Ben-
abbas, Gennaro and Vahlis [4] studied the problem of
computing on large datasets that are stored on an un-
trusted server, the weak client can make retrieval and
update queries. This is the first construction that re-
lies on a “constant-size” assumption, and does not re-
quire expensive generation of primes per operation. In
2012, Parno, Raykova and Vaikuntanathan [16] proposed
the verifiable multi-function computation scheme. How-
ever, the user can distribute the data to the server only
once, and the relevant information should be stored lo-
cally. And in the same year, Seitkulov [17] put forward
a new verifiable camouflage computation scheme, which
can be used to achieve verifiable secure outsourcing for
abstract equations, Cauchy problem with secret parame-
ters, boundary value problems with secret boundary con-
ditions and some nonlinear equations. And Fiore and
Gennaro [9] presented new protocols for publicly verifiable
secure outsourcing of evaluation of high degree polynomi-
als and matrix multiplication based on the closed form
efficient pseudorandom functions. In 2013, Backes, Fiore
and Reischuk [3] proposed novel cryptographic techniques
that solve the above problem for the class of computations
of quadratic polynomials over a large number of variables.
Papamanthou and Shi and Tamassia [14] also have studied
public verification and considered the case of polynomial
evaluation.

Features comparisons between our scheme and some

recent schemes are list in Table 1.

Table 1: Comparisons with related works

Full Security Constant Assumption
Scheme [14]

√
×

Schemes [16] + [11] ×
√

Our Scheme
√ √

1.2 Organization of this Paper

The organization of this paper is as follows. Some prelim-
inaries are given in Section 2. The algorithms of verifiable
computation are given in Section 3. Then in Section 4 we
give our protocol of verifiable delegation of polynomials.
The security analysis is given in Section 5. The efficiency
of our scheme analysis is given in Section 6. Finally, con-
clusion will be made in Section 7.

2 Preliminaries

Some definitions and technics are listed in this section,
which will be used in the following sections.

2.1 Negligible Function

A negligible function is a function negl(x) such that for
every positive integer c there exists an integer Nc such
that for all x > Nc such that

| negl(x) |< 1

xc

Equivalently, we have the following definition. A func-
tion negl(x) is negligible, if for every positive polynomial
poly(·) there exists an integer Npoly > 0 such that for all
x > Npoly

| negl(x) |< 1

poly(x)

2.2 Integer Factorization Problem

Given a number n = pq, where p and q are two large
prime numbers, it is difficult to factorize n.

This problem has many different versions. Here we
introduce a decisional problem.

Given n = pq, and an x with the corresponding y,
it is difficult to determine that y satisfies which of the
following equations:

y = ax mod p or y = ax mod p∗

where, p∗ < n is a random prime number.
It can be described as the indistinguishable way, see

the following experiment.
Let IFP be the integer factorization problem, A is a

PPT adversary, d ∈ {0, 1}. Gen denotes the generation
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algorithm, and Compute denotes the computation algo-
rithm.

Experiment Expp,p∗

IFP,A[n, x, y]

(p, p∗, n = pq, a, x)← Gen(1k) and
b0 = p, b1 = p∗

For i = 1 to t
xi ← A(n, x1, y1, · · · , xi−1, yi−1)
yi = axi mod bd ← Compute(xi)

x∗ ← A(n, x1, y1, · · · , xt, yt)
y∗ ← Compute(x∗)
d′ ← A(n, x1, y1, · · · , xt, yt, x∗, y∗)
If d′ = d, output 1.
Else output 0.

The advantage of an adversary A in the above experi-
ment is defined as:

AdvindIFP,A(n, p, p∗) = | Pr[d′ = d]− 1
2 |

The factorization of integer n = pq is a difficult problem
means

AdvindIFP,A(n, p, p∗) ≤ negl(k)

where negl(·) is a negligible function.

2.3 Homomorphic Encryption

Homomorphic encryption is a form of encryption which
allows some computations (such as addition, multiplica-
tion and exponentiation) to be carried out on ciphertext
and obtain an encrypted result the decryption of which
matches the result of operations performed on the plain-
texts.

Assume E(·) is an encryption algorithm, and D(·) is
an decryption algorithm, fully homomorphic encryption
should satisfy the following properties.

