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Abstract

The bilinear pairings such as Weil pairing and Tate pair-
ing on elliptic curves have recently found many applica-
tions in cryptography. The first efficient algorithm for
computing pairing was originally proposed by Miller and
much subsequent research has been directed at many dif-
ferent aspects in order to improve efficiency. In 2003,
Eisenträger, Lauter and Montgomery proposed a new
point-double-addition method to speed up elliptic curve
arithmetic computation and obtained a 7.8% performance
improvement of the Miller algorithm of a general elliptic
curve. In 2006, Blake et al. proposed a new concept based
on the conjugate of a line to reduce the total number of
lines in the Miller algorithm. In this paper we propose
an enhancement of Eisenträger et al.’s algorithm for com-
puting pairings. Our enhancement can further speed up
the pairing computation by 5.9%.
Keywords: Elliptic curve cryptosystem, pairing-based
cryptosystem, pairing computation

1 Introduction

Elliptic curve cryptograph, introduced by Miller [21, 22]
and Koblitz [13] independently around 1985, provides the
same level of security as the conventional public-key cryp-
tography but with shorter keys. Numerous research ef-
forts have been devoted to elliptic curve cryptography
and a lot of cryptosystems have been proposed. By us-
ing Weil pairing, Menezes, Okamoto and Vanstone found
some weak curves which contain cyclic groups that can be
transformed into a finite field with small extension degree
(MOV degree) [19]. Frey and Ruck extended their attack
and found more weak curves with the Tate pairing [10].
Basically, the Weil/Tate pairing is a mapping with non-

degenerate and bilinear properties, which will map a spe-
cial pair of points on an elliptic curve to a certain mul-
tiplicative subgroup of a finite field. In recent years, bi-
linear pairings especially, Weil/Tate pairings, have found
positive applications in cryptography. Indeed, many cryp-
tographic applications based on pairings have been pro-
posed, such as identity-based encryption systems [4], dig-
ital signatures [5, 6, 25, 26], signcryption [16, 24] and key
agreement [12, 29]. As a result, the application of pairings
plays an important role in modern cryptography. There-
fore, efficiently implementation of pairing computation is
an important issue due to being the most costly operation
in these cryptosystems. The first efficient algorithm for
computing pairing was proposed by Miller [21, 22]. The
main idea of the Miller algorithm is to use lines to in-
tegrate the divisors, which the algorithm has processed
(see Section 2, for details). A lot of research has been
aimed in many different directions in order to improve
efficiency [1, 2, 3, 7, 8, 10, 15, 17, 23, 27, 28, 33]. The
research of Barreto, Kim, Lynn and Scott [1], and Gal-
braith, Harrison and Soldera [10] focuses particularly on
the Tate pairing over some special curves. The research
in [3, 8] can improve the performance of Weil/Tate pairing
computation in general elliptic curves. We will continue
in this direction.

It is well known that point subtraction and point ad-
dition on an elliptic curve have the same cost. Non-
adjacent form (NAF for short) has been widely used for
the scalar multiplication of nP for some point P on an el-
liptic curve [11]. Through this property, the efficiency of
pairing computation can also be improved. For example,
Eisenträger, Lauter and Montgomery gave a new point-
addition/subtraction method (ELM method for short)
to speed up scalar multiplication and pairing computa-
tion [8]. The majority of research in [8] literacy has fo-
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cused on the double-addition/subtraction step when the
bit of NAF representation of n is 1/-1. It is noticeable that
the number of double step is twice the number of double-
addition/subtraction step on average. With a parabola
substitution, they get a 7.8% performance improvement
of the Miller algorithm for a general elliptic curve (see
Section 2, for details).

In 2006, Blake et al. proposed a new concept based on
the conjugate of a line to reduce the total number of lines
in the Miller algorithm [3]. Three different algorithms
are proposed for three cases namely, BMX-1, BMX-2 and
BMX-3. The first algorithm, logn

2 field multiplications
are eliminated when there are relatively more zero bits
(or average cases) of the binary representation of integer
n. The second case is when there are relatively more one
bits and 2H(n) field multiplications are removed where
H(n) is the number of bit 1. The third case saves logn

3

field multiplications when the characteristic of the field is
three. Some successive works further improving Blake et
al.’s algorithms [14, 18, 31, 32].

