
International Journal of Network Security, Vol.18, No.2, PP.274-282, Mar. 2016 274

Information Hiding in Standard MIDI Files
Based on Velocity Reference Values

Da-Chun Wu1, Ming-Yao Chen2

(Corresponding author: Da-Chun Wu)

Depart. of Computer & Communication Engineering, National Kaohsiung First University of Science & Technology1

Institute of Engineering Science and Technology, National Kaohsiung First University of Science and Technology2

No. 1, University Rd, Yanchao Dist., Kaohsiung City, 824 Taiwan, ROC.

(Email: dcwu@nkfust.edu.tw)

(Received May 7, 2015; revised and accepted July 1 & 17, 2015)

Abstract

This paper proposed a novel method to embed informa-
tion in SMFs (Standard MIDI Files) by slightly adjusting
the velocity values of notes. First, this method uses the
velocity values of the first note of strong beat, the first of
weak beat, and the first second-strong beat with non-zero
velocity value in a measure as the referencing values for
velocity of other notes in the same measure. Then, the
data are embedded in the velocity values of notes exclud-
ing the notes with the referencing values. The method
uses the difference between the velocity value of each note
and its corresponding reference value to decide the num-
ber of bits which can be used for embedding data in each
note. The proposed method limits the changes of the ve-
locity value of each note to its original value and its cor-
responding reference value during the data embedding.
It can avoid the differences from the original music be-
ing heard due to the velocity values excessive change. In
addition, the proposed method can also embed data with-
out changing the file sizes of the SMFs. It can also avoid
attracting attention. The experimental results show the
feasibility of the proposed method.

Keywords: Information hiding, MIDI, standard MIDI file,
steganography, velocity

1 Introduction

With the progress of computer and communication tech-
nology, Internet access is no longer confined to the use of
traditional PCs. Through mobile devices, such as smart-
phones, tablet PCs, etc., people can access the Internet
anytime and anywhere; therefore, the information circu-
lation is increasingly faster. However, security [26] issues
also result. Information hiding [18, 19] is a technology
whereby secret information is hidden in the images, text,
voice, video and other cover-media. A media is called
the stego-media after embedding secret information in a

cover-media. The most common carrier media are images.
Many information hiding techniques are based on images,
such as LSB (least-significant-bit) [12, 14], pixel-value
difference [13], difference expansion [3, 7], prediction-
based [5] and DCT [17] methods.

MIDI [6, 21] (Music Instruction Digital Interface), a
communication protocol, a communicate language be-
tween digital musical instruments and computers, was cre-
ated in 1993. SMF (Standard MIDI File) [6, 8, 20, 21] is
one of the digital music file formats. The difference be-
tween SMF and other digital music files is that it only
records relevant performance data of MIDI, such as mu-
sical instruments, pitches, tempos and other messages re-
lated to the performance. The file size of SMFs is small;
it can be seen not only on PCs, but also on a lot of mo-
bile devices. It is also conveniently transferred through
the Internet.

Some hiding information methods of SMFs have been
proposed and developed. Duration is a parameter related
to the performance of an SMF; it indicates the length of
time of an event. The duration of a note played means the
length of time that a note is pressed till it is released. The
actual expression of same music among different players
may slightly differ because players cannot precisely play
the duration of each note like robots. Adli et al. [2] embed
watermarks by using duration parameters. The method
uses each two duration values of consecutive notes and
adjusts the magnitude of duration values by one increase
and one decrease. The sum value of two durations re-
mains unchanged after embedding the watermarks. Ya-
mamoto and Iwakiri [25] propose another similar technol-
ogy to embed information by duration adjustment. The
method adjusts the duration of one note played to over-
lap the next one. The length of overlapped time indicates
the embedded information. Yamamoto and Iwakiri [24]
also propose another method of embedding information
by using durations. First, the average values of durations
of each category of notes (example: quarter note, eighth
note, etc.) are calculated. Then, the original duration

International Journal of Network Security, Vol.18, No.2, PP.274-282, Mar. 2016 275

value of each note is replaced with the average value of
duration of the notes category. Finally, to achieve the
purpose of embedding information in a note, if the note’s
new duration value is less than that of the original dura-
tion value, the new duration value of the note is added
by the embedded message; otherwise, the new duration
value is subtracted in the embedded message.

