
International Journal of Network Security, Vol.18, No.1, PP.68-81, Jan. 2016 68

A Key Based Secure Threshold Cryptography for
Secret Image

Prabir Kr. Naskar1, Hari Narayan Khan2, Atal Chaudhuri3

(Corresponding author: Prabir Kr. Naskar)

Department of Computer Science & Engineering, MCKV Institute of Engineering1

Liluah, Howrah-711204, West Bengal, India.

Department of Computer Science & Engineering, Regent Education and Research Foundation2

Barrackpore, Kolkata-700121, West Bengal, India.

Department of Computer Science & Engineering, Jadavpur University3

Jadavpur, Kolkata-700032, West Bengal, India.

(Email: cse.prabir@gmail.com, manik1984@gmail.com, atalc23@gmail.com)

(Received June 12, 2013; revised and accepted Jan, 22 & Apr. 29, 2014)

Abstract

This paper presents a key based secured (k, n) thresh-
old cryptography where key is used to encrypt the secret
and then the secret as well as key is shared among set
of n participants. In sharing phase, each secret byte is
selected randomly from secret fields depending upon the
key. That provides additional protection of the secret
data. Also, each share has some bytes missing and these
missing bytes can be recovered from a set of exactly k
shares. Thus a given byte position can be confirmed for
any k shares, but not less than k. Hence k shares are
required to give back the secret. As a result, the gener-
ated shares are compressed and if k is closer to n then the
compression ratio is increased. That provides strong pro-
tection of secret data. At the reconstruction phase only
when a qualified set of legitimate shares comes together
then reconstruction is possible. The proposed scheme is
described in detail along with its security analysis, such
as key sensitivity analysis and statistical analysis. This
scheme has been tested using different images to prove
that the scheme has great potential and has a good abil-
ity to achieve the confidential security.

Keywords: Compression, image Sharing, key-based
threshold cryptography, perfect secret sharing (PSS), ran-
dom selection of secret bytes, statistical analysis

1 Introduction

Protection of sensitive data is an important issue, dur-
ing transmission over internet. Many cryptographic tech-
niques are there to protect secret data. However, a com-
mon weakness of these technique is that an entire secret
data is kept in a single medium. The secret data can-
not be revealed if the medium or key is lost or corrupted.

This is termed as a single point failure. To overcome this
drawback secret sharing becomes more popular. In the
secret sharing scheme, there is one dealer and n partici-
pants. The dealer gives a secret to the participants, but
only when specific conditions are fulfilled. The dealer ac-
complishes this by giving each participant a share in such
a way that any group of k or more participants (i.e., qual-
ified participant) reconstruct the secret but no group of
less than k players can. Such a system is called a (k, n)-
threshold based secret sharing scheme. Threshold Secret
sharing scheme thus says that: A secret is some data S.
Our goal is to divide S into n shares V1, V2. · · · , Vn in
such a way that:

1) Knowledge of any k or more Vi shares makes S easily
computable, where 1 ≤ i ≤ n and 2 < k ≤ n.

2) Knowledge of any k − 1 or fewer Vi shares leaves S
completely undetermined (in the sense that all its
possible values are equally likely).

If k = n, then all the shares are required in the (n, n)-
threshold scheme to recover the secret. However, the lost
of any of the share produced using the (n, n)-threshold
scheme results in inaccessible secret messages. Figure 1
shows the conceptual view of a (k, n)-threshold sharing
scheme.

Well known secret sharing schemes (SSS) in the lit-
erature include Shamir’s SSS [16] based on polynomial
interpolation, Blakley’s SSS [2] based on hyper plane ge-
ometry, Asmuth-Bloom’s SSS [1] based on Chinese Re-
mainder theorem. Karnin et al. [11] suggested the concept
of perfect secret sharing (PSS) where zero information of
the secret is revealed for an unqualified group of (k − 1)
or fewer members. Specifically, Karnin et al. [11] used a
term referred as information entropy (a measurement of
the uncertainty of the secret), denoted as H(s) where s is

International Journal of Network Security, Vol.18, No.1, PP.68-81, Jan. 2016 69

Figure 1: Concept of shared cryptography

a secret shared among n participants. The claim of PSS
(Perfect Secret Sharing) schemes must satisfy the follow-
ing:

1) A qualified coalition of n or more participants, C can
reconstruct the secret (s), s: H(s|C) = 0, ∀|C| ≥ k;

2) An unqualified coalition of (n − 1) or few partici-
pants, C has no information about the secret (s), s:
H(s|C) = H(s), ∀|C| < k.

For these requirements in PSS schemes, a secret has
zero uncertainty if the secret can be discovered by n or
more participants. On the contrary, the secret, in PSS
schemes, remains the same uncertainty for (k−1) or fewer
members. Therefore, there is no information exposed to
the (k − 1) or fewer members.

A shortcoming of above secret sharing schemes is the
need to reveal the secret shares during the reconstruction
phase. The system would be more secure if the subject
function can be computed without revealing the secret
shares or reconstructing the secret back. This is known
as function sharing problem where the function computa-
tion is distributed according to underlying SSS such that
distributed parts of computation are carried out by indi-
vidual user and then the partial results can be combined
to yield the final result without disclosing the individ-
ual secrets. Various function sharing protocols are been
proposed [4, 5, 6, 7, 10, 15, 17] mostly based on Shamir
secret sharing as the underlying scheme. A better im-
age secret sharing approach was also proposed by Thien
& Lin [18]. With some cryptographic computation, they
cleverly used Shamir SSS to share a secret image. Chao et
al. [3] proposed a method to extend (n, n) scheme to (k, n)
scheme by using shadows-assignment matrix. Dong and
Ku [8] proposed a new (n, n) secret image sharing scheme
with no pixel expansion. In their scheme reconstruction is
based on addition which has low computational complex-
ity. Dong et al. [9] proposed a (2, n) secret sharing scheme
based on Boolean operation. The reconstructed image is
totally the same with the original secret image and the
scheme has no pixel expansion and contrast value was
ideal. Apart from above secret sharing schemes, we pro-
pose a secret sharing scheme, where each share contains
partial secret information. As a result, each generated
shares are compressed. That provides strong protection
of the secret data. In our scheme, each share contains
secret data and header data as shared form. A header

structure is constructed by the key, k, n and total num-
ber of bytes in secret and individual share number. At
the reconstruction phase, only when k numbers of shares
come together, then original header is reconstructed that
is used to reconstruct the original secret. In our scheme
secret reconstruction is not possible for less than thresh-
old (k) number of shares; so it is Perfect Secret Sharing
scheme.

