
International Journal of Network Security, Vol.18, No.1, PP.52-59, Jan. 2016 52

Reversible Data Hiding Based on Geometric
Structure of Pixel Groups

Zhi-Hui Wang1, Xu Zhuang2, Chin-Chen Chang3,4, Chuan Qin4 and Yan Zhu5

(Corresponding author: Chin-Chen Chang)

School of Software, Dalian University of Technology1

Economy and Technology Development Area, Dalian 116620, China

Department of Computer Science and Technology, Southwest JiaoTong University2

Jinniu District, Chengdu, China, 610031

Department of Information Engineering and Computer Science, Feng Chia University3

Taichung, Taiwan, 40724

(Email: alan3c@gmail.com)

Department of Computer Science and Information Engineering, Asia University4

Taichung, Taiwan, 41354

Department of Computer Science and Technology, Southwest JiaoTong University5

Jinniu District, Chengdu 610031, China

(Received Sept. 23, 2013; revised and accepted Feb. 10 & May 10, 2014)

Abstract

Many reversible data hiding schemes have been developed
in recent decades. Traditional schemes typically must deal
with the problem of overflow and underflow, or trans-
mission of hiding parameters. The new reversible data
hiding scheme proposed in this paper is based on a com-
bination of pixel groups’ geometric structure and secret
sharing mechanism. Experimental results confirm that
the proposed scheme not only achieves the goal of hid-
ing information without memorization of location map or
any other parameter, but also generates very high quality
stego-images with very large capacity of secret informa-
tion embedded.

Keywords: Data hiding, geometric structure, reversible
data embedding, watermarking

1 Introduction

Reversible data hiding conceals information (also called
payload) into a cover image. Once an authentic user re-
ceives a stego-image containing the hidden information,
the user can extract the hidden information exactly and
recover the cover image without loss using a predefined
procedure. Fridrich et al. [4] classified data hiding appli-
cations into two groups depending on the relationship be-
tween the hidden information and the cover image. The
first group is the set of applications for which there is
no relationship between the cover image and the hidden
information. Both the coder and decoder are interested

only in the hidden information. In the second group, the
information has a close relationship to the cover image.
For example, in digital watermarking, the hidden infor-
mation usually is embedded into the cover image as a
supplement to the cover image. In such cases, especially
in medical, art, and military applications, two basic re-
quirements must be met: (1) the receiver can extract the
hidden information correctly and (2) the cover image can
be recovered without distortion. The following three fac-
tors are generally used to evaluate a reversible data hiding
scheme:

1) Payload capacity. Payload capacity is the maximum
amount of information that can be embedded. The
payload capacity is usually determined by the em-
bedding algorithm and the size and content of the
cover image. Generally, researchers use bits per pixel
(bpp) to evaluate the payload capacity.

2) Imperceptibility. Imperceptibility means that people
cannot perceive the existence of the hidden informa-
tion with their eyes directly. For example, a meaning-
less image has no imperceptibility since it may readily
attract a thief. In addition, if a coder adds informa-
tion to the cover image directly, it is not impercepti-
ble because of its expanded size. Thus, imperceptibil-
ity requires high similarity between the stego-image
and the cover image, which means the stego-image
has low distortion compared with the cover image.
Generally, researchers use the peak signal to noise
ratio (PSNR) to evaluate the degree of distortion of
the stego-image versus the cover image.

International Journal of Network Security, Vol.18, No.1, PP.52-59, Jan. 2016 53

3) Complexity of the algorithm. To indicate which pix-
els or pixel groups are used to embed information,
many proposed schemes [5, 6, 7, 12] need a location
map. Typically, these schemes use a compression
technique to decrease the overhead of storing the lo-
cation map. However, both the use of a location map
and the compression technique increase the complex-
ity of the algorithm.

