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Abstract

A dynamic threshold sharing scheme is one that allows the
set of participants to expand and contract. In this work
we discuss dynamic threshold decryption schemes using
bilinear pairing. We discuss and analyze existing schemes,
demonstrate an attack and construct a significantly more
efficient secure scheme.
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1 Introduction

Secret sharing is a mechanism that is used to share out a
secret to multiple parties such that only those authorized
sets are allowed to recover the secret key. Threshold secret
sharing is an example of a secret sharing scheme, where
the authorized sets consists of those groups of participants
whose membership is greater than or equal to the thresh-
old. A t out of n threshold sharing [2, 10] is such that
any set of participants that contains t or more are autho-
rized and can recover the secret. The most common use
of threshold secret sharing is to build threshold crypto-
graphic applications. Threshold cryptography refers to a
technique where threshold secret sharing is used to com-
pute a function of the secret rather than the secret itself.
Examples of functions/applications would include a de-
cryption of ciphertext and signature schemes. Threshold
cryptography has been used to describe many group ori-
ented applications [6].

Today, it is common security technique that is used to
achieve computationally secure group access. A dynamic
threshold sharing scheme [8] is threshold sharing scheme
where the participant set is dynamic, allowing it to ex-
pand, as well as contract. Identity based encryption is a
technique such that some public identity information is
used as a public key. Identity based encryption was first
proposed by Shamir [11]. In [3], Boneh and Franklin con-
structed an identity based encryption scheme based on

bilinear pairings.

In this paper we discuss a dynamic threshold encryp-
tion scheme, we discuss two current schemes and discuss
attacks in their schemes. We then provide an improved
dynamic threshold decryption scheme. We assume we
have the following system. Users enroll in a encryp-
tion/decryption scheme. Once enrolled their identifica-
tion ID is registered. The service of the system is such
that users can register their identity to a trusted third
party, denoted by TTP, who then constructs and pub-
lishes their identity-based-public-key. The precise process
of the registration is outside the scope of our work.

The user can then have messages encrypted to them
based on the system public key and their identity and
then have threshold servers decrypt the ciphertext for the
user. The process in which the user makes the request
for a decryption is outside the scope of the paper. The
servers are dynamic in nature and can grow and contract
over time.

1.1 Dynamic Threshold Decryption
Scheme

The concept of a dynamic threshold decryption scheme
[8], is such that a public key encryption scheme exists, the
decryption key sk is shared out to a set of n decryption
servers, denoted by Γ1,Γ2, . . . ,Γn, in such a way that any
t out of n can decrypt a message which is encrypted using
the public key pk, and the membership of these servers is
dynamic in nature.

The goals for a dynamic dynamic sharing scheme [8]
are:

• The system can refresh the decryption key without
having to modify any of the shares of the decryption
servers.

• If the system adds a new decryption server then the
systems does not have to modify the decryption key
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nor do they have to modify any of the other decryp-
tion server’s shares.

• The removal of a decryption server does not require
the modification of any other decryption server’s
shares, further it does not require the modification
of the decryption key.

• A decryption server can refresh its private key with-
out requiring any other decryption server to modify
their private key, further this refresh does not require
the system to modify of any other decryption server
shares.

In order to develop an enhanced system we propose a
revised set of criteria, to support these revised features,
additional public information will be available in a pub-
licly available setting, such as a bulletin board. This ad-
ditional bulletin board information is typically used to
support a set of authorized servers ability to reconstruct
the decryption key and/or to decrypt a message for a user.

In [5], Chen, Gollman, Mitchell and Wild introduced
the concept of reusable polynomials for secret sharing
with a goal of supporting dynamic thresholds. The main
properties that they were interested in were:

Perfect security or computational security. A se-
cret sharing scheme is perfectly secure if unautho-
rized subsets of shareholders cannot obtain informa-
tion about the secret. A scheme is computationally
secure provided it is computationally infeasible to de-
termine the secret from an unauthorized subset.