(σx1
, σx2

)← E(x1, x2), then D(σx1
+ σx2

) = x1 + x2.

(σx1
, σx2

)← E(x1, x2), then D(σx1
· σx2

) = x1 · x2.

Fully homomorphic encryption is useful in outsourcing
computations.

Given σx ← E(x), σy = f(σx), then y = D(σy), which
satisfies y = f(x).

3 Verifiable Computation

A verifiable computation scheme is with two parties client
and server. Client outsources the computation of a func-
tion f to an untrusted server. Client expects server to
evaluate the function on an input and server returns a
result with a proof that the result is correct. Then the
client verifies that the result provided by the server is in-
deed correct about the function on the input. In this sce-
nario, client should verify the result efficiently with much
less cost of computation resources.

A verifiable computation scheme is defined by the fol-
lowing algorithms:

KeyGen(f, k)→ (PK,SK): Based on the security pa-
rameter k, the key generation algorithm generates a
key pair (PK,SK) for the function f . PK is pro-
vided to the server, and client keeps SK.

ProGenSK(x)→ (σx, Vx): The problem generation al-
gorithm is run by client to uses SK to encode the
input x as σx which is given to server, and a verifi-
cation key Vx which is kept private by client.

ComputePK(σx)→ (σy): Given PK and σx, the algo-
rithm is run by the server to compute an encoded
version of the output σy.

VerifySK(Vx, σy)→ (y∪ ⊥): Using the secret key SK,
the verification key Vk, and the encoded output σy,
the algorithm returns the value y = f(x) or ⊥ indi-
cating that σy does not equal to f(x).

A verifiable computation scheme should be correct, se-
cure and efficient. A verifiable computation scheme VC is
correct if the algorithms allow the honest server to output
values that will pass the verification.

Definition 1 (Correctness). A verifiable computation
scheme is correct if the algorithms allow the honest server
to output values that will pass the verification. That
is, for any x, f and any (PK,SK) ← KeyGen(f, k),
if (σx, Vx) ← ProGenSK(x), (σy) ← ComputePK(σx),
then f(x)← V erifySK(Vx, σy) holds with all but negligi-
ble probability.

In other words, for an input x and a given function
f , a malicious server should not be able to convince the
verification algorithm on output σ′y such that σ′y 6= f(x).
We use the following experiment to describe this.

Experiment ExpV f
A [VC, f, k]

(PK,SK)← KeyGen(f, k)
For i = 1 to q

xi ← A(PK, x1, σx,1, Vx,1, · · · , xi−1, σx,i−1Vx,i−1)
(σx,i, Vx,i)← ProGenSK(xi)

x∗ ← A(PK, σx,1, Vx,1, · · · , σx,q, Vx,q)
(σx∗ , Vx∗)← ProGenSK(x∗)
σ′y ← A(PK, σx,1, Vx,1, · · · , σx,q, Vx,q, σx∗ , Vx∗)
y′ ← (PK, Vx∗ , σ′y)
If y′ 6= ⊥ and y′ 6= f(x∗), output 1.
Else output 0.

A verifiable computation scheme is secure if an incor-
rect output cannot be accepted. That is, the probability
that the verification algorithm accepts the wrong output
value for a given input value is negligible.

For a verifiable computation scheme, we define the ad-
vantage of an adversary A in the above experiment as:

AdvV f
A (V, f, k)=Pr[EXPV f

A [V, f, k] = 1]

Then we get the definition of security.

Definition 2 (Security). A verifiable computation
scheme is secure if for any function f , and any PPT ad-
versary A, that
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AdvV f
A (V, f, k) ≤ negl(k)

where negl(·) is a negligible function.

In the verifiable computation scheme the time for ver-
ifying the output must be much smaller than the time to
compute the function.

Definition 3 (Efficiency). A verifiable computation
scheme is efficient, if the time required for Verify(Vx, σy)
is o(T ), where T is the time required to compute f(x).

4 Verifiable Delegation of Polyno-
mials

In this section, we give the polynomial obfuscation tech-
nique based on integer factorization problem, and give our
implementation scheme.

4.1 Obfuscation Technic

The polynomial

f(x) = a0 + a1x+ a2x
2 + · · ·+ adx

d, ai ∈ Zp, 0 ≤ i ≤ d

which is a high degree polynomial, is outsourced to server.
Client asks the server to compute the function on the
value of x. In this scenario, the client must be able to
verify the correctness of the result efficiently.