Many data hiding schemes have been proposed in re-
cent decades. Fridrich et al. [4] proposed the RS method
for uncompressed image formats. The RS method is based
on embedding messages in the status (regular or singular)
of groups of pixels. However, as reported in [6], there are
two drawbacks to the RS method. First, since the opti-
mal size of a group is four pixels, the maximum bpp is
only 0.25. In addition, due to the overhead of embed-
ding the comprised RS-vector, the actual bpp is always
smaller than the maximum bpp. Second, the RS method
does not use information of neighboring groups so that
it may lose useful information, which may increase its
performance. Apart from these two drawbacks, the RS
method also needs a lossless data compression technique,
which increases the complexity of the algorithm. In 2003,
Tian [12] proposed a difference expansion (DE) based al-
gorithm. The DE method is based on the Haar wavelet
transform, and it uses differences between two grayscale
values in a pixel pair to embed information. Based on the
experimental results shown in [12], Tian’s algorithm can
achieve very large hiding capacity. Kamstra et al. [6] de-
veloped an LSB predication embedding technique that has
the same main idea described in [4]. Both the LSB pred-
ication embedding technique and the method described
in [4] find a subset that is losslessly compressed from the
cover image and embed the payload into the excess space
after compression. Since it is difficult to construct a pred-
ication function, although [6] used another function to es-
timate the correctness of LSB predications, this method
achieves only a very low embedding capacity. Kamstra et
al. [6] also proposed an improved scheme based on Tian’s
method [12] in which two issues were considered: one is
the capacity control problem and the other is the overhead
costs caused by the location map. Due to Tian’s excellent
work [12], there are many variants based on the DE trans-
form [1, 2, 3, 5, 7]. However, all these schemes must deal
with the capacity problem and the overhead caused by the
location map. In 2006, Ni et al. [9] proposed a reversible
data hiding scheme with high PSNR (greater than 48dB)
and considerable pure payload. Their algorithm is also
light since there is not any transform operation such as
DCT and DWT. Based on this work, Tai et al. [11] and
Li et al. [8] presented improved methods that can achieve
larger hiding capacity but keep embedding distortion low.

In this paper, we present a reversible data hiding
method for digital images based on a combination of pixel
groups’ geometric structure and secret sharing mecha-
nism [10]. The proposed method has four main merits:
(1) it has meaningful stego-images, (2) the meaningful

8

7

6

5

4

3

2

1

0

0 1 2 3 4 5 6 7 8

Figure 1: An example for illustrating data embedding
rules

stego-images have high image quality, which means low
distortion compared with the original cover image, (3) the
original cover image can be recovered without loss, and
(4) it can hide secrets with very large capacity without
the use of a location map or any other extra information.

The rest of the paper is organized as follows. The pro-
posed algorithm is presented in Section 2. Experimental
results and further discussions are given in Section 3. Fi-
nally, conclusions are described in Section 4.

2 Proposed Algorithm

In this section, we provide an overview of our hiding al-
gorithm, followed by a detailed presentation of the data
embedding process and data extraction process.

2.1 Overview

Our algorithm uses a cover image to produce two stego-
images (also called shadow images in secret sharing
schemes) based on the to-be-embedded information and
the cover image itself. We also call the to-be-embedded
information a secret message in this paper. Any authen-
tic user who holds these two shadow images at the same
time can extract the secret message and recover the cover
image without data loss. Next, we introduce the main
idea of our method.

First, we create a two-dimensional pixel coordinate, as
shown in Figure 1, and both the ordinate and abscissa of
the pixel coordinate represent the grayscale value. Then
we draw all the umbrellas in the pixel coordinate using
a predefined method. Each umbrella has a center point
called the embeddable point since just these points have
the ability to embed a secret message without causing any
confusion at the receiver end. We then create two copies of
the cover image as the two shadows and pair all the pixels
in these three images by a same pattern. Thus, each pair
of the cover image can be located in the pixel coordinate
as a point. In the data embedding process, if a pair of

International Journal of Network Security, Vol.18, No.1, PP.52-59, Jan. 2016 54

the cover image is located on an embeddable point, we
change the corresponding pair of the shadows, referring
to the embedding rules to embed a secret value. The data
extraction is the inverse process of the data embedding.
Next, we will describe the method for creating the pixel
coordinate and drawing the umbrellas.