2 Background and Related Work

2.1 Shamir’s Secret Sharing Scheme

Shamir’s secret sharing scheme [16] is based on (k, n)-
threshold based secret sharing technique (k ≤ n). The
technique allows any k out of n shares to construct a
given secret, a (k − 1) degree polynomial is necessary.
This polynomial function of order (k − 1) is constructed
as,

F (x) = a0 + a1x + a2x
2 + ... + ak−1x

k−1 mod p.

Now we can easily generate n number of shares by using
above equation. Where a0 is the secret, p is a prime
number and all other coefficients are random elements
from the secret. Each of the n shares is a pair (xi, yi) of
numbers satisfying f(xi) = yi and xi > 0, 1 ≤ i ≤n and
0 < x1 < x2 < ... < xk ≤ p − 1. Given any k shares, the
polynomial is uniquely determined and hence the secret
a0 can be computed via Lagrange interpolation. However,
given k− 1 or fewer shares, the secret can be any element
in the field.

The polynomial function f(x) is destroyed after each
shareholder possesses a pair of values (xi, yi) so that no
single shareholder knows the secret value a0. In fact, no
groups of k-1 or fewer shares can discover the secret a0.
On the other hand, when k or more secret shares are
available, then we may set at least k linear equations yi =
f(xi) for the unknown ai. The unique solution to these
equations shows that the secret value a0 can be easily
obtained by using Lagrange interpolation.

2.2 Blakley’s Secret Sharing Scheme

Blakley’s [2] scheme is less space-efficient than Shamir’s,
while Shamir’s shares are individually as large as the orig-
inal secret. This scheme uses hyperplane geometry to
solve the secret sharing problem. The secret is a point
in a k-dimensional space and n shares are affine hyper-
planes that pass through this point. An affine hyperplane
in a k-dimensional space with coordinates in a field can
be described by a linear equation of the following form:

a1x1 + a2x2 + a3x3 + ... + akxk = b.

The intersection point is obtained by finding the in-
tersection of any k of these hyperplanes. The secret can
be any of the coordinates of the intersection point or any
function of the coordinates. We take the secret to be the
first coordinate of the point of intersection.

International Journal of Network Security, Vol.18, No.1, PP.68-81, Jan. 2016 70

2.3 Asmuth-Bloom’s Secret Sharing
Scheme

A fundamentally different Secret sharing scheme is
Asmuth-Bloom’s secret sharing scheme [1] which shares
a secret among the parties using modular arithmetic and
reconstructs it by Chinese Remainder Theorem (CRT).
In Asmuth-Bloom’s Secret Sharing Scheme, the sharing
and Reconstruction of the secret can be done as follows.

Sharing Phase: To share the secret d among a group of
n users, the dealer does the following:

1) A set of relatively prime integers m0 < m1 <
m2 < ... < mn where m0 > d is a prime, are
chosen such that

∏k
i=1 mi > m0

∏k−1
i=1 mn−i+1;

2) Let M denote
∏k

i=1 mi, the dealer computes,

y = d + am0,

where a is a positive integer generated randomly
subjected to the condition that 0 ≤ y < M .

3) The share of the ith user 1 ≤ i ≤ n, yi = y mod
mi.

Reconstruction Phase: Assume S is a coalition of k
users to reconstruct the secret, let Ms denote

∏
i∈Smi .

1) Given the system y = yi mod mi. For i belongs
to S, solve y in ZMS using the Chinese Remain-
der Theorem.

2) Compute the secret as: d = y mod m0.

According to Chinese Remainder Theorem, y can be
determined uniquely in ZMS . Since y < M ≤ MS , the
solution is also unique in ZM .

2.4 Thien and Lin’s Secret Sharing
Scheme

Thien and Lin proposed a (k, n)-threshold-based image
secret sharing scheme [18] by cleverly using Shamir’s
SSS [16] to generate shares. The essential idea is to use a
polynomial function of order (k−1) to construct n image
shares from a L× L pixel secret image (denoted as I) as

Sx = I(ik+1, j) + I(ik+2, j)x + I(ik+3, j)x
2

+... + I(ik+k, j)x
k−1 mod p, (1)

where 0 ≤ i ≤ L/k and 1 ≤ j ≤ L. This method reduces
the size of image shares to become 1/k of the size of the
size of the secret image. Any k image shares are able to
reconstruct every pixel value in the secret image.

In above secret sharing schemes, each share contains
the complete secret information in encrypted or ciphered
form. Apart from above schemes, the idea behind our
proposed scheme is that every share has some bytes miss-
ing and these missing bytes can be recovered from a set
of exactly k shares. Thus a given byte position can be

confirmed for any k shares, but not less than k. Hence k
shares are required to give back the secret. Here we use
image file as a secret data, but it is equally applicable for
any digital data. In our first work [12], we proposed the
basic concept of our scheme. Where we have shown, a
secret can be shared among a set of participants by infor-
mation sharing that means all the shares contain partial
information about the secret. Then we have applied this
scheme [14] for audio file by applying intermediate encryp-
tion using the digest of a given key and share the header
information by applying simple ANDing with individual
mask. But in example (Section 3.3), we have shown that
if we apply simple ANDing with individual mask, some
header information will be opened for attacker. Then [13]
we have used this scheme for a digital image by sharing
header with the concept linear geometry, where coefficient
values are selected from generated shares. Therefore, if
and only if k numbers of legitimate shares come together,
then header reconstruction is possible, as a result loss-
less secret data will be reconstructed. Here we use the
previous scheme in modified form where secret byte selec-
tion is randomly depending upon the key from the secret
field which provide additional protection of the secret data
and we discuss the strength of our scheme by analyzing
the scheme in Section 5 with comparing existing schemes.
Some additional experimental results are shown in Sec-
tion 7 and the strength of our scheme is tested using sta-
tistical analysis (e.g. histogram analysis and correlation
value, etc.) in Section 8, which shows that our scheme
is completely prefect and secure secret sharing scheme.
To establish the strength of our scheme, we have shown
mask generation algorithm and our proposed secret shar-
ing scheme with suitable example.

3 Mask Generation Algorithm

The proposed work is based upon masking which employs
ANDing for share generation and ORing the predefined
minimal number of shares to reconstruction the original.