In this paper, we propose an algorithm to eliminate
one more field multiplication in a double step, which the
ELM method can not apply. Our new reduction method
can reduce the number of lines, and hence improve the
efficiency of pairing computation even further. The result
can speed the computation of the Weil and Tate pairing
by up to 5.9%, that is, combined with the ELM method,
we can obtain a 13.3% performance improvement.

The rest of the paper is organized as follows. We briefly
review some mathematical preliminaries, the Miller algo-
rithm, the ELM method and Blake et al.’s formulae in
Section 2. In Section 3 we describe our proposed algo-
rithm. Its analysis is given in Section 4. Finally, some
concluding remarks are given in Section 5.

2 Background

2.1 Weil/Tate Pairing and Miller Algo-
rithm

Let E be an elliptic curve over a finite field Fq where q is a
power of a prime p. We can express E as the Weierstrass
equation

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6,

where a1, a2, a3, a4, a6 are all in Fq. If gcd(q, 6) = 1, a
nonsingular elliptic curve over the field Fq is given by an
equation of the form

Es : y2 = x3 + ax + b

with a, b ∈ Fq and 4a3 + 27b2 6= 0. Let E(Fq) denotes
the set of points (x, y) ∈ F 2

q , satisfying Es together with
the point at infinity denoted as ∞. Then E(Fq) together
with point addition has a structure of an abelian group
which is denoted as E. Explicit formulas for computing
the coordinates of a point R = P +Q from the coordinates

of P and Q are well known [24, 26]. We give the formulae
relative to R = P +Q when P 6= ±Q. That is, R = (λ2−
x1−x2, λx1−λx3− y1), where P = (x1, y1), Q = (x2, y2)
and λ = (y2−y1)

(x2−x1)
.

A divisor D is a formal sum of symbols from the set
{(P ): P ∈ E} with integer coefficients. That is D =∑

P∈K nP (P ). The set of all divisors, denoted by Div(E),
is a free abelian group generated by E. Define the de-
gree of a divisor D, deg(D), to be deg(D) =

∑
P∈E nP .

We can define an important subgroup of Div(E), de-
noted as Div0(E) = {D ∈ Div(E): deg(D) = 0}.
The divisor of a nonzero rational function f is div(f) =∑

P∈E ordP (f)(P ), where ordP (f) is the order of f at
P . It is well known that div(f) ∈ Div0(E) is called a
principle divisor. If there exists a nonzero rational func-
tion f such that D1 = D2 + div(f) then D1 and D2 are
said to be equivalent, denoted as D1 ∼ D2. The sup-
port of a divisor D is the set of points with nonzero co-
efficients, that is, supp(D) = {P ∈ E: nP 6= 0}. If
div(f) and D have disjoint support, then we can evaluate
f(D) =

∏
P∈E f(P )nP .

Let n be an integer relatively prime to q and P, Q ∈
E[n], where E[n] is the n-torsion subgroup of E. Then
there exist divisors DP , DQ such that DP ∼ (P ) − (∞)
and DQ ∼ (Q) − (∞). Further, there exist functions fP ,
fQ such that div(fP ) = nDP and div(fQ) = nDQ. If
DP and DQ have disjoint supports, then the Weil pair-
ing is en(P,Q) = fP (DQ)

fQ(DP ) . And the Tate pairing of or-
der n is the map τn: E(Fq)[n]E(Fqk)/nE(Fqk) → Fqk ,
with τn(P, Q) = fn(DQ)(q

k−1)/n, where div(fn) = n(P )−
n(∞). Hence, computing the Weil/Tate pairing can be
reduced to the evaluation of fP (S), where S is in the sup-
port of DQ.

We briefly describe the main idea of the Miller algo-
rithm as follows: Let DP = (P+R)−(R) with an auxiliary
point R and Dj

P = j(P +R)−j(R)−(jP )+(∞), and then
there is a rational function fj such that div(fj) = Dj

P , for
each integer j, in particular, fn = fP . Hence

div(fj+k) = (j + k)(P + R)− (j + k)(R)
−((j + k)P ) + (∞)

= [(j(P + R)− j(R)− (jP ) + (∞)]
+[k(P + R)− k(R)− (kP ) + (∞)]
+(jP ) + (kP )− ((j + k)P )− (∞)

= div(fj) + div(fk)
+[(jP ) + (kP ) + (−(j + k)P − 3(∞)]
−[((j + k)P ) + (−(j + k)P )− 2(∞)]