For convenience, we use a grayscale image with each
pixel consisting of 3 bits to explain the procedure of build-
ing umbrellas. In Figure 1, we have drawn four red um-
brellas and two blue umbrellas in the pixel coordinate, and
each umbrella has a center point. These center points are
(1, 1), (3, 1), (2, 2), (4, 2), (1, 3), and (3, 3). In total,
there are 32 umbrellas in the pixel coordinate, and all of
them can be drawn using the following steps:

1) Assuming the point that is being scanned is (a, b),
if (a, b) is an edge point in the pixel coordinate, it
does not have all four neighboring points, so it can’t
be the center point of an umbrella. Therefore, in the
scanning process, we can ignore all the edge points
and scan row by row, from point (1, 1) to point (6,
6) in this example.

2) If (a, b) is not an edge point and not a point of any
other umbrella, one can draw an umbrella by making
(a, b) the center point. Otherwise, one goes to step
3 without doing anything.

3) If there is a next point, get it and perform step 2 for
it. Otherwise, end the process.

In our proposed scheme, every center point is an em-
beddable point that can be used to embed a secret mes-
sage. We can use the bellowing method to decide whether
a point is an embeddable point or not. For point (i, j),
each pixel consists of n bits:

1) If i = 0 or j = 0, (i, j) is not an embeddable point.

2) If i =2n−1 or j = 2n−1, (i, j) is not an embeddable
point.

3) If (i, j) is not an edge point and i, j are odd numbers,
(i, j) is an embeddable point.

4) If (i, j) is not an edge point and i, j are even numbers,
(i, j) is an embeddable point.

2.2 Data Embedding

In the data embedding process, we use all the embed-
dable points to embed the secret message. To improve
the hiding capacity, we translate the to-be-embedded in-
formation to a seventeen-ary message, which means each
digit value belongs to [0-16]. However, for convenience,
we always use the hexadecimal system for computations
in this paper.

An embeddable point (a, b) is a center point of an um-
brella, shown in Figure 2, and there are four neighboring
points (point (a-1, b), (a, b-1), (a+1, b), and (a, b+1))

（a-1, b）

（a+1, b）

（a, b+1）

（a, b-1）

(a, b)

Figure 2: The proposed scheme

Table 1: Data embedding rules

Secret EP PPFS PPSS
0 (a, b) (a, b) (a, b)
1 (a, b) (a-1, b) (a, b+1)
2 (a, b) (a, b+1) (a-1, b)
3 (a, b) (a-1, b) (a, b)
4 (a, b) (a, b) (a-1, b)
5 (a, b) (a, b+1) (a, b)
6 (a, b) (a, b) (a, b+1)
7 (a, b) (a, b+1) (a, b-1)
8 (a, b) (a, b-1) (a, b+1)
9 (a, b) (a, b+1) (a+1, b)
10 (a, b) (a+1, b) (a, b+1)
11 (a, b) (a+1, b) (a, b)
12 (a, b) (a, b) (a+1, b)
13 (a, b) (a+1, b) (a-1, b)
14 (a, b) (a-1, b) (a+1, b)
15 (a, b) (a, b-1) (a, b)
16 (a, b) (a, b) (a, b-1)

EP:Embeddable point
PFS:Pixel pair of first shadow
PSS:Pixel pair of second shadow

International Journal of Network Security, Vol.18, No.1, PP.52-59, Jan. 2016 55

surrounding it. Thus, we can draw all arrows shown in
Figure 2. That means there should be two different di-
rection arrows between any two points linked by a blue
line, e.g. (a-1, b) → (a, b), (a, b) → (a-1, b), (a, b+1)
→ (a, b-1), (a, b-1) → (a, b+1), and so on. We call the
pixel pairs that determine the arrows as arrow pairs, e.g.,
((a-1, b), (a, b)) is an arrow pair and ((a, b), (a-1, b)) is
another arrow pair. Obviously, there are 16 arrow pairs
in Figure 2 and we use these pairs to embed the secret
message.