3.1 Concept

For better understanding let us consider any secret as a
binary bit file (i.e. bit is the smallest unit to work upon, in
actual implementation one can consider a byte or group
of bytes or group of pixels as the working unit). The
secret could be an image, an audio or text etc. We shall
decompose the bit file of any size onto n shares in such
a way that the original bit file can be reconstructed only
ORing any k number of shares where k ≤n≥ 2 but in
practice we should consider 2 ≤k<n≥ 3.

Our basic idea is based on the fact that every share
should have some bits missing and those missing bits will
be replenished by exactly (k−1) other shares but not less
than that. So every individual bit will be missed from
exactly (k − 1) shares and must be present in all remain-
ing (n-k+1) shares, thus the bit under consideration is

International Journal of Network Security, Vol.18, No.1, PP.68-81, Jan. 2016 71

available in any set of k shares but not guaranteed in less
than k shares. Now for a group of bits, for a particular
bit position, (k − 1) number of shares should have the
bit missed and (n− k + 1) number of shares should have
the bit present and similarly for different positions there
should be different combinations of (k− 1) shares having
the bits missed and (n−k+1) number of shares having the
bits present. Clearly for every bit position there should be
Cn

k−1 such combinations and in our scheme thus forms the
mask of size Cn

k−1, which will be repeatedly ANDed over
the secret in any regular order. Different masks will pro-
duce different shares from the secret. Thus 0 on the mask
will eliminate the bit from the secret and 1 in the mask
will retain the bit forming one share. Different masks
having different 1 and 0 distributions will thus generate
different shares.

Next just ORing any k number of shares we get the
secret back but individual share having random numbers
of 1′s and 0′s reflect no idea about the secret.

A possible set of masks for 5 shares with threshold of
3 shares is shown below:

Share-1: 1 0 1 0 1 0 1 0 1 1
Share-2: 1 0 1 1 1 1 0 1 0 0
Share-3: 1 1 0 0 0 1 1 1 1 0
Share-4: 0 1 1 1 0 0 1 1 0 1
Share-5: 0 1 0 1 1 1 0 0 1 1

One can easily check that ORing any three or more
shares we get all 1′s but with less than three shares some
positions still have 0′s, i.e. remain missing.

3.2 Algorithm

Here we are presenting the algorithm for designing the
masks for n shares with threshold k.

Step 1. List all row vectors of size n having the com-
bination of (k − 1) numbers of 0′s and (n − k + 1)
numbers of 1′s and arranged them in some predefined
order in terms of their decimal equivalent and finally
organized them in the form of a matrix. Obvious
dimension of the matrix will be Cn

k−1 × n.

Step 2. Transpose the matrix generated in Step-1. Ob-
vious dimension of the transposed matrix will be
n × Cn

k−1. Each row of this matrix will be the in-
dividual mask for n different shares. The size of each
mask is Cn

k−1 bits, i.e. the size of the mask varies
with the value of n and k.

Let us consider the previous example where n = 5 and
k = 3.

Step 1. List of row vectors of size 5 bits with 2 numbers
of 0′s and 3 numbers of 1′s, arranged in predefined
manner as agreed during sharing phase in order to
get masks identical to those used in share generation
phase. (Here the arrangement is the highest followed
by lowest then next highest followed by next lowest

Algorithm 1 Pseudo Code for mask generation

1: Input: n, k
2: Output: mask[n][]
3: Integer mask generator(n, k,mask[n][])
4: {
5: bin arr[][n]: Integer array;
6: mask pattern len = 0;
7: max val = 2n − 1;

// calculate decimal value of n numbers of 1s.
8: for i = max val to 1 do
9: Decimal to Binary(i, bin[][]);

// calculate binary equivalent of decimal i and store
in bin arr[][] array.

10: if (Zero Check(bin[mask pattern len[n], k)))
then

11: mask pattern len = mask pattern len + 1;
// check whether (k−1) nos. of zero exist or not,
if exist then increment mask pattern len by 1.

12: end if
13: end for
14: Rearrange Array(bin);

// rearrange the row of bin[][n] array.
15: Transpose(mask, bin);

//take transpose matrix of bin[][n] and store in
mask[n][].

16: Return mask pattern len;
17: }
18: End

and so on, which appears here as 28, 7, 26, 11, 25,
13, 22, 14, 21, 19).

1 1 1 0 0
0 0 1 1 1
1 1 0 1 0
0 1 0 1 1
1 1 0 0 1
0 1 1 0 1
1 0 1 1 0
0 1 1 1 0
1 0 1 0 1
1 0 0 1 1

C5

2 × 5 = 10× 5

Step 2. Take the transpose of the above matrix and we
get the desired masks for five shares as listed above
in the form of matrix of dimension 5×C5

2 , i.e. 5×10.
There are five masks each of size 10 bits.

3.3 Example

Consider a secret message (M) is WBPRACSE27 and the
size of M is 10 bytes. Now by applying logical ANDing

International Journal of Network Security, Vol.18, No.1, PP.68-81, Jan. 2016 72

with individual mask following shares are generated.

Si Mask Shared Message
Share− 1 : 1010101011 W0P0A0S027
Share− 2 : 1011110100 W0PRAC0E00
Share− 3 : 1100011110 WB000CSE20
Share− 4 : 0111001101 0BPR00CS07
Share− 5 : 0101110011 0B0RAC0027

From above shares we can easily notice that each share
contains partial secret information. That is a secret byte
corresponding to one in the mask is kept as it is and the
secret byte corresponding to zero in the mask is kept as
zero. So every share has some bytes missing and these
missing bytes can be recovered from a set of exactly k
shares. In mask generation algorithm for n shares and k
threshold, size of each mask is Cn

k−1, where the number

of zeros and ones are Cn−1
k−2 and Cn−1

n−k respectively. Total
size of all shares is 50 bytes (

∑n
i=1 Sizeof(Si)).

Therefore, each share contains Cn−1
n−k numbers of par-

tial secret bytes for a set of Cn
k−1 numbers of secret bytes.

Now all zero bytes corresponding to zero bit in the mask
are discarded, that introduced a unique compression tech-
nique [Section 6]. Therefore, above shared message be-
comes compressed message.