= div(fj) + div(fk) + div(LjP,kP )
−div(L(j+k)P ),

where LjP,kP be a line through the points jP, kP and
−(j + k)P . L(j+k)P be a vertical line through the points
(j + k)P and −(j + k)P . Then, fj+k = fjfk( LjP,kP

L(j+k)P
. As

a result, we can obtain fj+k from fj and fk with some
”glue”: the appropriate lines, LjP,kP and L(j+k)P .
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We can compute fn(S) recursively with initial values
f0 = 1 and f1 = LP+R

LR,R
. We describe the following algo-

rithm, which is similar to the algorithm proposed in [1, 3].
Note that we can perform the Miller algorithm to com-
pute Tate pairing by changing the initial value f1 = 1,
see [1] for details.

Algorithm 1 Miller algorithm

1: INPUT: Elliptic curve E, integer n =
∑t

i=0 bi2i with
bi ∈ {0, 1} and bt = 1, and points P , S ∈ E where P
has order n.

2: OUTPUT: f = fn(S).
3: f ← f1; Z ← P ;
4: for j ← t− 1 down to 0 do
5: f ← f2 LZ,Z(S)

L2Z(S) ; Z ← 2Z;
6: for j ← t− 1 down to 0 do
7: f ← f2 LZ,Z(S)

L2Z(S) ; Z ← 2Z;
8: if bj = 1 then
9: f ← f1f

LZ,P (S)
LZ+P (S) ; Z ← Z + P ;

10: return f ;
11: End

2.2 ELM Method

In Algorithm 1, the cost of pairing computation consists of
two main parts. One is a scalar multiplication of nP . The
other is an exponential computation and multiplication
with the glue. To decrease the cost of point’s double-
addition/subtraction of scalar multiplication, Eisenträger
et al. eliminate two field multiplications through a new
method to compute 2P + Q by computing P + Q and
2P + Q = (P + Q) + P . Note that, we do not care about
the intermediate result P + Q. The explicit formulae are
described as follows:

λ1 =
y2 − y1

x2 − x1
, x3 = λ2

1 − x1 − x2

λ2 = −λ1 − 2y1

x3 − x1
, x4 = λ2

2 − x1 − x3

y4 = (x1 − x4)λ2 − y1,

where P = (x1, y1), Q = (x2, y2), x1 6= x2, P + Q =
(x3, y3), and 2P + Q = (x4, y4) on an elliptic curve ES .
Moreover, λ1 is the slope of LP,Q and λ2 is the slope of
LP+Q,P .

To apply this point double-addition/subtraction
method for the Miller algorithm, they construct a
parabola to glue the Miller’s divisors, whenever the cor-
responding bit is one, see [8] for detail.

Suppose we use the binary method in [11] to form nP ,
where n has t bits. There are 2t/3 doubles and t/3 double-
additions/subtractions. By way of estimating a division
as 5.18 field multiplications, they compute the average
cost of the standard algorithm as

(16.18× 2t/3) + (31.36× t/3)
t

= 21.24

field multiplications per bit, and the average cost of their
new method is

(16.18× 2t/3) + (26.36× t/3)
t

= 19.57

field multiplications per bit. The performance improve-
ment ratio for their new method is 7.8%. It is noticeable
that these estimations are based on the computation of
Tate pairing for which fn(Q1) and fn(Q2) are computed
at the same time. Please see [8] or Section 4 for details.

We also need a divisor subtraction formula to use the
NAF method to form fn(S) with respect to the Miller
algorithm. Therefore, they proposed the first divisor sub-
traction formula:

div(fj−k) = (j − k)(P + R)− (j − k)(R)
−((j − k)P ) + (∞)

= [(j(P + R)− j(R)− (jP ) + (∞))]
−[k(P + R)− k(R)− (kP ) + (∞)]
+(jP )− (kP )− ((j − k)P ) + (∞)

= div(fj)− div(fk)
+[(jP ) + (−jP )− 2(∞)]
−[(−jP ) + (kP ) + ((j − k)P )− 3(∞)]

= div(fj)− div(fk) + div(LjP )
−div(L−jP,kP ),

Therefore,

fj−k =
fj

fk
· LjP

L−jP,kP
. (1)

2.3 Blake et al’s Lemmas

From the analysis in [8], we know that if we can reduce one
line then at least one field multiplication is saved in the
Miller algorithm. For this reason, Blake et al. proposed
three algorithms to reduce the number of lines. The first
algorithm is suitable for every case. The second algorithm
can work well if the Hamming weight of n is high. The
third algorithm is proposed for fields of characteristic 3.
These algorithms are based on the following two lemmas
which were proved in [3].