A delta-time value is placed before each event in SMFs
to denote the time interval with the previous event.
Dittmann and Steinebach [4] propose a method for em-
bedding information by fine-tuning the delta-time values
of MIDI files. After embedding information in the delta-
time value which is placed before an event, the effect of
time when the event appears will be slightly changed. Xu
et al. [23] propose a method to embed encrypted water-
mark information into generated virtual notes. During
playback, the generated virtual notes do not affect the
original MIDI quality. Program-change messages are used
to change the musical instruments playing in MIDI files.
If more than one program-change message appears con-
tinuously in a MIDI file, only the last instrument will be
retained. John [11] uses this feature to achieve the pur-
pose of information embedding by inserting some addi-
tional program-change messages before the last program-
change message. When MIDI devices read these unde-
fined command codes during playback, they will sim-
ply ignore them and will not affect MIDI file playback.
Malcolm [15] inserts some undefined command codes in
the MIDI specification to deliver secret information. In
the MIDI standard specification, if the same command
codes next to each other appear repeatedly, only the first
command code must appear; the rest of the command
codes can be selected to appear or be omitted. Adli and
Nakao [1] proposes an embedding method by using re-
peated command codes which take advantage of the fea-
ture of showing or omitting command codes to represent
the embedded data, in order to achieve information hid-
ing. Hiding information by this way will not affect the mu-
sic presentation of MIDI files, but will change the size of
MIDI files. In MIDI specification, SysEx commands can
be used for transmitting additional messages. Adli and
Nakao [1] use this feature to hide information in SMFs;
the length of the embedded information is unlimited and
the embedded information will not affect the performance
of the music. However, the size of the MIDI files after em-
bedding information will get larger.

In MIDI files, tempo events are used to set the actual
length of time to play a quarter note of music in microsec-
onds. It controls the playback speed of music. Yamamoto
and Iwakiri [25] insert a group of tempo events to rep-
resent the embedded data. In MIDI files, several note
events, especially note-on events and note-off events, may
occur at the same time. The appearing order of these
note events does not affect the performance in MIDI files.
Inoue and Matsumoto [10] call note events which occur
at the same time as simulnotes. They present the coding
sequence of note events and rearrange them according to
the embedded data to achieve information hiding. In or-

der to increase security, a stegokey is used when embed-
ding and extracting information. Stegokeys can disrupt
the coding sequence; the information-hidden mechanism
will be more secure. In MIDI files, the quantization func-
tion can be used to correct the start time and end time
of note events. Therefore, Inoue and Matsumoto [10] use
quantization function to correct the timing for increasing
the amount of simulnotes and the embedding capacity.
Inoue et al. [9] analyze the previous method proposed
by Inoue and Matsumoto [10], and found that the SMFs
with embedded information are easily inspected. There-
fore, he proposed an improved method by preprocessing
simulnotes in SMFs before embedding information. The
preprocessing works include rearrangement of note events
for each simulnote to place all note-off events before note-
on events, and divide note events in each simulnote into
multiple subsimulnotes which are grouped by the chan-
nel numbers of note events. Wiedemer [22] proposes a
list steganography algorithm so that any events occurring
at the same time are regarded as list items. First, the
embedded information is converted into a flexible base
number by using flexible base notation. Then, the or-
der of list items is rearranged according to the flexible
base number, and the purpose of information embedding
is achieved. This method also uses a hash function to
increase the security of the embedded data.

In MIDI files, the velocity value of a note event is
represented by a parameter which ranges from 0 to 127.
The velocity value refers to the volume when the note is
played. Dittmann and Steinebach [4] use chords in MIDI
files as an information carrier. Additional notes with low
velocity value are joined into a chord to represent the em-
bedded watermarks. Adli and Nakao [1] propose a method
for embedding information by replacing least significant
bits of velocity value; generally speaking, at most three
bits are replaced in each note, so it can avoid awareness
of the difference between the original file and the file af-
ter information is embedded. Adli et al. [2] use every two
neighboring notes which have the same velocity values,
and adjust the two velocity values by one increasing and
the other decreasing for a small magnitude at the same
time to embed watermarks. However, it is necessary to
refer to the original MIDI file when the watermarks are
extracted. Slur is a music symbol which is represented as
a curve in musical scores. The curve covers two or more
notes as a group and each group should play legato or
smoothly without separation. Yamamoto and Iwakiri [24]
propose a method to embed information into each note in
the group which is covered by a slur.