Verifiability. First, each shareholder should be able to
verify their received share to detect a dishonest or
faulty dealer. Secondly, during secret reconstruction
a forged share contributed by a cheating shareholder
can be detected by the other shareholders.

Online shareholders. Shareholders can dynamically
join or leave the sharing group without having to
redistribute new shares secretly to the existing share-
holders.

Reusable shares. Shares need to be reusable even after
the shared secret has been reconstructed.

Our criteria for secure dynamic threshold sharing:

• The system can refresh decryption key without hav-
ing to contact and/or send new shares to any of the
decryption servers.

• When the system adds a new decryption server then
they do not have to modify the decryption key nor
do they have contact and/or send new shares to any
of the other decryption server’s shares.

• The removal of a decryption server does not require
contact and/or the sending new shares of any other
decryption server’s shares, further it does not require
the modification of the decryption key.

• A decryption server can refresh its private key with-
out requiring the any other decryption server to mod-
ify their private key, further it does not require con-
tact and/or sending new shares to any other decryp-
tion server shares.

• Each server should be able to verify their shares com-
pute the secret.

• All system/shareholder (server) computations are ef-
ficient.

This set of criteria allows for the use of public setting
modification (for example, shares placed on a public bul-
letin board).

1.2 Bilinear Pairings

A mathematical tool that we utilize in our work will be
the bilinear pairing. Let G, and G1 be cyclic groups of
prime order p, such that both G and G1 are multiplicative
groups.

Definition 1. A map e : G×G→ G1 is said to be bilinear
pairing if it has the following properties:

Bilinearity. e(ga, wb) = e(g, w)ab for all g, w ∈ G and
a, b ∈ Z∗p.

Non-degeneracy. e(g, g) 6= 1 in G1 and g 6= 1 in G.

Computability. There exists an efficient algorithm that
computes e(g, w) for all g, w ∈ G.

We will assume that the discrete log problem (DLOG)
is hard. The DLOG problem is such that given group G,
and g ∈ G and gk it is s “computationally infeasible” to
determine k. We will assume that the discrete log problem
is “hard” in G1.

In this paper we will be using a bilinear map e. We
assume that the discrete log problem is “hard” even in
the presence of the bilinear map, that is, given genera-
tor g, the value ga and the pairing map e, it is “hard”
to compute the exponent a. We will assume that Com-
putational Diffie-Hellman (CDH) problem is also ‘hard”
in the presence of the bilinear map, thus given ga, gb, and
e(ga, gb) it is hard to compute ab. We will assume that the
CDH problem is hard in G1. The Decision Diffie-Hellman
(DDH) problem is the problem concerning whether one
can distinguish between (g, ga, gb, gc) and (g, ga, gb, gab).
The Decision Diffie-Hellman (DDH) problem is “easy” in
G1 due to the existence of the bilinear map e. Conse-
quently, we will be working in an algebraic setting de-
scribed by Boneh et al. [4] as the Gap Diffie-Hellman
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(GDH) group. The group G1 is called a GDH group if
DDH is easy in G1 but CDH is hard. Thus G1 is a GDH
group.

1.3 Identity-based Encryption

The concept of identity-based encryption was proposed by
Shamir in 1984 [11]. The construction of an identity-based
encryption scheme was an open problem until solved by
Boneh and Franklin in [3]. Today there are a number of
identity based encryption schemes proposed, we refer the
reader to a survey of the schemes [1].

2 Construction of Dynamic
Threshold Decryption Scheme
from Pairing

In this section we discuss a dynamic threshold decryption
scheme proposed by Long and Chen [9]. Unfortunately
there is a typographical error in their work, thus plac-
ing a level of ambiguity to their scheme. In [7] Kim,
Lim, Yie, and Kim analyzed the Long scheme, because
of the typographical error they had to make an interpre-
tation of the error, their interpreted scheme was flawed.
In Kim et al.’s cryptanalysis, they showed that their in-
terpretation of the Long et al. scheme is insecure. Long
and Chen constructed their dynamic threshold decryption
scheme using bilinear pairings. Their scheme attempts
to solve the problem of decrypting the ciphertext without
compromising the master key, and was inspired by [12].
The Long et al. scheme is summarized in the following
steps:

Setup. There is a trusted party private key generator
(TTP) which chooses two bilinear groups G1 and
G2, where each group has prime order p. Let g be a
generator of G1, and e : G1 × G1 → G2 a bilinear
map. The messages are denoted by M . Assume all
messages M belong to G1. We assume that each
user u has a public key IDu that belongs to Z∗p.
The TTP selects random x, y ∈ Z∗p and computes
X = gx, Y = gy. The public parameters are denoted
by cp = (g,X, Y ) and the master key mkey = (x, y)
where x remains secret and y is secret but renewed
periodically.

KeyGen. Initially there are n decryption servers
Γ1,Γ2, ...,Γn. Each server Γi possesses a secret key
si ∈ Z∗p and a corresponding public key Pi = gsi .
The TTP selects a random polynomial f(z) of de-
gree t−1 over Z∗p by selecting b1, b2, . . . bt−1 from Z∗p,
the polynomial f(z) satisfies f(z) = y +

∑k−1
i=1 biz

i,

here bk−1 ∈ Z∗p. For each i, the TTP computes

ki = g
f(i)

(ID+x)P
y
i

and vi = e(g, g)f(i). The TTP publishes ki and vi
on the public available site (which we will call the
bulletin board).

Encryption. Suppose Alice would like to transmit mes-
sage M to Bob privately. She gets Bob’s identifica-
tion, denoted by ID, as well as the master TTP keys
X and Y . She then encrypts message M with public
key ID, by picking up a random S ∈ Z∗p and com-

putes the ciphertext C by C = (gS·ID ·XS , e(g, Y )S ·
M) = (A,B).

Γi ’s Sub-decryption. After Bob receives the de-
crypted message that was sent by Alice, Bob can ask
the servers to decrypt it. This can be achieved when-
ever t decryption servers Γi1 , . . . ,Γit cooperate and
reconstruct the message by utilizing their shares (on
the bulletin board) of the decryption key in the t of n
threshold sharing scheme. In this step, we illustrate
how a server Γi calculates its decryption share δi of
the ciphertext, which is computed with the use of the
server’s private key si. According to [9], the decryp-
tion server Γi calculates the share δi by computing

δi = e(A, gY
si

)ki = · · · = e(g, g)S·f(i). (1)

Note: The formula given in Equation (1) is wrong!
We address this issue in Section 2.1.

Decryption. Assuming decryption servers Γ1,Γ2, ...,Γt
want to decrypt the ciphertext, each server Γi com-
putes δi and sends it to the combiner who computes
∆ by:

∆ =

t∏
j=1

(δj)

∏t
i=1
i6=j

−i
j−i

=

t∏
j=1

e(g, g)
sf(j)

∏t
i=1
i6=j

−i
j−i

= e(g, g)

∑t
j=1 sf(j)

∏t
i=1
i6=j

−i
j−i

= e(g, g)sy

= e(g, Y )s.

Note: The above calculation only make sense pro-
vided that δj = e(g, g)S·f(j). Again this is addressed
in Section 2.1.

If ∆ equals e(g, Y )S , then M can be recovered by comput-
ing M = B · ∆−1. The use of the bulletin board allows
Long et al. to achieve the revised dynamic properties.
The share vi can be used by each server Γi to verify the
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correctness of the share ki, a property we are interested
in satisfying. Further any server Γj can verify the cor-
rectness of the shares v1, . . . vn by selecting any t of them
and computing

e(g, g)y
?
=

t∏
i=1

v

∏t
i=1,i 6=j

−wj
wi−wj

wi .

Long et al. claimed that their scheme satisfied the follow-
ing dynamic threshold requirements.

TTP refreshes secret key. In the case a new secret
key ynew is selected, then Ynew = gynew is computed
and a new polynomial fnew is selected, new shares
ki,new and vi,new will be shared out to the servers
Γ1, . . . ,Γn.