Lemma 1. If the line L(x, y) intersects with E at points
P = (a, b), Q = (c, d) and −(P + Q) = (α, β), then
L(x, y)L̄(x, y) = −(x − a)(x − c)(x − α), where L̄(x, y)
is the conjugate of L with L(R) = L̄(−R) for R ∈ E.

Lemma 2. Let Q ∈ E[n], S ∈ E and S 6= Q, 2Q, · · · ,
nQ, then

1) LQ,Q(S)

L2
Q(S)L2Q(S)

= −1
LQ,Q(−S) .

2) For all integer k, we have L(k+1)Q,kQ(S)

L(k+1)Q(S)L(2k+1)Q(S) =

− LkQ(S)
L(k+1)Q,kQ(−S) .

3) LQ,Q(S)L2Q,Q(S)
L2Q(S)L3Q(S) = −LQ,Q(S)LQ(S)

L2Q,Q(−S) .
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They also remark that [3]:

1) Since div(f) = fiv(cf) for any nonzero constant c ∈
K, the sign does not affect the pairing computation
and therefore, minus signs will be omitted in the use
of the above lemma.

2) The point P ∈ E[n] will be fixed and Q is taken to be
some multiple of P . In order to satisfy the condition
of the lemma, it is sufficient to let S 6= P , 2P , · · · ,
nP . This is also the requirement of the original Miller
algorithm.

3 A New Method for Computing
Pairings

In Section 2, the ELM method concentrates on the
double-addition/subtraction step in the point’s scalar
multiplication, however the number of double steps is
twice the number of double-addition/subtraction steps.
Therefore, we suggest a new algorithm to reduce one field
multiplication when the corresponding bit of n is 0 in the
Miller algorithm. Before expressing this new algorithm,
we briefly describe the limitations of their method to com-
pute the pairing.

To compute 2P +Q via P +Q, where P , Q, P +Q and
2P + Q on an elliptic curve Es but P 6= ±Q. Then the
capability and the limitations of their method are:

1) We have the x-coordinators of the points P , Q, P +Q
and 2P + Q. But we do not have the x-coordinator
of the point 2P .

2) We have the y-coordinators of the points P , Q and
2P + Q. But we do not have the y-coordinators of
P + Q and 2P .

3) We have the slopes for the lines LP,Q and LP+Q,P .

4) We can construct the linear functions LP,Q, LP+Q,P ,
LP , LQ, LP+Q, and L2P+Q. But we cannot construct
L2P,Q and L2P .

The detail description of the divisor subtraction for-
mula (Equation (1)) with their point double-subtraction
method in the Miller algorithm is

f ← f2

f1
· LZ(S)LZ−P,Z(S)
L−Z,P (S)L2Z−P (S)

;Z ← 2Z − P ;

when the bit of n is −1. Although the linear functions
LZ , LZ−P,Z , L2Z−P , and L−Z,P can be constructed, no
parabola was revealed in [8]. It is well-known that there
are no consecutive nonzero bits in the NAF representation
such that there is always a zero bit before -1. In [3],
they have examined the reduction formulae of bit 0 and
bit 1, however, there were few studies of the relationship
between bit 0 and bit -1. Therefore, we have to extend
Lemma 2.2 to Lemma 3.1 in order to establish a reduction
formula for this case.

Lemma 3. Let Q ∈ E[n], S ∈ E and S 6= Q, 2Q, · · · , nQ,
then L(k−1)Q,kQ(S)

LkQ(S)L(2k−1)Q(S) = L(k−1)Q(S)

L(k−1)Q,kQ(−S) .

Proof. For a point S ∈ E, we write S = (xS , yS), that is,
xS is the x-coordinate of S and yS is the y-coordinate of
S. By Lemma 2, we have:

L(k − 1)Q, kQ(S)
LkQ(S)L(2k−1)Q(S)

=
L(k − 1)Q, kQ(S)L̄(k−1)Q,kQ(S)

LkQ(S)L(2k−1)Q(S)L̄(k−1)Q,kQ(S)

=
−(xS − x(k−1)Q)(xS − xkQ)(xS − x(2k−1)Q

(xS − xkQ)(xS − x(2k−1)Q)L(k−1)Q,kQ(−S)

=
L(k−1)Q(S)

L(k−1)Q,kQ(−S)
.