For the secure and efficient verification, an efficient
computing polynomial v(x) is chosen, and a verifiable
polynomial F (x) = af(x) + v(x) is constructed. This
should satisfy the following requirements.

1) Server cannot get any information about a from f(x)
and F (x).

2) v(x) cannot be identified by server.

3) f(x) and F (x) are indistinguishable.

We use the following technic, which is based on integer
factorization problem, to achieve the requirements.

Client selects a prime q randomly (which satisfies |p| =
|q| ), and computes n = pq. Then client randomly chooses
a ∈ Z∗p . F (x) is generated as

F (x) = af(x) + v(x) mod n

= b0 + b1x+ b2x
2 + · · ·+ bdx

d mod n

where,bi ∈ Zp, 0 ≤ i ≤ d.

Proposition 1. Server cannot get any information about
a from f(x) and F (x).

Proof. For a = (bi)
−1ai mod p(i = 0, 1, · · · , d), if p is

known, then a can be uniquely determined. Server just
knows n = pq, where q is unknown. If p is undetermined,
there are p choices of a, so a is secure.

Proposition 2. The efficient computation polynomial
v(x) is secure in the computation process.

Proof. Consider the following experiment.

Experiment Expp,p∗

IND,A[n, x, y]

(p, p∗, n = pq, a, x)← Gen(1k) and
b0 = p, b1 = p∗

For i = 1 to t
xi ← A(n, x1, y

(1)
1 = ax1 mod p,

y
(2)
1 = ax1 mod p∗, · · · , xi−1,

y
(1)
i−1 = axi−1 mod p,

y
(2)
i−1 = axi−1 mod p∗)

y
(1)
i = axi mod p, y

(2)
i = axi mod p∗

← Compute(xi)

x∗ ← A(n, x1, y
(1)
1 , y

(2)
1 · · · , xt, y

(1)
t , y

(2)
t )

y∗ = ax∗ mod bd ← Compute(x∗)

d′ ← A(n, x1, y
(1)
1 , y

(2)
1 · · · , xt, y

(1)
t , y

(2)
t , x∗, y∗)

If d′ = d, output 1.
Else output 0.

The advantage of an adversary A in the above experi-
ment is defined as:

AdvindIND,A(n, p, p∗) = | Pr[A(p) = 1]− Pr[A(p∗) = 1]|

Let

v(x) = r0 + r1x+ r2x
2 + +̇rdx

d, ri ∈ Zp, 0 ≤ i ≤ d

then

bi = aai + ri mod p.

We also have the equation

bi = aai mod p∗

where p∗ 6= p. For there exists a prime p∗ such that
p∗|(aai − bi), so aai − bi = kp∗, then the equation bi =
aai mod p∗ is existent.

Due to the difficulty of large integer factorization, we
know

AdvindIFP,A(n, p, p∗) ≤ negl(k)

so

AdvindIND,A(n, p, p∗)

= | Pr[A(p) = 1]− Pr[A(p∗) = 1] |≤ negl(k).

For n cannot be factorized, p is unknown, the server
cannot distinguish bi = aai + ri mod p from bi = aai mod
p∗. So the coefficient ri is secure.

Thus v(x) cannot be identified by server.

Proposition 3. f(x) and F (x) are indistinguishable.

Proof. f(x) and F (x) are two polynomials with same de-
gree d, and bi = aai + ri mod p, 0 ≤ i ≤ d. There exist
b, r′i ∈ Zp, such that ai = bbi + r′i mod p.

For p is unknown and a, ri, 0 ≤ i ≤ d are safe, ai
and bi are indistinguishable. Thus f(x) and F (x) are
indistinguishable.
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4.2 Verifiable Scheme with Efficient
Computing Functions

We assume x is an encoded input and y is an encoded
output, the function f is a homomorphic encrypted func-
tion.

Client wants to computes y = f(x) mod p (f(x) is a
high degree polynomial), he/she delegates it to a server.
And the client can verify the correctness of the result.

Initialization. Client selects a prime q randomly, and
computes n = pq. Then client randomly chooses
e(0 < e < d) and r1, r2 ∈ Z∗p . Client keeps
p, q, e, r1, r2 and send n to server.