Si Compressed Message
Share− 1 : WPAS27
Share− 2 : WPRACE
Share− 3 : WBCSE2
Share− 4 : BPRCS7
Share− 5 : BRAC27

Now the total size of all shares is 30 bytes (< 50). Here
all secret data are partially open to the participants. To
overcome this problem encrypts individual share using a
key. After that, the key itself is shared and concatenated
with individual share to generate complete shares. Details
of this scheme are discussed in the following section.

4 Secret Image Sharing Protocol

Our proposed scheme shares both secret data and header
structure including key. Therefore every share has two
parts secret share and header share.

4.1 Concept

Our proposed scheme is key based secure threshold cryp-
tography. Initially a 16-byte digest string is generated
from user given variable length key (UKy) using MD5.
This 16 bytes digest string is used as encryption key
(Ky). The concept is variable length key becomes fixed
length key. The length of UKy should be greater than or
equal to 16 bytes. Consider UKy is ”testkey@encry185”
then generated fixed length Ky is shown in hex form
as ”CC7B269F18A6DDB8255EAF4799982131” and the
length of Ky is 16 bytes. Here we use MD5 but one can

use any strong hash function or random number genera-
tor. An advantage of using key based encryption is that it
provides authentication as long as the key stays secret. It
allows encryption and decryption using same key that is
symmetric encryption. This scheme is free to save the key,
because the key is also shared among the set of partici-
pants. So it reduces the chance of compromising. Also,
depending upon k and n, n number of masks are gener-
ated and each mask is used to generate individual share
and a secret byte (SB) corresponding to one in the mask
is kept by encrypting using Equation (3). Also the secret
byte (SB) corresponding to zero in the mask is simply
discarded. Therefore, every share is compressed. Each
share has some bytes missing, all missing bytes can be
recovered from a set of exactly k shares. Here each SB
is selected randomly from secret field using the following
equation

f(x) = (Z2 + c) mod L. (2)

Where L is total number of secret bytes, Z is random
value from Ky and c is f(x − 1). Therefore, it provides
additional protection of the secret data. Here a complete
header structure is to be generated using n, k, Ky and
the total number of secret bytes in secret. After that
header information is shared using Equation (4) and then
each shared header (with individual share number) is ap-
pended with secret share to generate a complete share. In
reconstruction phase, first collect k number of shares and
then reconstruct the complete header information. Now
from reconstructed header, the value of n and k are used
to generate same mask as sharing phase using same mask
generation algorithm. Then apply Equation (5) to de-
crypt shared bytes, which are selected from shares. This
is applicable for nonzero (one) value of that mask with
same index position. Thus the missing byte is recovered
by inserting zero corresponding to zero in the same index
position of that mask. Now apply ORing of k numbers of
reconstructed bytes to generate the original secret byte.
Therefore the missing bytes can be recovered from a set
of exactly k shares. After that, each reconstructed secret
bytes are placed in proper position to reconstruct the se-
cret as lossless manner. Now stepwise sharing and recon-
struction phases are discussed in following section. The
conceptual view of our scheme is described in Figure 2.

Figure 2: Concept of proposed sharing scheme

International Journal of Network Security, Vol.18, No.1, PP.68-81, Jan. 2016 73

4.2 Sharing Phase

The sharing phase of the proposed scheme is stated in the
following steps.

Input: threshold (k), total number of share (n), user
given variable length key (UKy), secret image (SI).

Step 1. Initially generate 16 bytes digest from user given
variable length key (UKy). This 16 bytes digest
string is used as encryption key (Ky). Here we use
MD5 hash function to generate 16 bytes digest string.
So variable length key becomes fixed length key.

Step 2. Now construct Header Structure (h) of five fields
and put share number (Sn) in 1st field, total number
(n) of shares in 2nd field, threshold number (k) in 3rd

field, key (Ky) in 4th field, and the total secret bytes
(for image, only consider width) (W) in 5th field (See
Table 1).

The size of this header structure is 23-bytes. This
structure or size of individual field may vary accord-
ing to our requirements.

Step 3. Generate n masks for n individual shares us-
ing the proposed mask generation algorithm [Sec-
tion 3.2]. Consider the mask pattern length is ML.
Therefore, ML = mask generator(n, k,mask[n][]).

Step 4. Calculate total number of secret bytes (L)
present in SI using height and width (W). For other
digital files such as text, audio the total number of
secret bytes L will be equal to W (i.e. actual size
of secret). Also consider an array of N location say
Index[L] and initialize all the location by zero, i.e.
Index[L] = {0}, where zero indicates unread secret
byte at ith position and one indicates read ith secret
byte.

if

 index[i] = 0, unread

index[i] = 1, read

Step 5. Now select specific secret byte (SB) from a ran-
dom position (PS) using Algorithm 2.

The secret byte (SB) corresponding to zero in the
mask is simply discarded. Therefore, each share con-
tains partial secret information and for each retained
secret bytes apply Step 6 to generate confused secret
bytes.

Step 6. Then the ith retained byte (Pi) is ciphered by
the jth byte (Kyj

) by the following operation:

Ri = Pi−1 ⊕ (Pi ×Kyj
) mod 251, (3)

where i = 0, 1, 2, · · · , (L−1) and j = mod (i, 16) and
251 is largest prime number in 8 bits.

0th retained byte is ciphered by the 0th byte of Ky.
R0 = P−1 ⊕ (P0 ×Ky0

) mod 251, where P−1 is
zero.

Algorithm 2 Secret byte (SB) selection and distribution

1: PS = 0;
2: For j = 0 to (L− 1)
3: PS = Ky[j%16]×Ky[(j + 1)%16] + PS;
4: PS = PS%L;
5: while (Index[PS]! = 0) do
6: PS = (PS + 1)%L;
7: end while
8: Read secret byte (SB) from PSth position;
9: Index[PS] = 1; // 0 for unread and 1 for read

10: For i = 1 to n
11: if (mask[i][j%ML] = 1) then
12: Apply Step-6 for ciphering the SB;
13: Write the ciphered byte in ith share;
14: end if
15: End For;
16: EndFor;
17: End

1st retained byte is ciphered by the 1st byte of Ky.
R1 = P0 ⊕ (P1 ×Ky1) mod 251.

2nd retained byte is ciphered by the 2nd byte of Ky.
R2 = P1 ⊕ (P2 ×Ky2) mod 251,

· · ·
Same as tth retained byte is ciphered by (t mod

16)th byte of Ky. Rt = Pt−1 ⊕ (Pt ×
Ky(t mod 16)

) mod 251.