TTP adds new decryption server. In the case the
TTP adds a new server Γn+1, they simply use the
polynomial value f(n+ 1) and generate a new share

kn+1 = g
f(n+1)

(ID+x)P
y
n+1 and vn+1 = e(g, g)f(n+1)

here Pn+1 is Γn+1’s public key.

TTP removes a decryption server. Assume without
loss of generality that server Γn is dismissed then a
new polynomial fnew is selected with the same secret
key y and new shares ki,new and vi,new will be shared
out to the bulletin board by the TTP for the servers
Γ1, . . . ,Γn−1.

Server Γi refreshes their secret key si. If Γi re-
freshes their secret key and select si,new then they
will compute Pi,new = gsi,new and new shares ki,new
and vi,new will be shared out to the bulletin board
by the TTP for the servers.

Remarks: Clearly this scheme does not possess the se-
curity (nor correctness) that the authors claim. More im-
portantly, this is very inefficient. In reality the labelling of
shares as ki and vi is inaccurate as they depend not only
on the server Γi but also on the user’s identification ID.
That is, if there are m users {ID1, ID2, . . . , IDm} then
there are m distinct (ki, vi) pairs (as illustrated below–one
pair for each user ID). That is, we have

Γ1 Γ2 · · · Γn

ID1 (k1,ID1
, v1,ID1

) (k2,ID1
, v2,ID1

) · · · (kn,ID1
, vn,ID1

)
ID2 (k1,ID2

, v1,ID2
) (k2,ID2

, v2,ID2
) · · · (kn,ID2

, vn,ID2
)

.

.

.
.
.
.

. . .

IDm (k1,IDm , v1,IDm ) (k2,IDm , v2,IDm ) · · · (kn,IDm , vn,IDm )

Thus the cost of executing the refresh properties are (in
big O notation) is described in Table 1.

Table 1: Computational cost of Long et al. scheme
operation computational cost

TTP refreshes
secret key O(mn)
TTP adds new
decryption server O(m)
TTP removes a
decryption server O(mn)
server Γi refreshes
their secret key O(m)

2.1 Kim et al.’s Interpretation of the
Long Scheme

Clearly there is a typographical error in Long et al.
scheme. In [7] Kim, Lim, Yie, and Kim cryptanalyzed
the Long et al. scheme. Unfortunately due to the typo-
graphical error in the Long et al. paper [9], Kim et al. [7]
had to interpret the scheme, they interpreted the Long
scheme as follows:

Setup. Same as before.

KeyGen. Same as before, exception: for each i, the TTP

computes ki = g
f(i)

(ID+x)p
y
i , vi = e(g, g)f(i) and pub-

lishes ki, vi.

Encryption. Same as before.

Γi ’s Sub-decryption. Bob can receive the message
sent by Alice by having t servers Γi1 , . . . ,Γit recon-
struct the message by utilizing their shares of the de-
cryption key in the t of n threshold sharing scheme.
In this step, the server Γi calculates its decryption
share δi of the ciphertext as follows:

δi = e(A, ki · Y si)

= e(g, g)S·(ID+x)· f(i)
ID+x

= e(g, g)S·f(i).

The above derivations are correct.

Decryption. Assuming t decryption servers Γ1,Γ2, ...,Γt
wish to decrypt the ciphertext for user ID, one of
the servers collects δ1, δ2, ..., δt and computes ∆ as
follows:

∆ =

t∏
j=1

δ

∏t
i=1
i6=j

−i
j−i

j

=

t∏
j=1

e(g, g)
sf(j)

∏t
i=1
i6=j

−i
j−i

= e(g, g)

∑t
j=1 sf(j)

∏t
i=1
i6=j

−i
j−i

= e(g, g)sy

= e(g, Y )s.
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Each server Γj sends their δj to Bob who then com-
putes ∆. Lastly Bob computes M = B ·∆−1, which
is the final step of decryption.

The dynamic properties that need to be supported (in the
Kim et al. interpretation) are as follows:

TTP refreshes secret key. Same as before

TTP adds new decryption server. Same as before.