Delegation. Client sends two polynomials

y = f(x) mod n

and
y = af(x) + xe + r1 + r2x mod n

to server.

Verification. Server sends y1 = f(x) mod n and y2 =
af(x)+xe+r1+r2x mod n to client. Client computes
m = xe + r1 + r2x mod n and verifies whether the
following equation holds.

y2 = ay1 +m mod n.

If this equation does not hold, that means the server
gives the wrong answer, y1 is not correct. If the equa-
tion holds, that means y1 is the right answer, and
client can get the final result by computing

y = y1 mod p.

5 Security Analysis

5.1 Security of Parameters

Theorem 1. The probability that server can get p from
the computation process is no more than 1

s , where s sat-
isfies s ln s = n.

Proof. Server gets two polynomials

y1 = f(x) mod n

and
y2 = af(x) + xe + r1 + r2x mod n

so server knows the coefficients ai(i = 0, 1, · · · , d) of y1 =
a0+a1x+· · ·+adxd, and the coefficients bi(i = 0, 1, · · · , d)
of y2 = b0 + b1x + · · · + bdx

d. The random number a is
unknown.

Comparing the coefficients, server can get bi = aai mod
p, and server can compute a = (bi)

−1ai mod p. But a is
unknown, for every prim p there exists one a such that
a = (bi)

−1ai mod p. Server should find a number a, such
that

a = (bi)
−1ai mod p (i = 0, 1, · · · , d).

There are about s prime numbers which are less than
n, where s satisfies s ln s = n. So the probability server
can get p is no more than 1

s . If p is a 512 bit prime. the
probability is negligible.

On the other hand, server knows n = pq, so server can
get p form decomposing n. But by the difficulty of integer
factorization, the probability that p can be obtained from
the factorization of n is negligible.

In these two aspects, the probability that server can get
p from the computation process is no more than 1

s .

Theorem 2. The probability that server can obtain a
from the computation process is at most max( 1

p ,
1
s ).

Proof. For a = (bi)
−1ai mod p(i = 0, 1, · · · , d), if p is

known, then a can be uniquely determined. The proba-
bility that p can be uniquely determined is no more than
1
s , where s satisfies s ln s = n, so the probability a can be
determined is also 1

s .

In another way server just knows n = pq, where q is
unknown. If p is undetermined, there are p choices of a,
so the probability that a can be determined is at most 1

p .

So the probability that server can obtain a from the
computation process is at most max( 1

p ,
1
s ).

Theorem 3. The mixed polynomial xe + r1 + r2x is safe
in the computation process.

Proof. xe + r1 + r2x is mixed in the polynomial y2 =
af(x) + xe + r1 + r2x mod n, and server do not know
a, e, r1, r2 and p. Server can determine the function pa-
rameters through some special values. The equations are
as follows.

y
(0)
2 = af(0) + 0 + r1 + 0

y
(1)
2 = af(1) + 1 + r1 + r2

y
(2)
2 = af(2) + 2e + r1 + 2r2

y
(3)
2 = af(3) + 3e + r1 + 3r2

· · · · · ·
y
(m)
2 = af(m) +me + r1 +mr2

where, a, 2e, 3e, · · · ,me, r1, r2 are unknown parameters.
There are m + 1 equations with m + 2 unknown param-
eters, so server cannot gain the parameters from these
equations.

If server guesses a value of the parameters, the other
parameters can be computed out. Even if server gets
2e, 3e, · · · ,me, the unknown variable e is still safe for the
difficulty of discrete logarithm problem.

Server also guess out e, r1, r2 from the p values in Zp,
the probability is 1

p3 .

So the mixed polynomial xe + r1 + r2x is safe in the
computation process.

Theorem 4. The two polynomials y1 = f(x) mod n and
y2 = af(x) + xe + r1 + r2x mod n are indistinguishable.
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Proof. The probability p can be determined is no more
than 1

s , and a is at most max( 1
p ,

1
s ). xe+r1+r2x is mixed

in the polynomial y2 = af(x) + xe + r1 + r2x mod n. For
the mixed polynomial xe + r1 + r2x is safe in the compu-
tation process, the two polynomials y1 = f(x) mod n and
y2 = af(x)+xe+r1+r2x mod n are indistinguishable.

This theorem means that server cannot distinguish
which polynomial is the one client wants to compute and
which one is for verification.