Step 7. Now from each of n ciphered shares collect k
numbers of nonzero sample bytes from prefixed lo-
cations and thus matrix (A) of dimension (n × k) is
formed.

a[0,0] a[0,1] ... a[0,k−2] a[0,k−1]
a[1,0] a[1,1] ... a[1,k−2] a[1,k−1]
.
.
.

a[n−2,0] a[n−2,1] ... a[n−2,k−2] a[n−2,k−1]
a[n−1,0] a[n−1,1] ... a[n−1,k−2] a[n−1,k−1]

n×k

Step 8. The header (Table 1) excluding the leftmost field
is also shared by applying following operation:-

Vi =

i=0,1,··· ,n−1∑
j=0,1,··· ,k−1

(a[i, j]× h[j]). (4)

Step 9. Next each header share is appended with the
share number (Sn) in the first field and concatenated
with the corresponding secret share, which forms one
complete share for transmission. (For shared image
we have to add extra single height to add the shared
header, i.e. if height of SI is h, then shared image
height will be (h + 1)).

International Journal of Network Security, Vol.18, No.1, PP.68-81, Jan. 2016 74

Table 1: Header Structure (h)

1-Byte 1-Byte 1-Byte 16-Bytes 4-Bytes
Share number Total number of Shares Threshold Encryption Key Size of Secret

[Sn] [n] [k] [Ky] [W]

4.3 Reconstruction Phase

The reconstruction phase of the proposed scheme is stated
in the following steps.

Input: k number of shares.

Step 1. Collect k-numbers of share and extract confused
header information. Also generates (k × k) matrix
(A).

Step 2. Now applying any conventional linear equation
solving technique to reconstruct the original Header
information.

Step 3. Once the original Header is reconstructed, we
extract the 16 bytes digest string as well as the en-
cryption key (Ky).

Step 4. Now using n and k, extracted from reconstructed
header structure, generate n masks using same mask
generation algorithm used in share generation phase
(same set of mask in same order is reconstructed at
the receiving end, used for expanding the compressed
shares).

Step 5. According to the share number of the share
holder appropriate mask is used to expand the se-
cret share part by inserting zero bytes corresponding
to zero in the corresponding mask.

Step 6. Calculate L using shared image height (h) and
extracted W from header structure, i.e. L = (h −
1)×W .

Step 7. Ciphered bytes (Ri) corresponding to 1 position
in the mask, have generated by the Equation (3). So,
apply following operation to get original byte (Pi).

Pi = Pi−1 ⊕ (Ri ×M−1j) mod 251. (5)

Where M−1j is the multiplicative inverse of Kyj .

Step 8. Now k numbers of Pi are ORed to generate a
single secret byte (SB) and placed in PS position us-
ing Algorithm 3 (PS generation will be same as to
the sharing phase).

Step 9. Secret image is reconstructed in a lossless man-
ner by reconstruction of L numbers of secret bytes.

Algorithm 3 Reconstructed secret byte (SB) writing

1: PS = Ky[i%16]×Ky[(i + 1)%16] + PS;
2: PS = PS%L;
3: while (Index[PS]! = 0) do
4: PS = (PS + 1)%L;
5: end while
6: Write the secret byte (SB) in PSth position;
7: Index[PS] = 1; // 0 for unread and 1 for read
8: End

Figure 3: Secret Image: Size (61× 52)

4.4 Example

Here we discuss the sharing phase of our proposed scheme
using an example. Consider an image of height and width
are 52 and 61 respectively (See Figure 3).

Here we use (3, 5)-threshold sharing scheme with the
key Ky = {42, 74, 98, 119, 50, 68, 47, 180, 137, 245, 201,
168, 67, 254, 105, 254}.

Now select a specific secret byte from a random field
among 3172 bytes (61×52), which will be selected depend-
ing upon the Ky using Equation (2). Figures 4, 5, and
6 show different share after applying intermediate opera-
tion. These figures show each share contains partial con-
fused secret information. That provides additional pro-
tection of the secret data. Now generate matrix (A), by
taking first k number of nonzero fixed sample values from
n shares. Here we consider first non-zero bytes. One can
take any non-zero sample bytes from encrypted shares,
but it should be same for both sharing and reconstruc-

International Journal of Network Security, Vol.18, No.1, PP.68-81, Jan. 2016 75

tion phases.

A =

I
′

1

I
′

2

I
′

3

I
′

4

I
′

5

10 51 126
. . .

10 85 101
. . .

126 85 148

Figure 4: I
′

1: Size (37× 52)

Figure 5: I
′

3: Size (37× 52)

Now generate a header structure as Table 1, here key
part contains our encryption key.

A =

10 51 126
...
10 85 101
...

126 85 148

×
 5

3
42

=

(5495)
...

(4547)
...

(7101)

⇒

(0 21 119)
...

(0 17 195)
...

(0 27 189)

Therefore shared header information is as Table 2.

Figure 6: I
′

5: Size (37× 52)

Table 2: The shared header information

[Sn] [Shared Header]
H1 1 (0 21 119) - - -

- - - - - -
H3 3 (0 17 195) - - -

- - - - - -
H5 5 (0 27 189) - - -

Now, actual shares after concatenation of I ′i, Vi are as
follows.

V1 = I ′1, H1. Size(37× 53)

V2 = I ′2, H2. Size(37× 53)

...
...

V5 = I ′5, H5. Size(37× 53).

V1, V2, · · · , V5 are the complete shares for transmis-
sion. It shows, if and only if k number of shares are came
together, then reconstruction is possible, otherwise recon-
structed data will be completely different from original.

5 Analysis of the Protocol

In our algorithm for n shares with threshold k size of
each mask is Cn

k−1 where we have Cn−1
k−2 zero and Cn−1

n−k
ones. Then each share contains Cn−1

n−k number of bytes for
Cn

k−1 number of bytes of secret image. So percentage of

information contain in each share is (Cn−1
n−k/C

n
k−1)× 100.

This clearly indicates that higher the number of shares
and higher the threshold value, i.e. nearer to the number
of shares lesser the content of information in each share.