TTP removes a decryption server. Same as before.

server Γi refreshes secret key si. Same as before.

In their work [7], Kim et al. successfully attacked their
interpretation of the Long scheme. We find that Kim et
al. misinterpreted the Long scheme [9], which we describe
in Section 2.3.

2.2 Kim et al.’s Attack of Their Inter-
preted Long Scheme

In [7] the authors attacked their interpreted version of
the Long scheme. The attack they constructed was such
that it violated the decryption requirement that only t
authorized servers can decrypt an encrypted message for
any party. The Kim et al. attack can be summarized
as follows: Suppose server Γw is malicious. They claim
want an update of their public key Pw but rather than
selecting a new secret key, suppose they wish to attack
server Γ1. They use Γ1’s public key P1 and select r ∈ Z∗p
and compute P r1 and sends this to the TTP claiming that
P r1 is their “new public key”, calling it Pw,new. Thus
Pw,new = P r1 . The TTP not knowing that server Γw
has misrepresented their new public key, refreshes Γw’s

shares kw,new and vw,new. Here kw,new = g
f(w)
ID+xP ry1 .

Because server Γw can compute g
w

ID+x the server Γw now
knows P ry1 since the server knows r it can compute P y1 by

computing (P ry1 )r
−1

. Then using k1 it computes g
f(1)

ID+x by

computing k1 · (P y1 )−1. Now Γw knows g
f(1)

ID+x and g
f(w)
ID+x .

Now together with t − 2 other servers it can compute

g
y

ID+x which is Y
1

ID+x . Then given ciphertext C, the t−1

servers can compute e(gS·ID · XS , Y
1

ID+x ) = e(g, g)Sy,
denote this by ∆. Then M = C · ∆−1. Hence Γw has
successfully defeated the threshold requirement since a
coalition of t− 1 servers can decrypt messages.

Note: The server Γw could actually complete this attack
t− 1 times and be able to decrypt by itself. Though t− 1
refreshes may make the TTP suspicious of their behavior.

The Kim et al. attack has successfully defeated the
threshold requirement. Kim argued that the only way to
prevent such attack is that the system has to renew the
secret shares of all decryption servers whenever one of
the decryption server renews its secret key, however this
is problematic in that there are n servers and m users as

described in Table 1. Thus the cost is O(mn), which is
too much. We solved this problem constructing a more
efficient scheme, we will discuss a new attack, which is
relevant to all version of the Long scheme. However, we
will first demonstrate that the Kim et al. interpretation
of the Long scheme was incorrect.

2.3 Our Interpretation of the Long
Scheme

The interpretation of the Long [9] scheme by Kim et al. [7]
led to the attach described in Section 2.2, that is by their
interpretation they were able to construct the attack. Af-
ter observing the Long scheme [9], it became apparent to
us that the error was merely in the presentation of Equa-
tion (1). That is the share ki was expressed in the Long
scheme as

ki = g
f(i)

(ID+x)P
y
i . (2)

But clearly based on the assumption that Equation (2)
is correct then the δi (decryption subshare) is incor-
rect. We then observed that based on the assumption
Equation (2) is correct that δi should be calculated as
δi = e(A, ki)

Y si
because

δi = e(A, ki)
Y si

= e(A, g)
Y si · f(i)

(ID+x)P
y
i

= e(g, g)
S·(ID+x)·(Pi)

y· f(i)

(ID+x)P
y
i

= e(g, g)S·f(i),

which is exactly what the Long scheme required. Then if
a threshold of t servers (say Γ1, . . . ,Γt) need to compute
a function of the secret

∆ =

t∏
j=1

δ

∏t
i=1
i6=j

−i
j−i

j = e(g, Y )s

The irony is that this version is not susceptible to the
attack described by Kim et al. [7], and that the attempt to
fix the typographical error in the Long scheme introduced
the security weakness that allowed them to attack it. At
the same time we note an attack on the Long scheme
(both versions), as well as Kim’s suggested fix.