This paper presents a novel method to hide information
by adjusting the velocity values in SMFs. This method
first uses the velocity values of the notes of the first strong
beat, the first weak beat and the first second-strong beat
with non-zero velocity value as reference values for other
notes in the same measure. If a note is strong beat, refer
to the reference value of the strong beat of the measure;
if a note is weak beat, refer to the reference value of the
weak beat, etc. Then, the information is embedded in

International Journal of Network Security, Vol.18, No.2, PP.274-282, Mar. 2016 276

Figure 1: MIDI message structure

Figure 2: An example of a MIDI message

the velocity value of the notes in each measure. The pro-
posed method can limit the changes of the velocity value
of each note to its original value and its corresponding
reference value when information is embedded. After em-
bedding data, the changes of velocity values of notes are
insignificant. This process can avoid the differences from
the original music being heard. The file sizes of SMFs
will not change after data embedding. It can also avoid
attracting attention.

The rest of the sections of this paper are organized as
follows. Section 2 describes MIDI and SMF. The proposed
information hiding method is described in Section 3. The
experimental results are presented in Section 4. Finally,
conclusions are given in Section 5.

2 MIDI and SMF

MIDI is a standard communication protocol that is used
to control electronic musical instruments. It allows the
player to transmit the details of the performance and as-
sociated control information between electronic musical
instruments, computers and other devices. The SMF file
format is one of the popular digital music formats. This
section will introduce MIDI and SMF.

2.1 MIDI

MIDI is composed of hardware interface and communica-
tion protocol. MIDI is used to control electronic musical
instruments; it connects electronic musical instrument,
computer and other digital devices together via hardware
interface through transmission lines. Its commands or
messages about playing music can thus be transmitted.
A MIDI message consists of one status byte and several
data bytes. A status byte indicates the type of trans-
mitted message subsequently followed by data bytes with

related message. Different MIDI messages may have dif-
ferent numbers of data bytes. The length of a status byte
is fixed at one byte, but a data byte can range from 0 to
several bytes, as shown in Figure 1. Status bytes and data
bytes can be distinguished by their Most Significant Bits
(MSBs). The MSB of a status byte is 1, and that of a data
byte is 0. For example, the message generated from press-
ing a key of a keyboard contains one status byte and two
data bytes of MIDI messages. The four high bits value
of the status byte indicate the message type of note-on,
and the four low bits value indicate the channel it used.
Messages can be transmitted through channels 1 to 16
in MIDI devices. The information of the first data byte
indicates which note (note number) is pressed, while the
information of the second data byte indicates the velocity
of the pressed note. As shown in Figure 2, the value of
the status byte, data byte 1 and data byte 2 are 9016,
3C16 and 4016, respectively. It represents that a center
C is pressed, the velocity value of pressing is 64, and the
message is transmitted via Channel 1.

2.2 SMF

SMF is a standard MIDI file format used to store and
distribute messages related to MIDI performance. It con-
tains file format, events, timing and other information.
SMFs also can be post-produced to make content richer
through music sequencers. Because the file size is small,
SMFs are widely used in computers, ring tones of cell
phone and web pages. SMFs use chunks to store various
information of MIDI performance. The structure of an
SMF contains header chunk and track chunk, as shown in
Figure 3. Both start with four ASCII leading characters
to represent the type of chunk, followed by the length in-
formation of 32 bits which is used to indicate how many
bytes of data are in the rest of the chunk. There is only
one header chunk in an SMF, while there are many track

International Journal of Network Security, Vol.18, No.2, PP.274-282, Mar. 2016 277

Figure 3: The chunk structure of a MIDI file: (a) Header chunk; (b) Track chunk.

chunks. The structure of an SMF starts with a header
chunk followed by several track chunks.

Header chunks store the format, track number, divi-
sion and other important information of an SMF. The
length of division occupies 16 bits, and has two kinds of
formats. If the value of MSB of division is 1, it repre-
sents that the division is time-code-based format, which
is usually used in the synchronization between the video
devices and MIDI devices. If the value of MSB of division
is 0, it represents that this division is the tick number of
a quarter note. Tick is the smallest unit of time in SMFs.
This format is the commonly used division format in gen-
eral SMFs. The division value is relevant to the length of
actual time represented by delta time values. The lead-
ing character of a track chunk is MTrk. Track chunks are
used to store the actual playing music-related informa-
tion, such as playing musical instruments, note velocities,
rhythms, and so on. Delta time is the time interval of two
events. The delta time value is 0 when two events occur
at the same time. Assuming that the division value is 48,
then a delta time value of the quarter note is 48 and the
delta time value of a half note is 96.