5.2 No Fraudulence

Theorem 5. The probability that the random values
which the server provides without the evaluation of the
two polynomials y1 = f(x) mod n and y2 = af(x) + xe +
r1 + r2x mod n can pass the verification is max( 1

p4 ,
1

sp3 ).

Proof. The probability that server can obtain a from the
computation process is at most max( 1

p ,
1
s ), that is

Pr{A(a) = 1} = max( 1
p ,

1
s ).

The probability that xe + r1 + r2x can be obtained from
the computation process is 1

p3 , that is

Pr{A(xe + r1 + r2x) = 1} = 1
p3

The two random values of the two polynomials y1 =
f(x) mod n and y2 = af(x) +xe + r1 + r2x mod n should
satisfy the equation

y2 = ay1 +m mod n

so that they can pass the verification. However server
does not know a and m, so

Pr{V(y1, y2) = 1} = max( 1
p ,

1
s ) 1

p3 = max( 1
p4 ,

1
sp3 ).

Thus probability that the random values can pass the
verification is max( 1

p4 ,
1

sp3 ).

Theorem 6. The advantage that server uses the result
of other input to cheat client is at most e

p .

Proof. Considering the following experiment.
Experiment Expx0

PE,A(k)

X = (x1, x2, · · ·xt)← Gen(1k)

Y = ((y
(1)
1 = f(x1),

y
(1)
2 = af(x1) + xe1 + r1 + r2x1),

(y
(2)
1 = f(x2),

y
(2)
2 = af(x2) + xe2 + r1 + r2x2), · · · ,

(y
(t)
1 = f(xt),

y
(t)
2 = af(xt) + xet + r1 + r2xt))
← A(X, (f(x), af(x) + xe + r1 + r2x))

x∗ 6= x0 ← A(X,Y )
Return 1, if af(x∗) + (x∗)e + r1 + r2x

∗

= af(x∗) + (x0)e + r1 + r2x0.
Else, return 0.

AdvA,x0
= Pr[Ax∗

(k) = 1 | x∗ ← Gen(1k), x∗ 6= x0] =
Pr[Return1]

Client wants to compute y1 = f(x1), but server gives
the values y2 = f(x2) and y′2 = f(x2) + xe2 + r1 + r2x2
(x1 6= x2).

If the equation

y′2 = ay2 + xe1 + r1 + r2x1

holds, the value y2 can pass verification. That means

xe1 + r1 + r2x1 = xe2 + r1 + r2x2 mod p(x1 6= x2)

should hold.

There are at most e values in Zp can satisfy this equa-
tion

xe1 + r1 + r2x1 = m mod p.

So the probability the equation xe1 +r1 +r2x1 = xe2 +r1 +
r2x2 mod p (x1 6= x2) holds is at most e

p .

Hence,

AdvA,x0
= e

p

6 Efficiency Analysis

To compute f(x) = a0 + a1x + a2x + · · · + adx
d client

needs 2d times multiplications. If the polynomial f(x) is
outsourced to server, the client need to compute xe +r1 +
r2x and verifies wether y2 = y1+xe+r1+r2x holds. If the
verification passed, client should compute y = y1 mod p.
In this way, client needs e+ 1 times multiplications and a
modular exponentiation computation. If e is chosen much
less than d, the computation cost is much smaller than the
cost of computing f(x).

The time cost comparisons of verification and com-
putation are as Figure 1. We implement our mecha-
nism using MATLAB language with a version of R2013a.
The process is conducted on a computer with Intel(R)
Core(TM)i7-3770 CPU processor running at 3.40 GHz,
16 GB RAM.

7 Conclusion

Cloud computing has made a reality of computation out-
sourcing. A new protocol for publicly verifiable outsourc-
ing of evaluation of high degree polynomials is given in
this paper. And we introduce a function obfuscation tech-
nic, the secret polynomial can be mixed into the out-
sourced polynomial by using this technic. This technic
can also be used in the information hiding. In the verifi-
cation phase, the result returned by server can be easily
verified by client. And the time cost is much less than
the time computing the original polynomial. Client can
choose the value of e, such that the computation of veri-
fication value can be controlled within the user’s compu-
tational capabilities.
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Figure 1: Time cost comparisons of verification and com-
putation
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