3 Our Attack

Thus we see the Kim et al. attack was due to their in-
terpretation of the Long scheme. Suppose Alice encrypts
message M to user denoted by ID0 then ciphertext C
satisfies C = (gS·ID0 · XS , e(g, Y )S ·M) = (A,B). Now
consider the following attack. Suppose a server leaves
the network, in particular suppose the server is removed
and is intent on causing problems to the network that re-
moved them. We assume without loss of generality that
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it is server Γn. Now with the removal of this server the
threshold is a t out of n−1 and there are only n−1 play-
ers, all other parties are considered outsiders and outsider
help does not contribute towards the threshold. For ex-
ample, as an extreme, if we have t helpers who are not
authentic decryption servers but for some reason posses
valid shares in a t out od X scheme then they should not
be able to decrypt. Suppose Γn gives their information

g
f(n)
ID+x to t − 1 parties. The server Γn is now considered

as an outsider and doesn’t count towards the threshold,
thus it should not be be considered as help to achieve a
threshold that decrypt a message intended for a user. No
matter which approach is taken (the original Long scheme
or the Kim interpreted scheme or our interpreted scheme)
all ki and vi are reshared out because of the dismissal of

Γn. However if Γn provides the information g
f(n)
ID+x to a

set of t − 1 participants, for example {Γ1,Γ2, . . . ,Γt−1},
let us call this set ADV, then ADV will be able to de-
crypt. This is because the participants in ADV can use

their old shares k1,old, . . . , kt−1,old
1. If Γn sends g

f(n)
ID0+x

to this group ADV, then ADV can decrypt the message
and ADV contains only t−1 authentic members, but this
violates that no threshold less than t authentic members
can decrypt. Note that any dismissed party can give their
share to other members, allowing an unauthorized set to
decrypt (below threshold). In fact it is possible after t−1
parties are dismissed that a single party could be given
all shares and thus they could decrypt by themselves.

4 Our Protocol

4.1 The Protocol

Our goal is to create an efficient dynamic threshold
scheme based on bilinear pairings.

Setup. Two multiplicative groups G and G1 of order
prime p are selected such that there exist a bilin-
ear map e : G × G −→ G1. The TTP selects g ∈ G
where g 6= 0.

Key Generation. The TTP selects a secret key denoted
by y and compute the corresponding public key Y =
gy. The TTP selects two temporal keys x1 and x2

and computes V = gx2 and W = gx2x1 . The values
Y, V and W are posted on a publicly available web
site, such as a bulletin board.

Each server Γi selects a secret key wi and computes
their public key Pi = gwi . They publish their public
key. The TTP will keep a local copy of the server’s
public keys.

1Though the bulletin board has been updated with new shares
the shareholders may have prestored the older shares.

Share Generation. The TTP selects a random polyno-
mial f(z) =

∑t−1
i=1 bi · zi of degree t − 1 such that

f(0) = x−1
2 y mod p, i. e. b0 = x−1

2 · y. We assume
initially there are n decryption servers {Γ1, . . . ,Γn}
then the TTP computes the share ki = f(i) ·P yi and
vi = e(V, g)f(i). The TTP publishes (ki, vi) on bul-
letin board.

User Registration of Their Identity ID. Suppose a
user wishes to register their identity ID0 with the
TTP. They interact with the TTP in a communica-
tion that establishes that ID0 is their identity (this
communication to achieve this is outside our scope).
Once this is established the TTP publishes ZID0

where ZID0
= g

1
ID0+x1 onto the public site (bulletin

board).

Encryption of Message M to User with Identity
ID0. Suppose Alice would like to transmit message
M to Bob privately. She gets Bob’s identification,
denoted by ID0, as well as the TTP’s public key
Y and the two temporal key X. She then encrypts
message M with public key ID0, by picking up a
random S ∈ Z∗p and computes the ciphertext C by

C = (WS · V S·ID0 , e(g, Y )S ·M) = (A,B).