For an 8-bit grayscale cover image L and its two shad-
ows L1 and L2, we first pair all the pixels in the cover
image. For convenience, we can pair the two neighboring
points row by row or column by column directly. If the
size of the cover image is M×N, there are (M×N)/2 pixel
pairs after pairing. Note that in this process, since the
two shadows are copies of the cover image, all their pixels
should be paired in the same way as the cover image. We
use the following notations to represent the resultant sets
of pairs for the cover image and its two shadows:

For cover image, PS={P1, P2,..., Pn}.
For the first shadow, PS1={ P’1, P’2,..., P’n}.
For the second shadow, PS2={ P”1, P”2, ..., P”n}.
Next, we scan PS, PS1, and PS2 simultaneously using

the same scanning pattern, e.g., from the first element to
the last sequentially. If a pixel pair in PS is an embed-
dable point, we embed a secret value into it by changing
the corresponding pixel pairs of the two shadows in PS1
and PS2 according to the embedding rules. Since we have
translated the binary secret message to a seventeen-ary
message, we can use an embeddable point to embed a
seventeen-ary value (0-16). Without losing generality, we
use Table 1 to illustrate the embedding rules for the em-
beddable point (a, b). That means the pixel pairs of a
certain arrow pair will be used to replace the correspond-
ing original pixel pairs of these two shadows. In addition,
the secret value 0 is mapped to the center point.

Now, we give an example of the data embedding pro-
cess. We select the embeddable point (2, 2) in the pixel
coordinate shown in Figure 1 to explain how to embed the
secret message by using these umbrellas. Assuming the
point (a, b) shown in Figure 2 is (2, 2), we can compute
the four points surrounding (2, 2). They are (1, 2), (2,
1), (3, 2), and (2, 3). Then we use the embedding rules
described in Table 1 to map a secret value to an arrow
pair based on the value (0-16) of the secret itself. The
embedding results are:

1) If secret = 0, (a1, b1) = (2, 2) and (a2, b2) = (2, 2);

2) If secret = 1, (a1, b1) = (1, 2) and (a2, b2) = (2, 3);

3) If secret = 2, (a1, b1) = (2, 3) and (a2, b2) = (1, 2);

4) If secret = 3, (a1, b1) = (1, 2) and (a2, b2) = (2, 2);

5) If secret = 4, (a1, b1) = (2, 2) and (a2, b2) = (1, 2);

6) If secret = 5, (a1, b1) = (2, 3) and (a2, b2) = (2, 2);

7) If secret = 6, (a1, b1) = (2, 2) and (a2, b2) = (2, 3);

8) If secret = 7, (a1, b1) = (2, 3) and (a2, b2) = (2, 1);

9) If secret = 8, (a1, b1) = (2, 1) and (a2, b2) = (2, 3);

10) If secret = 9, (a1, b1) = (2, 3) and (a2, b2) = (3, 2);

11) If secret = 10, (a1, b1) = (3, 2) and (a2, b2) = (2, 3);

12) If secret = 11, (a1, b1) = (3, 2) and (a2, b2) = (2, 2);

13) If secret = 12, (a1, b1) = (2, 2) and (a2, b2) = (3, 2);

14) If secret = 13, (a1, b1) = (3, 2) and (a2, b2) = (1, 2);

15) If secret = 14, (a1, b1) = (1, 2) and (a2, b2) = (3, 2);

16) If secret = 15, (a1, b1) = (2, 1) and (a2, b2) = (2, 2);

17) If secret = 16, (a1, b1) = (2, 2) and (a2, b2) = (2, 1).

By this way, we map a secret to a certain arrow pair
based on the value of the secret itself. After we use all the
embeddable points of a cover image to embed the secret
messages, two shadows that have high similarity with the
cover image are created. It is easy to extend this method
to the grayscale image with each pixel consisting of 8 bits.
That means the pixel coordinate in Figure 1 has the size
of 255×255.