Table 3 shows percentage of information in each share
of proposed scheme and other schemes. Next during log-
ical ANDing of the mask with secret image, the bytes of
the image corresponding to the one bits in the mask are
retained and the zero bytes corresponding to zero bit in
the mask will be collapsed, which finally produces a set

International Journal of Network Security, Vol.18, No.1, PP.68-81, Jan. 2016 76

Table 3: Percentage of information in each share for dif-
ferent k, n

n k Cn−1
n−k Cn

k−1 Our Scheme [16] [2] [1]

8 8 1 8 12.5 100 100 100
8 7 7 28 25 100 100 100
8 6 21 56 37.5 100 100 100
8 5 35 70 50 100 100 100
6 5 5 15 33.3 100 100 100
6 4 10 20 50 100 100 100
5 3 6 10 60 100 100 100

of scrambled bytes; effectively the retained information in
compressed and thus being further ciphered.

Next the scrambled bytes are further ciphered using
modulo multiplication techniques with the MD5 digest of
the key given at the time of transmission (key). It may
be noted that instead of using the key directly we have
used the digest of the key for encryption, then the size of
the key is immaterial which provides additional strength
against cryptanalysis for the key.

Finally here the key may be the session key, i.e. the key
will be varied with every transmission and our algorithm
is free from key distribution hazard as the key itself is
further shared in the secret shares.

Thus from individual shares there is hardly any leakage
of information vis-a-vis unless minimal number of untam-
pered share which is not tampered is collected nothing
is revealed. Only when minimal number of valid share
is collected one can form the key and get the informa-
tion about total number of shares created. After knowing
number of shares and the threshold (which is known) one
can form the mask and from the key one can get the di-
gest. From the digest using multiplicative inverse we get
the compressed shares and the actual shares using the
masks. Finally ORing the shares we get the original se-
cret.

6 Analysis of Compression

All masking pattern has equal number of zeros with dif-
ferent distribution only. In every share we collapse all
zero bytes corresponding to zero bit in the corresponding
mask. It may be noted that as k is closer to n, more is
compression, i.e. maximum for k = n.

Next for lossless expanding, knowing n and k we can
redesign all n masks using our original mask generation
algorithm. According to the share number of the share
holder appropriate mask is used to expand the secret
share by inserting zero bytes corresponding to zero bit
in the corresponding mask.

In our example of (3, 5) the mask size is of 10 bits
and every mask has 4 zeroes, thus every secret can be
compressed by approximately 40 percent, obviously the
compression varies with (k, n). In case of an example of

(5, 6) the mask size is 15 bits and every mask has 10
zeroes, thus compression will be 66.6 % (See Table 4 and
Figures 7 and 8).

Table 4: Compression rate for different k and n
Threshold
(k)

Length of
Masking
Pattern

Number
of zero in
masking
pattern

Approximate
Compression
Rate (per-
cent)

2 5 1 20
3 10 4 40
4 10 6 60
5 5 4 80

Total number of Shares (n) = 5.
Threshold
(k)

Length of
Masking
Pattern

Number
of zero in
masking
pattern

Approximate
Compression
Rate (per-
cent)

2 6 1 16
3 15 5 33
4 20 10 50
5 15 10 66
6 6 5 83

Total number of Shares (n) = 6.

Figure 7: Threshold vs. compression ratio

7 Experimental Result

7.1 Experimental Result for 24-bit bmp
Image

Figure 9 shows a secret image (Figure 9(a)) is shared
among 5 participants by the user given key (UKy)
”2936451090872310”. Here threshold value is 3. At the
reconstruction phase, if we collect only 3 or more shares

International Journal of Network Security, Vol.18, No.1, PP.68-81, Jan. 2016 77

Figure 8: Compression rate

then reconstructed secret is lossless, but less than 3 shares
are not sufficient to reconstruct the secret data. In the
time of reconstruction no need to remember the key, be-
cause key as well as secret data is shared among set of
participants.

7.2 Experimental Result for Gray Image

Figure 10 shows a secret image (Figure 10(a)) of size
181200 bytes is shared among 5 participants by the user
given key ”2936451290874310” and the value of k is 3.
Here generated shares size are less than secret image and
which hold the partial secret information. That provides
an additional protection of secret image.

8 Strength and Security Analysis

A secure shared cryptography algorithm should be robust
against all types of attacks such as cryptanalytic, statisti-
cal. Here we discuss the security analysis of the proposed
algorithm by addressing key sensitivity analysis and dif-
ferent statistical analysis. The resistance against different
types of attack is useful measure of the performance of a
cryptosystem. Therefore some security analysis results
are incorporated in the following section to prove the va-
lidity of our proposed scheme.

8.1 Key Sensitivity Analysis

In our scheme, shared data is highly sensitive to the se-
cret key. Here user given variable length key (UKy) is
converted as a fixed length key (16 bytes) using MD5
hash function. Here we use MD5, but one can use any
hash function or random number generator. Now this
fixed length key is used as encryption key (Ky). Gen-
erated shares are varied for a single bit/byte changes in
the key, because secret bytes are selected randomly from
secret field depending upon the key and secret bytes are
also encrypted using the key. The merits of our scheme
is that key based shared cryptography that introduce the

(a). Secret Img1.bmp
(453 × 395) Size =
537254 Bytes

(b). Img1−A.bmp
(272 × 396) Size
=323190 Bytes

(c). Img1−B.bmp
(272× 396) Size =
323190 Bytes

(d). Img1−C.bmp
(272× 396) Size =
323190 Bytes

(e). Img1−D.bmp
(272× 396) Size =
323190 Bytes

(f). Img1−E.bmp
(272× 396) Size =
323190 Bytes

(g). Decode.bmp
(Noisy Image Con-
struction using
Img1−B.bmp and
Img1−E.bmp)

(h). Decode.bmp
(Original Image
Construction using
any three shares)

Figure 9: (3, 5)-Sharing and Reconstruction for 24-bit
image

International Journal of Network Security, Vol.18, No.1, PP.68-81, Jan. 2016 78

(a). Secret Img2.bmp
(453 × 395) Size =
181200 Bytes

(b). Img2−A.bmp
(273 × 396) Size =
110374 Bytes

(c). Img2−B.bmp
(273× 396) Size =
110374 Bytes

(d). Img2−C.bmp
(271 × 396) Size =
108790 Bytes

(e). Img2−D.bmp
(271× 396) Size =
108790 Bytes

(f). Img2−E.bmp
(271 × 396) Size =
108790 Bytes

(g). Decode.bmp (Noisy
Image Construction us-
ing Img2−A.bmp and
Img2−E.bmp)

(h). Decode.bmp (Orig-
inal Image Construction
using any three shares)

Figure 10: (3, 5)-Sharing and Reconstruction for gray
scale image

concept of avalanche effect and no need to remember the
key that overcomes the concept of single point failure,
which provides additional protection to the secret data.