Time signature is composed of two numbers in the mu-
sic score. The way they are arranged is much like frac-
tions in mathematics, as shown in Figure 4. The number
of the numerator indicates the number of beats per mea-
sure, while the number of the denominator indicates the
note value of the beat, i.e. the note which is used as a
beat. The time signature of SMFs is set by the time sig-
nature event. The format of the time signature event of
Figure 4 is shown in Figure 5. The first 3 leading bytes of
this event are FF 58 04 in hexadecimal, followed by four
data bytes. The first and the second data byte denote the
numerator and denominator of a time signature, respec-
tively. Among these, the value of the second data byte

is represented by negative power of two. In Figure 5, the
value of the first data byte is 06; it denotes that there are
six beats per measure. The value of the second data bytes
is 03; it represents the value of 2−3 = 1

8 and indicates that
the note value of the beat is the eighth note.

Figure 4: A time signature

3 Information hiding in a SMF

When playing music, an appropriate change of sound
velocity can make the music much pleasant. Generally
speaking, the strength of the velocity often appears reg-
ularly and periodically in music according to the time
signature of the scores. Usually, the first beat in each
measure of a song is a strong beat, and the second beat is
a weak beat. So, the velocity values of the first note beat
should be greater than that of the second note beat in
the same measure. The velocities of the remaining beats
in the measure exhibit different performance strength ac-
cording to the time signature of the music. Using 4/4 time
signature as an example, it represents that a quarter note
is used as one beat, and there are four beats per measure.
In addition to the first and second beat of each measure,
there are strong beat and weak beat, respectively; the
third beat of each measure is second-strong beat and the
fourth beat of each measure is weak beat. Table 1 lists
the common time signature and its strength performance
of each beat in a measure.

International Journal of Network Security, Vol.18, No.2, PP.274-282, Mar. 2016 278

Figure 5: The format of the time signature event of Figure 4

Table 1: Strength of beat of common time signature

Time signature The strength of the expression of each beat in each measure
2/4 Strong, weak
3/4 Strong, weak, weak
4/4 Strong, weak, second-strong, weak
3/8 Strong, weak, weak
6/8 Strong, weak, weak, second-strong, weak, weak
12/8 Strong, weak, weak, second-strong, weak, weak, second-strong, weak, weak, second-strong,

weak, weak

This paper proposes a method to hide information in
SMFs by embedding data in the velocity values of notes.
The method uses time signature to decide the strength
of the performance of each note in the music. Then, the
two velocity values of the first strong beat note ns and
weak beat note nw with non-zero value in each measure
are used as the reference velocity values: rs and rw of
strong beat and weak beat of the measure, respectively.
If the strength of performance of a song includes a second-
strong beat according to its time signature, then assume
the reference value of the first second-strong beat note’s
non-zero value nss is rss. The embedding data will be em-
bedded in the notes with non-zero velocity value in the
same measure, excluding ns, nw and nss. For each note
n which satisfies the above conditions, assume its veloc-
ity value is vn, and the reference velocity value of n is rn
according to the strength of the performance. Then this
method can embed blog2 |vn − rn|c bits of secret informa-
tion at most in the n. The larger difference value between
vn and rn indicates that the volume of playing the note
is not generally expected. It also means that the larger
amount of data can be embedded in n. Because the num-
ber of bits occupied by a velocity value does not change
after embedding data in it, the size of MIDI files remains
unchanged while embedding the data. Using a measure of
the song ’You can fly’ as an example, the score is shown
in Figure 6. The time signature of this song is 4/4, which
represents that a quarter note is used as one beat, and
there are four beats per measure. The strength of the
expression of each beat in each measure is strong, weak,
second-strong, and weak. The notes a and b shown in the
figure represent the first and the second beat of the notes
of this measure, respectively. Note c and d represent the
notes of the third beat. Note e and f represent the fourth
beat of the notes. Among these, notes a and b are the

first strong beat note ns and the first weak beat note nw

with non-zero velocity value for this measure, respectively,
while note c is the first second-strong beat note nss with
non-zero velocity value. Note d is the second-strong beat
note; both notes e and f are weak beat notes. Assume
that the velocity values of note a, b, c, d, e and f are 97,
89, 92, 84, 85 and 88, respectively, and the embedded bi-
nary secret bit message is 010, then the velocity values
of nw and nss are 89 and 92, respectively. The method
proposed in this paper can embed information in note d
by using rss as the velocity reference value, and embed
information in notes e and f by using rw as the velocity
reference value.