Table 2: Data extraction rules

(a1,b1)-(a2,b2) Secret Recovering
(0,0) 0 ((a1,b1)=((a1,b1)

(-1,-1) 1 ((a1,b1)=((a1+1,b1)
(1,1) 2 ((a1,b1)=((a1,b1-1)

(-1,0) and (a2,b2)∗ 3 ((a1,b1)=((a2,b2)
(1,0) and (a1,b1)∗ 4 ((a1,b1)=((a1,b1)
(0,1) and (a2,b2)∗ 5 ((a1,b1)=((a2,b2)
(0,-1) and (a1,b1)∗ 6 ((a1,b1)=((a1,b1)

(0,2) 7 ((a1,b1)=((a1,b1-1)
(0,-2) 8 ((a1,b1)=((a1,b1+1)
(-1,1) 9 ((a1,b1)=((a1,b1-1)
(1,-1) 10 ((a1,b1)=((a1-1,b1)

(1,0) and (a2,b2)∗ 11 ((a1,b1)=((a2,b2)
(-1,0) and (a1,b1)∗ 12 ((a1,b1)=((a1,b1)

(2,0) 13 ((a1,b1)=((a1-1,b1)
(-2,0) 14 ((a1,b1)=((a1+1,b1)

(0,-1) and (a2,b2)∗ 15 ((a1,b1)=((a2,b2)
(0,1) and (a1,b1)∗ 16 ((a1,b1)=((a1,b1)

The notation (a,b)* represents that (a,b) is an embed-
dable point

2.3 Data Extraction

Once an authentic user receives two shadows, he/she can
extract the embedded secret message and recover the
cover image without loss using the following steps:

1) Pair all the pixels in these two shadows L1 and L2,
respectively, according to the same pairing rule used
in the data embedding process. This step produces
two sets of pairs PS1 (for L1) and PS2 (for L2).

International Journal of Network Security, Vol.18, No.1, PP.52-59, Jan. 2016 56

Lena Lena's shadow1 Lena's shadow2

Figure 4: Cover image Lena and its two shadows

2) ScanPS1 and PS2 in the same order. To recover the
cover image, we need to recover one of these two
shadows. For convenience, we always use the first
shadow for the recovery. We use the extraction rules
shown in Table 2 to extract the secret value and per-
form a recovering operation for the first shadow.

After the above two steps, an authentic user can ex-
tract all the embedded information correctly and recon-
struct the cover image exactly.

We use an example to clarify these steps. Assuming
that the recevier is scanning the first pixel pairs in the
two stego-images (denoted as L1 and L2), he gets (a1,b1)
for L1 and (a2,b2) for L2. Then he performs a difference
operation on these two pairs and gets the result (a1 - a2,
b1- b2). Next he extracts the secret value and recovers the
original image using rules shown in Table 2. For exampe,
(a1,b1) = (1,2) and (a2,b2) = (2,2), the recevier gets (a1
- a2, b1- b2)=(-1, 0). From Table 2, he finds that he must
know whether (a1,b1) is an embeddable point or (a2,b2)
is an an embeddable point to decide the secret value is 3
or 12. Based on the discussion in Section 2.1, (a2,b2) is
an an embeddable point so that the embedded secret is
3. The correspoding pixel pair of cover image is (a2,b2).
Because recevier uses the first shadow image to recover
the original image, he performs (a1,b1) = (a2,b2). Then,
he scans next pairs in the same way as he done for the
first pairs. Finally, he extracs all the secret values and
the first stego image is the cover image after performing
all recovery operations.

3 Experimental Results and Dis-
cussions

We used 12 standard cover images sized 512×512 pixels
for the experiments. In our experiments, all pixels pairs
are paired derectly row by row. Table 3 shows the exper-
imental results and Figure 3 shows all the cover images;
Figure 4 shows Lena and its shadows. From Table 3, we
can see that using the method proposed in the paper,
all of these cover images have very large hiding capacity
but with low distortion shadows. All PSNR of shadows
shown in Table 3 are greater than 51dB and the smallest
payload size is also greater than 256kb. The comparison
with some other schemes using Lena is shown in Table
4. In Table 4, we compare the payload size of some oth-
ers methods when they achieve their maximum PSNR.
We use this method to compare our result because our

scheme always reach a very high PSNR so that we don’t
have any data to compare with other schemes with rela-
tive low PSNR. The detailed analyses of the experimental
results are presented below.