Generation of Decryption Server Γi Decryption
Shares. User Bob with identity ID0 requests to the
decryption servers that the ciphertext C = (A,B)
be decrypted. Assuming t servers respond, say
{Γi1 , . . . ,Γit}, each of these servers will compute a
decryption share based on the ciphertext and their
share of the decryption key. For each ir, server Γir
computes the decryption share δir where δir satisfies

δir = e(Akir ·Y
−wir , ZID0

)

= e(Af(ir), ZID0
)

= e(g(x2x1S+x2SID0)f(ir), g
1

ID0+x1 )

= e(g, g)Sx2·f(ir).

Here wir is the server Γir ’s secret key.

Decryption. The combiner using the decryption shares
δi1 , . . . , δit from Γi1 , . . . ,Γit , respectively computes
∆ by

∆ =
∏t
r=1 δ

∏t
v=1,v 6=r

−iv
ir−iv

ir

=
∏t
r=1(e(g, g)Sx2·f(ir))

∏t
v=1,v 6=r

−iv
ir−iv

= e(g, g)
∑t

r=1 Sx2·f(ir)
∏t

v=1,v 6=r
−iv

ir−iv

= e(g, g)x2x
−1
2 yS

= e(g, g)yS .

(3)

The message M can be computed by M = B ·∆−1.

Verifiability.
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1) Each user ID can verify their public key by com-
puting e(V IDW,ZID) and comparing it with
e(g, V ).

2) Each server Γi verifies ki by computing

e(V, g)ki·Y
−wi

and comparing it to vi =
e(V, g)f(i).

3) Any server Γi can select t values vj1 , . . . , vjt and
compute

t∏
r=1

v
∏t

w=1,w 6=r
−iw

ir−iw
ir

=

t∏
r=1

(e(V, g)f(ir))
∏t

w=1,w 6=r
−iw

ir−iw

= e(V, g)
∑t

r=1 f(ir)
∏t

w=1,w 6=r
−iw

ir−iw

= e(g, g)y

= e(g, Y ).

TTP Adds New Decryption Server. Assume
that the TTP needs to add server Γn+1. The
TTP computes kn+1 = f(n + 1) · P yn+1 and

vn+1 = e(V, g)f(n+1).

TTP Removes a Decryption Server. Without loss
of generality suppose the TTP needs to remove (or
deactivate) server Γn, thus producing a t out of n−1
threshold decryption service 2. First the TTP selects
a new x2,new ∈ Z∗p and computes Vnew = gx2,new and
Wnew = gx1x2,new . Then for i = 1, . . . , n−1 the TTP
computes ki,new = f(i) · P yi and vi,new = e(V, g)f(i).

Server Γi Refreshes Their Secret Key. Suppose
server Γi contacts the TTP and notifies them they
wish to refresh the secret key. The server sends
the TTP Pi,new. The TTP then selects a R ∈ Z∗p
and sends the challenge gR to Γi. The server sends
gR·DLOG(Pi,new) to the TTP. Here DLOG(Pi,new)
is a u such that gu = Pi,new. The TTP compares
e(g, gR·DLOG(Pi,new)) to e(gR, Pi,new). If they are
equal then the TTP updates ki. Otherwise the sever
Γi has lied and the TTP may punish (even remove
the server).

TTP Removes a User with ID0. Suppose that the
TTP must dismiss user with identity ID0. The TTP
selects x1,new ∈ Z∗p and computes Wnew = gx2x1,new

The TTP removes g
1

ID0+x1 from the bulletin board.
For all users ID with ID 6= ID0 the TTP computes

g
1

ID+x1,new and places it on the bulletin board.

4.2 Security Analysis

We assume the following security assumptions: Both the
DLOG and CDH problems are hard in the presence in of

2We characterize the n− 1 servers as active servers.

a bilinear map. We assume that a threshold many servers
act correctly. That is, if we have a t out of n threshold
scheme then any t or many serves act correctly. If t or
more servers are malicious then since they possess the
threshold we assume that their actions are correct. Once
a threshold is reached we cannot claim protection.