Figure 6: Score of a measure

In order to extract the secret information correctly dur-
ing the extraction process, the information embedded in
each note retains one leading bit with bit value 1, and
the remaining embedded bit can be used to embed secret
information. In other words, if the total number of data
bits can be embedded in the notes is t, then the actual
number of bits available for embedding secret information
is t-1. The velocity reference value of note d is 92; the to-
tal number of data bits can be embedded in this note is
blog2 |84− 92|c = 3. The embedded information of note

International Journal of Network Security, Vol.18, No.2, PP.274-282, Mar. 2016 279

d contains a leading bit 1 and the secret binary informa-
tion 10; therefore, the complete binary information is 110.
The velocity reference values of note e and f are 89; the
number of secret information bits embedded in note e, f
are blog2 |85− 89|c = 2, blog2 |88− 89|c = 0, respectively.
The embedded information of note e contains a leading
bit 1 and the secret binary information 0; therefore, the
complete binary information is 10. Because the number
of bits which can be embedded in note f is 0, this note
is not used for embedding information. Detailed descrip-
tions of embedding and extraction procedures are shown
in the following section.

3.1 Information Embedding Procedure

This section will describe how secret information is
embedded in the SMFs. The embedding procedures are
as follows:

Input: the original cover SMF C, bit length l of secret
information I = i1i2 · · · il.
Output: stego-SMF S after embedding I in C.

Step 1. According to the time signature of music and
strength of beat of common time signature in Ta-
ble 1, we obtain the information about strong beat,
weak beat, and second strong beat in each measure
of music. Set j to 1, and perform Step 1.1 for each
measure Mj of music one by one until the secret in-
formation is completely embedded.

Step 1.1: Let ns and nw be the first strong beat
note and the first weak beat note with non-zero
velocity value in Mi, respectively. Assume the
velocity values of ns and nw are rs and rw, re-
spectively. If there are a second strong beat in
Mi, let the first second strong beat note with
non-zero velocity value be nss, and the velocity
value of nss be rss. Perform Steps 1.1.1 through
1.1.7 by using each note ni with non-zero veloc-
ity value in Mi as the note variable n one by one
except ns, nw, nss and if any.

Step 1.1.1: Let the corresponding velocity ref-
erence value of n be rn; rn can be repre-
sented as

rn =

rs, if ni ∈ strong beat

rw, if ni ∈ weak beat

rss, if ni ∈ sec ond strong beat

Step 1.1.2: Assume the original velocity value
of n is vn. If the value of |vn − rn| is less
than 2, it indicates that n cannot be used
for embedding data. Then, go to Step 1.1.7.

Step 1.1.3: The number of bits that can be
embedded in n is e, e can be expressed as

e = blog2 |vn − rn|c

where b•c denotes the floor function.

Step 1.1.4: The embedded data of note n con-
tains a leading bit 1 and e-1 bit secret bi-
nary information. Assume f is the embed-
ded data, f can be expressed as

f =

{
1, if e = 1

1 • ijij+1 · · · ij+e−2, if e > 2

where • denotes the symbol of bit concate-
nation.

Step 1.1.5: Let v
′

n be the new velocity value
after embedding f into vn, v

′

n can be ex-
pressed as

v′n =

{
rn + BinToDec(f), if vn > rn

rn −BinToDec(f), if vn < rn

where BinToDec(x) denotes the function
which converts the binary bit stream x into
a decimal number.

Step 1.1.6: Set j to j+e-1.

Step 1.1.7: Continue.

Step 2. Obtain stego-SMF S after embedding I.

3.2 Information Extraction Procedure

Extraction procedure is essentially the reverse process of
embedding procedure. If the difference value between the
velocity value of a note and its corresponding reference
value is more than 1, it indicates that the note is with
embedded data. Therefore, the data can be extracted
through the reverse process of embedding information.