Table 3: Experimental results

Images PSNR 1(db) PSNR 2(db) Payload(bits)
Lena 52.05 52.07 524288

Baboon 51.48 51.50 524216
Airplane 54.82 54.81 262172
Goldhill 51.94 51.96 524288

Boat 55.12 55.12 261760
Girl 51.41 51.42 348120

Woman 55.63 55.62 262964
Crowd 55.05 55.05 300240
Lake 55.12 55.11 262192

Barbara 55.56 55.55 263312
Bridge 53.32 53.33 449368
Couple 52.62 52.63 523752

PSNR 1: PSNR for fisrt shadow
PSNR 2: PSNR for second shadow

Table 4: Comparison with other schemes of cover image
Lena with size 512×512×8. In the comparison, the pay-
load of our method is divided by two because two stego-
images are used in our method.

Schemes Payload(bits) PSNR
Tian’s scheme [12] 39,566 44.20

Ni et al.’ scheme [5] 5460 48.2
Tai et al.’s scheme [11] 24,377 48.35

Li et al.’s scheme APD1 [8] 32,995 50.82
Li et al.’s scheme APD2 [8] 60,785 48.40

Our scheme 262,144 52.05

3.1 Imperceptibility

Since we use two shadows having high similarity with the
cover image to embed the secret message, it is difficult for
anyone to perceive the embedded information in these two
shadows with his/her eyes directly. As shown in Table 3,
the lowest PSNR is 51.41dB among all the shadows, and
it is already very high compared with other methods [1-4,
10].

Consider an extreme situation where all the pixel pairs
of the cover image are embeddable points. In the worst
case that each grayscale value of all pixels of the two shad-
ows will be incremented or decremented by 1, the most
mean square error (MMSE) is equal to 1. Therefore, the
PSNR of each shadow versus the original cover image is:

PSNR = 10× log10(
255× 255

2
) = 48.13db. (1)

The low limitation of PSNR of our method is already
very high, and the experimental results show that the

International Journal of Network Security, Vol.18, No.1, PP.52-59, Jan. 2016 57

Lena Baboon Airplane Goldhill Boat Girl

Woman Crowd Lake Barbara Bridge Couple

Figure 3: All cover images

actual PSNR is usually greater than the low limitation
for 3dB-7dB. Thus, the two shadows produced by our
algorithm have high performance in imperceptibility.

3.2 Capacity

For convenience, we think of the binary secret message
as transformed to hexadecimal instead of seventeen-ary.
Thus, each pixel pair can embed four bits of information.
The hiding capacity for each stego-image in the above
extreme situation is equal to:

payload = 4× (
512× 512

2× 2
) = 262, 144 (bits). (2)

As you can see, in an ideal situation, our algorithm can
achieve very high performance with both large capacity
and high PSNR. The experimental results show that all
the pixel pairs of the cover images Lena and Goldhill are
embeddable points so that these two images can achieve
the maximum hiding capacity in our method.

3.3 Complexity

Assuming the size of the cover image is M×N, recall that
in the data embedding process we use two copies (shad-
ows) of the cover image and then pair all the pixels in
these three images using the same pairing rule. Actu-
ally, we can pair the cover image, assuming the resultant
pair set is P = {P1, P2, ..., Pn}, and then produce two
copies P1 and P2 of the pair set P. In this way, we achieve
the same purpose but the time complexity is reduced to
O(MN).

For data extraction, we need to first pair the shadows
and then scan the resultant pair sets simultaneously. The
time complexity of pairing is O(2MN) and of scanning is
also O(2MN).

Our proposed algorithm is very light since we don’t
use any complex transform operation (such as DWT and
DCT) or any compression technique.

3.4 Capacity Control

We have assumed that all the embeddable points will be
used to embed the secret value. Obviously, this is not
practical and we provide a simple answer to solve this
problem.