Consider the NAF representation of n =
∑t

i=0 bi2i

with bi ∈ {0, 1}, bt = 1 and bi+1 · bi = 0 for 0 ≤ i < t. We
give the detail descriptions of the following three reduc-
tion formulae by applying Lemma 2.2 and Lemma 3.1.
These formulae play a key role in our algorithm. Sup-
pose that the Miller algorithm is performed by an addi-
tion/subtraction chain and glues the divisors in the trace
of the point addition (Z±P )+Z after Z±P in the three
cases. Note that, LQ(S) and L−Q(S) have the same value
for points Q and S on an elliptic curve, and we can omit
the minus signs as remarked in Section 2.3.

1) Case (0, 0) performs:

f ← f2 LZ,Z(S)
L2Z(S)

; Z ← 2Z;

f ← f2 L2Z,2Z(S)
L4Z(S)

; Z ← 2Z;

Putting together, we have:

f ← (f2 LZ,Z(S)
L2Z(S)

)2
L2Z,2Z(S)
L4Z(S)

= f4
−L2

Z,Z(S)
L2Z,2Z(−S)

Omitting the minus sign, we have:

f ← f4
L2

Z,Z(S)
L2Z,2Z(−S)

; Z ← 4Z.

2) Case (0,1) performs:

f ← f2 LZ,Z(S)
L2Z(S)

;Z ← 2Z;

f ← f1f
2 LZ,P (S)LZ+P,Z(S)
LZ+P (S)L2Z+P (S)

; Z ← 2Z + P ;
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Putting together, we have:

f ← (f2 LZ,Z(S)
L2Z(S)

)2 · f1
L2Z,P (S)
L2Z+P (S)

L2Z+P,2Z(S)
L4Z+P (S)

= f1f
4
L2

Z,Z(S)
L2

2Z(S)
L2Z,P (S)
L2Z+P (S)

·L2Z+P,2Z(S)L2Z+P,2Z(−S)
L4Z+P (S)L2Z+P,2Z(−S)

= f1f
4
L2

Z,Z(S)
L2

2Z(S)
L2Z,P (S)
L2Z+P (S)

·[−L2Z+P (S)L2Z(S)L4Z+P (S)
L4Z+P (S)L2Z+P,2Z(−S)

= f1f
4
−L2

Z,Z(S)L2Z,P (S)
L2Z(S)L2Z+P,2Z(−S)

.

Omitting the minus sign, we have:

f ← f1f
4

L2
Z,Z(S)L2Z,P (S)

L2ZL2Z+P,2Z(−S)
; Z ← 4Z + P.

3) Case (0, -1) performs:

f ← f2 LZ,Z(S)
L2Z(S)

;Z ← 2Z;

f ← f2

f1

LZ(S)
L−Z,P (S)

LZ−P,Z(S)
L2Z−P (S)

; Z ← 2Z − P ;

Putting together, we have:

f ← (f2 LZ,Z(S)
L2Z(S)

)2 · 1
f1

L2Z(S)
L2Z,P (S)

L2Z−P,2Z(S)
L4Z−P (S)

=
f4

f1

L2
Z,Z(S)

L2
2Z(S)

L2Z(S)
L−2Z,P (S)

·L2Z−P,2Z(S)L2Z−P,2Z(−S)
L4Z−P (S)L2Z−P,2Z(−S)

=
f4

f1

L2
Z,Z(S)

L2
2Z(S)L−2Z,P (S)

·[−L2Z−P (S)L2Z(S)L4Z−P (S)
L4Z−P (S)L2Z−P,2Z(−S)

=
f4

f1

−L2
Z,Z(S)L2Z−P (S)

L−2Z,P (S)L2Z−P,2Z(−S)
.

Omitting the minus sign, we have:

f ← f4

f1

L2
Z,Z(S)L2Z−P (S)

L−2Z,P (S)L2Z−P,2Z(−S)
; Z ← 4Z − P.

From these formulae, there is only one line LZ,Z (or
L2Z,2Z) which needs to be evaluated at point S whence
the relative bit of n is zero. That is, we can eliminate one
field multiplication when we glue the divisors in the three
cases (0, 0), (0, 1) and (0, -1). These detail descriptions of
the three cases also provide the correctness of an improved
Miller algorithm which we will describe in Algorithm 2.