4 Experimental Results

This section presents the experimental results of the pro-
posed method. Because this method uses the velocity
values of the first strong beat, the first weak beat and
the first second-strong beat note as the velocity reference
values, the difference value between the velocity reference
value and the velocity value of a note is used to embed
data. While a large amount of difference value represents
that it can provide more bits for embedding data, this
method cannot embed data in the velocity values of notes
if the velocity values are the same as the corresponding
velocity reference values. The tested MIDI files were col-
lected from a web site [16]. There are 75 MIDI files which
contain different time signatures. These MIDI files orig-
inate from the original work of eight authors. Six tested
files are chosen from among them to show the detailed ex-
perimental results. They are dvoe1, chonorain, chonoc10,
han-fir-2-bourree, pcanon-in-d-for-guitar and romance-in-
f-op-51. Table 2 shows time signature, file size and num-
ber of measures that can be embedded data by using six
tested MIDI files, respectively.

Table 3 shows beats per note, number of notes, num-
ber of notes that can be embedded data, ratio of notes

International Journal of Network Security, Vol.18, No.2, PP.274-282, Mar. 2016 280

Table 2: Time signature, file size and number of measures that can be embedded data of six tested MIDI files

File name Time signature File size (K Bytes) Number of measures
that can be embedded data

dvoe1 4/4 29.7 574
chonorain 4/4 11.6 82
chonoc10 4/4 23.8 278

han-fir-2-bourree 4/4 20.3 120
pcanon-in-d-for-guitar 4/4 4.82 35

romance-in-f-op-51 4/4 25.2 105

Table 3: Beats per note, number of notes, number of notes that can be embedded data, ratio of notes that can be
embedded data and embedding capacity of six tested MIDI files

File name
Beats per Number of Ratio of notes that

Embedding capacity

note notes can be embedded data Bits Bits per note
Bits per em-
bedding note

devoe1 0.4459 5149 0.3650 5165 1.0031 2.7488
chonorain 0.1696 1934 0.3475 2141 1.1070 3.1860
chonoc10 0.6387 1741 0.3297 1234 0.7088 2.1498

han-fir-2-bourree 0.2155 2227 0.7800 2961 1.3240 1.7047
pcanon-in-d-for-guitar 0.2439 574 0.2875 415 0.7230 2.5151

romance-in-f-op-51 0.1317 3187 0.7358 5994 1.8807 2.5561

that can be embedded data, and embedding capacity of
six tested MIDI files. Beats per note represents the av-
erage number of beats of notes in a MIDI file. Generally
speaking, the smaller the value of beats per note, the more
notes per measure, i.e. the more notes that can be used
for embedding data. The number of notes that can be
embedded data refers to the sum of the number of notes
with non-zero velocity values, except for the velocity ref-
erence notes of strong beat, weak beat and second-strong
beat of each measure in the MIDI file. The ratio of notes
that can be embedded data represents the proportion of
the notes that can be embedded data to the whole amount
of notes in a MIDI file. The larger the value of ratio of
notes that can be embedded data, the smaller the value
of beats per note. For example, romance-in-f-op-51 MIDI
file in Table 4 has a relatively high ratio of notes that can
be embedded data and has relatively low beats per note.
There are several ways to represent the embedding capac-
ity of each MIDI file in Table 3. Bits per note indicate
the amount of the embedded bits per note in a MIDI file.
It can be expressed as:

bits− per − note =
total no. of embedded bits

totalno. of notes in theMIDI file

Bits per embedding note’ refers to the total number of
notes with embedded data in a MIDI file. It can be ex-

pressed as:

bits− per − embedding − note =

total no. of embedded bits

totalno. of noteswith embedded data in aMIDI file

The larger the bits per embedding note’ signifies the
larger the average difference between the velocities of the
notes and their reference values in the MIDI file, and the
more capacity that can be used for embedding data. As
shown in Table 4, the value of bits per embedding note
of chorain MIDI file is relatively larger than those of the
others. It signifies that the differences between the veloc-
ity values and their reference values of the notes in the
chorain MIDI file are relatively larger than those of the
others.