Group-A with (3, 5) scheme and
UKy: ”testkey@encry184”

(a). Secret Img3.bmp (b). Share-1

Group-B with (3, 5) scheme and
UKy: ”testkey@encry185”

(c). Share-1

Figure 11: Two groups with same secret and different
keys

Figure 11 shows a secret image is shared between two
groups with different keys using (3, 5) scheme. Among
five shares, only first share is shown for each group. Last
character indicates the difference between two keys. Here
two keys have single byte difference. Correlation value
between Figure 11(b) (first share from group-A) and Fig-
ure 11(c) (first share from group-B) is 0.0018. This value
(closer to zero) indicates two shared images are com-
pletely different and there is no such statistical relation.
This part tuned an additional protection of secret data.
Only when qualified a set of legitimate shares comes to-
gether, then reconstruction is possible. Figure 12 shows
that a secret data is shared ((3, 5) scheme) among two
groups by two different keys. In reconstruction phase, 3
selected shares are A.1, A.3 and A.5 (shares belong to
same group) then S is reconstructed whereas if collected
shares are 3 but taking from two groups, i.e. A.2, B.3 and
A.5, at this situation reconstruction is not possible.

Figure 13 shows collision free random index positions
for selecting secret bytes from secret field of size 20
bytes with two users given keys ’testkey@encry184’ and
’testkey@encry185’.

8.2 Statistical Analysis

Statistical analysis is crucial importance for a cryptosys-
tem. An ideal cryptosystem should be resistive against

International Journal of Network Security, Vol.18, No.1, PP.68-81, Jan. 2016 79

Figure 12: Reconstruction of a Secret file using qualified
set of legitimate shares

Figure 13: Random index positions for two keys

any statistical attack. To prove the robustness of the pro-
posed algorithm, we have performed the following statis-
tical test such as histogram analysis, correlation analysis,
etc.

8.2.1 Histogram Analysis

The histogram analysis clarifies how pixels in an image
are distributed by plotting the number of pixels at each
intensity level. Histogram analysis of gray scale secret
image (SecretImg2.bmp) with respect to shared images
is shown in Figure 14. The histogram of shared images
has uniform distribution which is significantly different
from the original image and has no statistical similarity
in appearance (See Figure 14).

8.2.2 Correlation Value

A secret shared cryptography scheme must generate
shared images independent of the original secret image.
Therefore, they must have a very low correlation coef-
ficient value. Here, we have calculated the correlation
between the shares. Also the correlation between origi-
nal and reconstructed image is shown in Table 5. The
correlation value is calculated using Equation (6).

r =

∑
m

∑
n(Amn −A′)(Bmn −B′)√

(
∑

m

∑
n(Amn −A′)2

∑
m

∑
n(Bmn −B′)2)

, (6)

where A
′

and B
′

are mean of A and B respectively. A
low value of correlation coefficient shows that there is no

straight relation between the original and encrypted im-
ages. Here generated shared images are compressed. So
it is impossible to show the correlation value between se-
cret image and shared images. Following table (Table 5)
shows the correlation value among shared images and se-
cret image and reconstructed images.

(a). Histogram of Fig-
ure 10(a)

(b). Histogram of Fig-
ure 10(b)

(c). Histogram of Fig-
ure 10(c)

(d). Histogram of Fig-
ure 10(d)

(e). Histogram of Fig-
ure 10(e)

(f). Histogram of Fig-
ure 10(f)

Figure 14: Histogram of Secret image (Figure 10(a)) and
Shared images

Table 5: Correlation value

SL No. Images Correlation value
1 Figure 10(b) and (c) : 0.5125
2 Figure 10(d) and (e) : 0.5057
3 Figure 10(d) and (f) : 0.1764
4 Figure 10(e) and (f) : 0.5058
5 Figure 10(a) and (g) : -0.0030
6 Figure 10(a) and (h) : 1

In the above table the 6th entry shows the correla-
tion value between secret image (Figure 10(a)) and re-

International Journal of Network Security, Vol.18, No.1, PP.68-81, Jan. 2016 80

constructed image (Figure 10(h)) using 3 shares and the
value is one, so the reconstruction is lossless. The 5th en-
try shows a value close to zero for the correlation between
secret image (Figure 10(a)) and reconstructed image (Fig-
ure 10(g)) using 2 shares.

8.2.3 MSE and PSNR Measure

The Mean Square Error (MSE) and Peak Signal to Noise
Ratio (PSNR) for the proposed technique have been com-
puted for different images. The high value of MSE and
low value of PSNR cause the resulting encrypted image
more randomness. MSE is calculated using the formula

MSE = (ΣN
i−1ΣM

j=1[C(i, j)− C
′
(i, j)]2)/MN,

where, c(I, j) and c
′
(I, j) are the ith row and jth column

pixel of two images C and C
′
, respectively. M and N are

the number of rows and columns of an image. PSNR can
be computed by

PSNR = 10× log10[R2/MSE],

where R is 255 as grey image has been used in this experi-
ment. Calculated results of MSE and PSNR are tabulated
in Table 6.

Table 6: MSE and PSNR value

SL No. Images MSE PSNR
1 Figure 10(b) and (c) : 115.6822 27.4981
2 Figure 10(d) and (e) : 117.2003 27.4415
3 Figure 10(d) and (f) : 194.8199 25.2345
4 Figure 10(e) and (f) : 117.2881 27.4383
5 Figure 10(a) and (g) : 233.7130 24.4437
6 Figure 10(a) and (h) : 0 Infinity

High value MSE and low value PSNR indicate that two
images are completely different. On the other hand, the
high value of PSNR indicates the high quality image.

9 Conclusions

This paper shows a secured key based secret sharing
scheme where key as well as secret data is shared among
set of participants. Here image is selected as a secret data,
although proposed scheme is strongly applicable for other
digital data, such as text, audio, etc. In the sharing phase
all secret bytes are selected randomly from secret field de-
pending upon the key and each generated share holds par-
tial secret information in scrambled and encrypted form.
That provides additional protection of the secret image
and also reduces the bandwidth required for transmission.