Algorithm 2 The improved Miller algorithm

1: INPUT: Elliptic curve E, integer n =
∑t

i=0 bi2i with
bi ∈ {0, 1}, bt = 1, bi+1 · bi = 0 for 0 ≤ i < t, and
points P , S ∈ E where P has order n.

2: OUTPUT: f = fn(S).
3: f ← f1; Z ← P ; i ← t− 1;
4: while i > 0 do
5: if (bi, bi−1) = (0, 0) then

6: f ← f4 L2
Z,Z(S)

L2Z,2Z(−S) ; Z ← 4Z; i ← i− 2; {Case 0}
7: if (bi, bi−1) = (0, 1) then

8: f ← f1f
4 L2

Z,Z(S)L2Z,P (S)

L2Z(S)L2Z+P,2Z(−S) ; Z ← 4Z + P ; i ← i− 2;
{Case 1}

9: if (bi, bi−1) = (0,−1) then

10: f ← f4

f1

L2
Z,Z(S)L2Z−P (S)

L−2Z,P (S)L2Z−P,2Z(−S) ; Z ← 4Z−P ; i ← i−2;
{Case 2}

11: if (bi, bi−1) = (1, 0) then
12: f ← f1f

2 LZ,P (S)LZ(S)
LZ+P,Z(−S) ; Z ← 2Z + P ; i ← i− 1;

{Case 3}
13: if (bi, bi−1) = (−1, 0) then
14: f ← f2

f1

LZ(S)LZ−P,Z(S)
L−Z,P (S)L2Z−P (S) ; Z ← 2Z − P ; i ← i− 1;

{Case 4}
15: end-while
16: if i = 0 then
17: if bi = 1 then
18: f ← f2LZ,Z(S); Z ← 2Z;
19: if bi = 1 then
20: f ← f1f

2 LZ,P (S)LZ(S)
LZ+P,Z(−S) ; Z ← 2Z + P ;

21: if bi = −1 then
22: f ← f2

f1

LZ(S)LZP ,Z(S)

L−Z,P (S) ; Z ← 2Z − P ;
23: return f ;
24: End

4 Analysis

In this section, detailed analysis of the improvement is
given. Additionally, the estimation of the cost of the im-
provement is in accordance with the rules which were dis-
cussed in [8]. The basic concept of the improvement is
that it tries to find the maximum number of the pattern
(0, 0) and only processes the first bit of the pattern (1,
0) in Case 3 and the pattern (-1, 0) in Case 4. It is
noticeable that the methods of Case 3 and Case 4 can
be replaced with the parabola substitution method which
was described in [8]. As a result, only one line has to be
evaluated for each zero bit of n in our improvement.

As indicated in [1, 3, 8], in the actual implementation
of pairing computation, the operations in the numerator
and denominator in each step are separated and perform
one division at the very end. In [8], they estimate the
total cost of pairing computation with the following spec-
ifications:

1) The pairing evaluates a quotient of the form fn(Q1)
fn(Q2)

for two points Q1, Q2 on E, where n is a t bits integer
which consists of 2t/3 zero bits and t/3 nonzero bits.
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2) The cost of each bit is counted as the total number
of field multiplications, but the cost of all field addi-
tions/subtractions are omitted.

3) The cost of a division is estimated as 5.18 field mul-
tiplications.

4) The cost of the standard algorithm is 16.18 field mul-
tiplications for each zero bit and 31.36 field multipli-
cations for each nonzero bit.

5) The cost of the ELM method is 16.18 field multiplica-
tions for each zero bit and 26.36 field multiplications
for each nonzero bit.

For simplicity, our estimation follows the analysis in [8]
which counts the cost in each case separately. Plus, only
three different cases need to be analyzed between our im-
provement and the ELM method. These are the cases of
the cost of bit 0 and the cost of bit ±1 in (0, 1) and (0,
-1):

1) The cost of bit 0 which appears in the patterns (0,
0), (0, 1) and (0, -1): In these cases, we must perform
f ← f2LZ,Z(S) and Z ← 2Z for each bit 0.

a. A point doubling operation costs 3 field multi-
plications and a division.

b. Evaluating LZ,Z at points Q1 and Q2 costs 2
field multiplications.

c. Multiplying 4 fractions fnu, fde, LZ,Z(Q1), and
LZ,Z(Q2) costs 4 field multiplications. Where
fnu is the numerator of f and fde is the de-
nominator of f . That is, we must compute
fnu·fnu·LZ,Z(Q1)
fde·fde·LZ,Z(Q2)

in the improvement whence the
relative bit is 0.