Lastly, Table 4 shows the total number of MIDI files for
each author, the average number of notes of MIDI files,
the average beats per note of MIDI files, the average bits
per note of MIDI files after embedding data and the av-
erage bits per embedding note of the whole 75 MIDI files
which are all classified by the authors. First, the results of
the average number of notes, the average bits per note of
MIDI files after embedding data and the average beats per
note of each author are summed up the number of notes,
bits per note, and beats per note of each author. Second,
divide the sum values by the total number of MIDI files
for each author, respectively. In Table 4, the average bits
per note after data were embedded in MIDI files of author
Brams is relatively small. This is because the differences

International Journal of Network Security, Vol.18, No.2, PP.274-282, Mar. 2016 281

Table 4: Beats per note, number of notes, number of notes that can be embedded data, ratio of notes that can be
embedded data and embedding capacity of six tested MIDI files

Author Number of Average number Average beats Average bits per note Average bits
MIDI files of notes per note after data embedded per embedding note

Brahms 1 11921.0 0.7932 0.0084 2.1333
Chopin 12 1369.4 0.7971 0.5246 1.8767
Dvarok 10 8172.7 0.7532 0.7223 2.7638
Handel 17 5519.5 0.7823 0.3834 2.7424

Pachelbel 5 3146.0 1.1864 0.6073 3.1772
Schubert 1 1316.0 0.5091 0.3989 1.9590

Tchaikovsky 11 17732.4 0.6772 0.9232 2.3192
Vavilda 18 5853.2 0.8016 0.2240 2.2541

between the velocity values and their reference values of
the notes in the MIDI files of author Brams are near zero
for most of the notes in his MIDI files. In Table 4, the
average beats per note for an individual author may rep-
resent the expression of the music for each author. The
larger value represents that one’s music is played fast, and
may present a brisk and dancing style. On the contrary,
if the music is played slowly, it may present a lyrical and
restrained feeling.

5 Conclusions

This paper proposed a new method to hide information
in SMFs. This method uses the velocity values of the
first note of strong beat, the first of weak beat, and the
first second-strong beat with non-zero velocity value in
a measure as the referencing values for velocity of other
notes in the same measure. The proposed method can
limit the changes of the velocity value of each note to its
original value and its corresponding reference value when
data is embedded. It can avoid the differences from the
original music due to excessively changed velocity value,
being heard.

In addition, the proposed method can embed data
without changing the file sizes of SMFs, and also avoid at-
tracting attention. Therefore, the proposed method pro-
vides a secure way to embed data in SMFs.

Acknowledgments

This work was supported partially by National Science
Council, R. O. C. under Grant No. 100-2221-E-327-029.

References

[1] A. Adli and Z. Nakao, “Three steganography algo-
rithms for midi files,” in IEEE International Confer-
ence on Machine Learning and Cybernetics, vol. 4,
pp. 2401–2404, Aug. 2005.

[2] A. Adli, H. Mirza, and Z. Nakao, “A watermarking
approach for midi file based on velocity and duration
modulation,” in Knowledge-Based Intelligent Infor-
mation and Engineering Systems, pp. 133–140, 2008.

[3] O. M. Al-Qershi and B. Ee Khoo, “Two-
dimensional difference expansion (2D-de) scheme
with a characteristics-based threshold,” Signal Pro-
cessing, vol. 93, pp. 154–162, Jan. 2013.

[4] J. Dittmann and M. Steinebach, “A framework for
secure midi ecommerce,” in German National Re-
search Center for Information Technology, 2002.

[5] I. C. Dragoi and D. Coltuc, “Local-prediction-based
difference expansion reversible watermarking,” IEEE
Transactions on Image Processing, vol. 23, pp. 1779–
1790, Apr. 2014.

[6] R. Guerin, MIDI Power: The Comprehensive Guide,
Cengage Learning PTR, 2005.

[7] Li C. Huang, L. Yu Tseng, and M. S. Hwang, “A
reversible data hiding method by histogram shifting
in high quality medical images,” Journal of Systems
and Software, vol. 86, pp. 716–727, Mar. 2013.

[8] D. M. Huber, The MIDI Manual: A Practical Guide
to MIDI in the Project Studio, Focal Press, 3 edt.,
2007.

[9] D. Inoue, M. Suzuki, and T. Matsumoto, “Detection-
resistant steganography for standard mimi files,” IE-
ICE Transactions on Fundamentals of Electronics,
Communications and Computer Sciences, vol. 86,
pp. 2099–2106, 2003.

[10] D. Inoue and T. Matsumoto, “A scheme of standard
midi files steganography and its evaluation,” in Pro-
ceedings of Security and Watermarking of Multime-
dia Contents IV, SPIE 4675, Apr. 29, 2002.