In our scheme if and only if numbers of collecting shares
are equal to k or more and none of the share is tampered,
then only the original secret image is reconstructed; other-
wise reconstructed image will be completely ciphered, be-
cause fewer shares cannot reconstruct the original header,

thus we cannot have either right key (Ky) or the infor-
mation to construct the correct masking pattern. So our
proposed scheme can claim to be a Perfect Secret Shar-
ing (PSS) Scheme. Not only that, if a legitimate group
of threshold number of shares comes together (i.e. shares
from different groups cannot mix as keys are different),
then only the original secret is reconstructed. Moreover,
key sensitivity analysis and statistical analysis prove the
high acceptability of the proposed algorithm.

Acknowledgments

We are thankful to the department of Computer Science
& Engineering of MCKV Institute of Engineering, Regent
Education & Research Foundation and Jadavpur Univer-
sity, Kolkata for giving us the platform for planning and
developing this work in departmental laboratories.

References

[1] C. Asmuth and J. Bloom, “A modular approach to
key safeguarding,” IEEE Transaction on Informa-
tion Theory, vol. 29, no. 2, pp. 208–210, 1983.

[2] G. R. Blakley, “Safeguarding cryptographic keys,”
in Proceedings of AFIPS International Workshop on
Managing Requirements Knowledge, pp. 313, 1979.

[3] K. Y. Chao and J. C. Lin, “Secret image sharing: a
boolean-operations based approach combining bene-
fits of polynomial-based and fast approaches,” Inter-
national Journal of Pattern Recognition and Artifi-
cial Intelligence, vol. 23, no. 2, pp. 263–285, 2009.

[4] Y. Desmedt, “Some recent research aspects of thresh-
old cryptography,” in Proceedings of 1st Interna-
tional Information Security Workshop (ISW’97),
pp. 158–173, Ishikawa, Japan, 1997.

[5] Y. Desmedt and Y. Frankel, “Shared generation of
authenticators and signatures,” in Advances in Cryp-
tolog (RYPTO’91), LNCS 576, pp. 457–469, Springer
Verlag, 1992.

[6] Y. Desmedt and Y. Frankel, “Threshold cryptosys-
tems,” in Proceedings on Advances in Cryptology
(CRYPTO’89), LNCS 435, pp. 307–315, 1990.

[7] Y. Desmedt and Y. Frankel, “Homomorphic zero
knowledge threshold schemes over any finite abelian
group,” SIAM Journal on Discrete Mathematics,
vol. 7, no. 4, pp. 667–675, 1994.

[8] L. Dong and M. Ku, “Novel (n, n) secret image
sharing scheme based on addition,” in Sixth Inter-
national Conference on Intelligent Information Hid-
ing and Multimedia Signal Processing (IIH-MSP’10),
pp. 583–586, 2010.

[9] L. Dong, D. Wang, M. Ku, and Y. Dai, “(2, n) secret
image sharing scheme with ideal contrast,” in Inter-
national Conference on Computational Intelligence
and Security (CIS’10), pp. 421–424, 2010.

[10] H. F. Huang and C. C. Chang, “A novel efficient (t,
n) threshold proxy signature scheme,” Information
Sciences, vol. 176, no. 10, pp. 1338–1349, 2006.

International Journal of Network Security, Vol.18, No.1, PP.68-81, Jan. 2016 81

[11] E. D. Karnin, J. W. Greene, and M. E. Hellman, “On
secret sharing systems,” IEEE Transactions on In-
formation Theory, vol. IT-29, no. 1, pp. 35–41, 1983.

[12] P. K. Naskar, A. Chaudhuri, D. Basu, and A. Chaud-
huri, “A novel image secret sharing scheme,” in Sec-
ond International Conference on Emerging Applica-
tions of Information Technology (EAIT’11), pp. 177–
180, 2011.

[13] P. K. Naskar, H. N. Khan, U. Roy, A. Chaudhuri, and
A. Chaudhuri, “Secret image sharing with embed-
ded session key,” in Computer Information Systems
Analysis and Technologies (CISIM’11), Communica-
tions in Computer and Information Science, vol. 245,
pp 286-294, 2011.

[14] P. K. Naskar, H. N. Khan, U. Roy, A. Chaudhuri, and
A. Chaudhuri, “Shared cryptography with embedded
session key for secret audio,” International Journal
of Computer Applications, vol. 26, no. 8, pp. 5–9,
2011.

[15] A. De Santis, Y. Desmedt, Y. Frankel, and M. Yung,
“How to share a function securely?,” in Proceed-
ings of the Twenty-Sixth Annual ACM Symposium
on Theory of Computing (STOC’94), pp. 522–533,
1994.

[16] A. Shamir, “How to share a secret?,” Communica-
tions of the ACM, vol. 22, no. 11, pp. 612–613, 1979.

[17] V. Shoup, “Practical threshold signatures,” in Pro-
ceedings of Eurocrypt’00, LNCS 1807, pp. 207–220,
Springer-Verlag, 2000.

[18] C. C. Thien and J. C. Lin, “Secret image sharing,”
Computers and Graphics, vol. 26, no. 5, pp. 765–770,
2002.

Prabir Kr. Naskar, B.Tech from Govt. College of
Engineering & Leather Technology (WBUT), West Ben-
gal, India and M.Tech from Jadavpur University, West
Bengal, India, is presently working as Assistant Professor
in the Department of Computer Science & Engineering,
MCKV Institute of Engineering, West Bengal, India.
Currently he is doing his research work at Jadavpur
University, West Bengal, India. His current research
interests include: cryptography, information sharing,
steganography, watermarking and image processing.

Hari Narayan Khan is an Assistant Professor in the
Department of Computer Science & Engineering, Regent
Education & Research Foundation, West Bengal Univer-
sity of Technology, Kolkata, India and presently pursuing
his research work at Jadavpur University, Kolkata, West
Bengal, India. He completed his M.Tech in Computer
Technology at Jadavpur University, Kolkata, India. He
completed his B.Tech in Electronics & Communication
Engineering from Institute of Technology & Marine
Engineering under West Bengal University of Tech-
nology, Kolkata, India. His research interest includes
cryptography, network security, information sharing,
steganography and watermarking.

Prof. Atal Chaudhuri, B.E., M.E. & PhD from Ja-
davpur University, West Bengal, India, is working in
the Department of Computer Science & Engineering, Ja-
davpur University, West Bengal, India for last 29 years.
His current research interests include: embedded system,
cryptography, information sharing, steganography, water-
marking and data mining.