The total cost of this case is 3 + 5.18 + 2 + 4 = 14.18
field multiplications.

2) The cost of bit 1 of (0, 1): In this case, we must

perform f ← f1f
4 L2

Z,Z(S)L2Z,P (S)

L2Z(S)L2Z+P,2Z(−S) and Z ← 4Z +
P . Then they can be separated as:

f ← [f2L2
Z,Z(S)]2f1

L2Z,P (S)
L2Z(S)L2Z+P,2Z(−S)

and Z ← (2Z +P )+2Z. The cost of the first compo-
nent is estimated in A. We estimate the cost of the
second component as follows:

a. A point double-addition costs 3 field multiplica-
tions and 2 divisions.

b. Evaluating L2Z,P at points Q1 and Q2 costs 2
field multiplications. Evaluating L2Z+P,2Z at
points −Q1 and −Q2 costs 2 field multiplica-
tions.

c. Multiplying 10 fractions costs 10 field multipli-
cations.

The total cost of this case is 3+10.36+4+10 = 27.36
field multiplications.

3) The cost of bit -1 which appear in the pattern
(0, -1): In this case, we must perform f ←
f4

f1

L2
Z,Z(S)L2Z−P (S)

L−2Z,P (S)L2Z−P,2Z(−S) AND Z ← 4Z − P . Then
they can be separated as:

f ← [F 2lz,z(s)]2
L2Z−P (S)

f1 · L−2Z,P (S)L2Z−P,2Z(−S)

and Z ← (2Z−P )+2Z. The cost of the first compo-
nent is estimated in A. We estimate the cost of the
second component as follows:

a. A point double-subtraction costs 3 field multi-
plications and 2 divisions.

b. Evaluating L−2Z,P at points Q1 and Q2 costs
2 field multiplications. Evaluating L2Z−P,2Z at
points −Q1 and −Q2 costs another 2 field mul-
tiplications.

c. Multiplying 10 fractions costs 10 field multipli-
cations.

The total cost of this case is 3 + 10.36 + 2 + 2 + 10 =
27.36 field multiplications.

Before we compute the average cost of our refinement,
we define two sets, ODD and EV EN , for the pattern
w, which appears in the NAF representation of n, where
n =

∑t
i=0 bi2i with bi ∈ {0, 1}, bt = 1 and bi+1 · bi = 0 for

0 ≤ i < t. That is, ODD = {w = bi+r+1(0, 0, · · · , 0)bi: r
is odd, bi+r+1 ·bi 6= 0, 0 ≤ i < i+r+1 ≤ t} and EV EN =
{w = bi+r+1(0, 0, · · · , 0)bi: r is even, bi+r+1 · bi 6= 0,
0 ≤ i < i + r + 1 ≤ t}.

Without lost of generality, assume |ODD| = |EV EN |.
Accordingly, the total number of Case 1 and Case 2
is estimated as the same as the total number of Case
3 and Case 4 in Algorithm 2. That is, in half of all
nonzero bits, each bit costs 27.36 field multiplications
and each bit of the rest costs 26.36 field multiplica-
tions. Therefore, the average cost of our improvement
is 14.18×2t/3+27.36×t/6+26.36×t/6

t = 18.41 field multiplica-
tions per bit. Compared to the standard algorithm, the
improvement is 21.24−18.41

21.24 = 13.3%. In other words, we
enhance the ELM method to obtain a 19.57−18.41

19.57 = 5.9%
improvement in performance.

5 Concluding Remarks

An improvement in the computation of the pairings has
been given and the corresponding performance has been
analyzed. It is noticeable that this algorithm can be more
efficient if more lines belonging to the nonzero bits are
reduced. We can achieve this purpose by recoding the
NAF representation of n into many patterns, such as (0r),
(0, 1, 0) and (0,−1, 0). But this is getting half the result
with twice the effort. Therefore, we propose a concise
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algorithm which focuses on performance improvement of
the zero bits and gives a simplified performance analysis.
As a result, the proposed algorithm gains an improve-
ment of 5.9% in performance when compared to the ELM
method.
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