Theorem 1. Given a coalition of less than t active
servers, then the coalition cannot decrypt any validly con-
structed (using current public values) ciphertext C.

Proof. Let ρ < t and let Γ1,Γ, . . . ,Γρ denote a set of ρ
many active servers, a coalition which attempts to decrypt
the server. Because shares have been distributed in a t
out of n manner the coalition cannot decrypt the cipher-
text without additional information beyond the shares
distributed to the ρ servers. This additional information
must come from servers who are no longer active (due to
the threshold requirement). Let Φ1, . . . ,Φω denote deac-
tivated servers who contribute (possibly actively or pas-
sively) with the coalition Γ1,Γ, . . . ,Γρ. Then ω + ρ ≥ t.
Recall ciphertext C = (WS

curr · V S·ID0
curr , e(g, Y )S ·M) =

(A,B) where S is random, Wcurr = gx1x2,curr and Vcurr =
gx2,curr .

As Γ1,Γ, . . . ,Γρ are active servers, they have shares
kΓj ,curr and vΓj ,curr constructed for use with Wcurr and
Vcurr. Now Φ1, . . . ,Φω are deactivated servers, they may
possess “dated shares” (perhaps downloading from bul-
letin board earlier). They possess shares kΦi,timei and
vΦi,timei constructed for use at time timei where Wtimei

and Vtimei , note that timei < curr. However the shares
kΦi,timei and vΦi,timei do not work with shares kΓj ,curr

and vΓj ,curr because Wcurr 6= Wtimei and Vcurr 6= Vtimei
for all i. Therefore the only alternative is that at least
t members from {Γ1,Γ, . . . ,Γρ,Φ1, . . . ,Φω} share some
time time0 such that each of these t members possess
kΓj ,time0 and vΓj ,time0 or kΦi,time0 and vΦi,time0 , respec-
tively. Then for server i′, this server i′ will be able to
compute e(g, g)Sx2,time0

ftime0
(i′) where the constant coef-

ficient of ftime0(x) is x−1
2,time0

y. Now when all t servers
apply their δi′ into Equation (3), the corresponding ∆

satisfies ∆ = e(g, g)x2,currx
−1
2,time0

yS 6= e(g, g)yS .
Therefore ρ many active servers, with ρ < t, cannot

decrypt the ciphertext.

Theorem 2. If active server Γi refreshes their public key
Pi,curr then Γi knows the discrete log of Pi,curr.

Proof. This follows directly from the refresh key protocol
and the fact that the DLOG problem is “hard”.

4.3 Efficiency of Our Schemes

The the cost of executing the refresh properties are (in
big O notation) is described in Table 2.

Here in Table 2, the value m represents the number of
users and n represents the number of servers. In most ap-
plications one should expect that m is significantly larger
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Table 2: Computational cost
operation computational computational

cost of cost of
our scheme the Long scheme

TTP refreshes
secret key O(n) O(mn)
TTP adds new
decryption server O(1) O(m)
TTP removes a
decryption server O(n) O(mn)
server Γi refreshes
their secret key O(1) O(m)
TTP removes a
user with ID0 O(m) not discussed

than n. The cost is only for computational purposes there
will also be a communication cost, although one may ex-
pect the communication cost between the TTP and the
bulletin board is significantly less than the communica-
tion cost between the TTP and a server.

The above table demonstrates that our scheme is sig-
nificantly more efficient than the existing schemes. Fur-
thermore we have added a new service the dismissal of a
user.

5 Conclusion

In this paper we have discussed dynamic threshold de-
cryption scheme using the bilinear pairing. We have ana-
lyzed previous scheme noting their weaknesses, in par-
ticular their inefficiency. We have constructed a new
scheme that is significantly more efficient than the pre-
vious schemes.

These schemes all rely on the use of a bulletin board to
achieve the necessary dynamic properties. It remains an
open problem if a dynamic public key scheme can be con-
structed without the use of a bulletin board. It remains
an open problem if one can construct a dynamic scheme
which uses bilinear pairing that allows the dismissal of
users in O(1) computations.
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