[11] C. John, Steganography V - Hiding Mes-
sages in MIDI Songs, Aug. 5, 2004. (http:
//www.codeproject.com/Articles/5390/

Steganography-V-Hiding-Messages-in-MIDI-Songs)

[12] M. Juneja and P. S. Sandhu, “Improved lsb based
steganography techniques for color images in spatial
domain,” International Journal of Network Security,,
vol. 16, pp. 452–462, Nov. 2014.

International Journal of Network Security, Vol.18, No.2, PP.274-282, Mar. 2016 282

[13] Y. Po Lee, J. C. Lee, W. K. Chen, Ko C. Chang, I.
J. Su, and C. P. Chang, “High-payload image hiding
with quality recovery using tri-way pixel-value differ-
encing,” Information Sciences, vol. 191, pp. 214–225,
May. 2012.

[14] T. C. Lu, C. Ya Tseng, and J. H. Wu, “Dual imaging-
based reversible hiding technique using lsb match-
ing,” Signal Processing, vol. 108, pp. 77–89, Mar.
2015.

[15] J. W. Malcolm, Method and Apparatus for Encoding
Security Information in a MIDI Datastream, Patent:
US 6798885 B1, Sep. 2004.

[16] MIDI Music, “http://goo.gl/ryqel4,”.
[17] S. Onga, K. S. Wonga, and K. Tanaka, “Scram-

bling embedding for JPEG compressed image,” Sig-
nal Processing, vol. 109, pp. 38–53, Apr. 2015.

[18] K. Patel, S. Utareja, and H. Gupta, “A survey of in-
formation hiding techniques,” International Journal
of Emerging Technology and Advanced Engineering,
vol. 3, pp. 347–350, Jan. 2013.

[19] C. P. Sumathi, T. Santanam, and G. Umamah-
eswari, “A study of various steganographic tech-
niques used for information hiding,” International
Journal of Computer Science & Engineering Survey,
vol. 4, pp. 9–25, 2013.

[20] The International MIDI Association, Standard
MIDI-file Format Spec. 1.1, Updated,” 2003.

[21] The MIDI Manufacturers Association, The Complete
MIDI 1.0 Detailed Specification Ver. 96.1, 1996.

[22] M. Wiedemer, MIDI File Steganography, Patent: US
7402744 B1, July 22, 2008.

[23] C. Xu ane Y. Zhu and D. D. Feng, “Content pro-
tection and usage control for digital music,” in First
IEEE International Conference on Web Delivering
of Music, pp. 43–50, 2001.

[24] K. Yamamoto and M. Iwakiri, “An information hid-
ing technique to music code with musical perfor-
mance rendering,” in Youngnam-Kyushu Joint Con-
ference, 2009.

[25] K. Yamamoto and M. Iwakiri, “A standard midi file
steganography based on fluctuation of duration,” in
IEE Availability, Reliability and Security, pp. 774–
779, Mar. 2009.

[26] Y. Zhang, X. Li, H. Li, and H. Zhu, “Subliminal-free
variant of schnorr signature with provable security,”
International Journal of Electronics and Information
Engineering, vol. 2, pp. 59–68, June 2015.

Da-Chun Wu was born in Taiwan on June 6, 1959. He
received the B. S. degree in the Department of Computer
Science from Tamkang University, Taipei, Taiwan, 1983,
the M. S. degree in the Institute of Information Engi-
neering from Tamkang University in 1985. He received
the Ph.D. degree in computer science from Chiao Tung
University, Hsinchu, Taiwan in 1999. Dr. Wu joined the
faculty of the Department of Information Management,
Ming Chuan University, in 1987. He joined the faculty
of National Kaohsiung First University of Science and
Technology (NKFUST), Kaohsiung, Taiwan in August
2002. He is currently the Head and Associate Professor
in the Department of Computer and Communication
Engineering. Professor Wu’s current research interests
include image processing, database, multimedia security.

Ming-Yao Chen was born in Kaohsiung on May 26,
1967. He received the M.S. degree in Department of Com-
puter and Communication Engineering from the National
Kaohsiung First University of Science and Technology,
Kaohsiung, Taiwan, in 2003. He is currently a Ph.D. stu-
dent at Institute of Engineering Science and Technology,
National Kaohsiung First University of Science and Tech-
nology, Kaohsiung, Taiwan. His current research interests
include image processing, multimedia steganography.