We can use header information to indicate how many
embeddable points are used to embed the secret message.
For a grayscale image sized M×N, the maximum number
of embeddable points is (M×N)/2. If we use the first
n embeddable points as the header information, for easy
in calculation, we also use hexadecimal here; since each
embeddable point can embed four bits, we can choose n
for the inequality:

24n − 1 ≥ (M ×N)/2. (3)

For example, considering the grayscale image sized
512×512, the maximum number of embeddable points in
this image is (512×512)/2 = 131072. Because 24×5− 1 ≥
131072 , we select 5 as the value of n. That means if
the size of the cover image is 512×512, the first five em-
beddable points in the cover image are always used to
indicate the number of embeddable points that are used
to embed information in the embedding process. Thus,
for the data extraction process, the decoder needs to first
extract the header information and decide how many em-
beddable points should be extracted.

3.5 Comparisons

Table 4 shows a simple comparison with the other schemes
since these four papers present their experimental results
for Lena clearly. Tian’s DE method [12] can achieve
high embedding capacity when the capacity is larger than
260,000 bits, but PSNR of the stego-image is lower than
30dB. In such case, the imperceptibility of the stego-
image decreases. As shown Table 4, when Tian’s method
achieves a high PSNR, its payload suddenly drops. On
the other hand, because of the requirement for a location
map, it is not easy for Tians method [12] to deal with

International Journal of Network Security, Vol.18, No.1, PP.52-59, Jan. 2016 58

the capacity control problem, so this method is not ca-
pable of embedding small payloads with low distortions
as described in [6]. The RS method [4] cannot achieve
higher performance in both capacity and imperceptibil-
ity than our method since its maximum bpp is 0.25 due
to the optimal size of a group is four. The variants of
the DE method, such as [5, 6, 7], also need to face up
to the capacity control problem. Although these schemes
propose new methods to decrease the size of the loca-
tion map and control the embedding capacity, they are
complex compared with our method since they usually
need a lossless data compression technique. Ni et al.’s
method [9] and Li et al.’s [8] can achieve very high PSNR
compared with many other schemes, but both the PSNR
and the hiding capacity are lower than these in our pro-
posed method. Based on the discussions and the experi-
mental results shown in Table 4, our method can achieve
higher performance in imperceptibility, embedding capac-
ity, and algorithm complexity than all the other meth-
ods [1, 2, 3, 4, 5, 6, 7, 9, 11, 12] mentioned in this paper.

4 Conclusions

In this paper, we proposed a reversible data hiding algo-
rithm based on a combination of pixel groups’ geomet-
ric structure and secret sharing mechanism. Since our
method does not need a location map to indicate which
pixel pairs are used to embed the secret message and each
pixel can be changed at most one value, our algorithm has
high performance in both capacity and imperceptibility.
As the embeddable points are not edge points in the pixel
coordinate, there would not be any overflow or under-
flow in our scheme. The proposed scheme is also light
since we do not use any image compression technique.
Our experimental results confirm that the proposed re-
versible data hiding algorithm outperforms all the other
algorithms mentioned in the paper.

Acknowledgments

This work was supported by the National Nature Science
Foundation of China under Grant No. 61272374.

References

[1] A. M. Alattar, “Reversible watermark using differ-
ence expansion of triplets,” in Proceedings of In-
ternational Conference on Image Processing, vol. 1,
pp. 501–504, 2003.

[2] A. M. Alattar, “Reversible watermark using dif-
ference expansion of a generalized integer trans-
form,” IEEE Transactions on Image Process, vol. 13,
pp. 1147–1156, 2004.

[3] A. M. Alattar, “Reversible watermark using differ-
ence expansion of quads,” in Proceedings of IEEE In-

ternational Conference on Acoustics, vol. 3, pp. 337–
380, 2004.

[4] J. Fridrich, M. Goljan, and R. Du, “Lossless data
embeddingnew paradigm in digital watermarking,”
Journal of Applied Signal Processing, vol. 1, pp. 185–
196, 2002.

[5] Y. J. Hu, H. K. Lee, and J. W. Li, “De-based re-
versible data hiding with improved overflow location
map,” IEEE Transactions on Circuits and Systems
for Video Technology, vol. 19, pp. 250–260, 2009.

[6] L. Kamstra and H. J. A. M. Heijmans, “Reversible
data embedding into images using wavelet techniques
and sorting,” IEEE Transactions on Image Process,
vol. 14, pp. 2082–2090, 2005.

[7] H. J. Kim, Y. Q. Shi, J. Nam, and H. G. Choo, “A
novel difference expansion transform for reversible
data embedding,” IEEE Transactions on Informa-
tion Forensics and Security, vol. 3, pp. 456–465,
2008.

[8] Y. C. Li, C. M. Yeh, and C. C. Chang, “Data hiding
based on the similarity between neighboring pixels
with reversibility,” Digital Signal Processing, vol. 20,
pp. 1116–1128, 2010.

[9] Z. Ni, Y. Q. Shi, N. Ansari, and W. Su, “Reversible
data hiding,” IEEE Transactions on Circuits and
Systems for Video Technology, vol. 16, pp. 354–362,
2006.

[10] A. Shamir, “How to share a secret,” Communication
of the ACM, vol. 11, pp. 612–613, 1979.

[11] W. L. Tai, C. M. Yeh, and C. C. Chang, “Reversible
data hiding based on histogram modification of pixel
differences,” IEEE Transactions on Circuits and Sys-
tems for Video Technology, vol. 19, pp. 906–910,
2009.

[12] J. Tian, “Reversible data embedding using a differ-
ence expansion,” IEEE Transactions on Circuits Sys-
tem Video Technology, vol. 13, pp. 890–896, 2012.

Zhi-Hui Wang received the BS degree in software
engineering in 2004 from the North Eastern University,
Shenyang, China. She received her MS degree in software
engineering in 2007 and the PhD degree in software
and theory of computer in 2010, both from the Dalian
University of Technology, Dalian, China. Since November
2011, she has been a visiting scholar of University of
Washington. Her current research interests include
information hiding and image compression.

Xu Zhuang received his B.S. degree in Computer
Science from Southwest Jiaotong University (SWJTU),
Chengdu, China, in 2006, and is currently pursuing the
Ph.D. degree in the Software Engineering Laboratory
in Southwest Jiaotong University (SWJTU), Chengdu,
China. His research interests include data mining, data
hiding and information security.

Chin-Chen Chang received his Ph.D. degree in
computer engineering from National Chiao Tung Univer-
sity. His first degree is Bachelor of Science in Applied

International Journal of Network Security, Vol.18, No.1, PP.52-59, Jan. 2016 59

Mathematics and master degree is Master of Science in
computer and decision sciences. Both were awarded in
National Tsing Hua University. Dr. Chang served in
National Chung Cheng University from 1989 to 2005. His
title is Chair Professor in Department of Information En-
gineering and Computer Science, Feng Chia University,
from Feb. 2005. He is a Fellow of IEEE and a Fellow of
IEE, UK. His research interests include database design,
computer cryptography, image compression and data
structures.

Chuan Qin received the B.S. and M.S. degrees in elec-
tronic engineering from Hefei University of Technology,
Anhui, China, in 2002 and 2005, respectively, and the
Ph.D. degree in signal and information processing from
Shanghai University, Shanghai, China, in 2008. Since
2008, he has been with the faculty of the School of
Optical-Electrical and Computer Engineering, University
of Shanghai for Science and Technology, where he is
currently a Lecturer. He also has been with Feng Chia
University at Taiwan as a Postdoctoral Researcher from
July 2010 to June 2012. His research interests include
image processing and multimedia security.

Yan Zhu received her B.S. and M.S. degrees in Computer
Science from Southwest Jiaotong University (SWJTU),
Chengdu, China, in 1986 and 1989, respectively. She re-
ceived her Ph.D. degree in Computer Science from Darm-
stadt University of Technology, Germany in 2004. Yan
Zhu is currently a professor of the School of Information
Science and Technology, SWJTU and the director of the
Laboratory of Software Engineering. Her research inter-
ests include data mining, Web information security, and
Web spam detection.

