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Abstract

Sequence comparison has been widely used in many engi-
neering systems, such as fuzzy keyword search, plagiarism
detection, and comparison of gene sequences. However,
when the length of the string is extraordinarily long, like
the DNA sequence that contains millions of nucleotides,
sequence comparison becomes an intractable work, espe-
cially when the DNA database is big and the computa-
tion resources are limited. Although the generic com-
putation delegation schemes provide a theoretically fea-
sible solution to this problem, it suffers from severe in-
efficiency when we directly substitute the general func-
tion by the sequence comparison function. In this pa-
per, we focus on refereed computation delegation of se-
quence comparison and present the refereed computation
delegation scheme of sequence comparison using multiple
servers. In our scheme, the user can detect the dishon-
est servers and get the correct answer as long as there is
one honest server. The direct application of our scheme is
DNA sequence comparison of big gene database in medi-
cal system. Meanwhile, our scheme satisfies the security
requirement of sequence privacy against the malicious ad-
versaries. Moreover, since neither the fully homomorphic
encryption nor the complicated proof systems are used
for the problem generation and result verification, our so-
lution clearly outperforms the existing schemes in terms
of efficiency. The computation complexity of the user is
reduced from O(mn) to O(log2(mn)), where m,n are the
length of the sequences.

Keywords: Privacy, refereed computation delegation, se-
quence comparison

1 Introduction

Sequence comparison can be viewed as the string editing
problem, i.e., computing the distance between two strings.

The edit distance is one of the most widely used notions
of similarity: it is the least-cost operation set of dele-
tions, insertions and substitutions required to transform
one string into another. Sequence comparison is widely
used in many engineering systems, such as fuzzy keyword
search [11, 28], plagiarism detection, and comparison of
gene sequences [9]. However, the computation complex-
ity of sequence comparison is O(mn), where m and n are
the respective length of the strings. When the length of
the string is extraordinarily long, like the DNA sequence
that contains millions of nucleotides, sequence compari-
son becomes an intractable work, especially for resource
limited devices.

Generally, such computation expensive tasks can de-
ploy the so-called “computation delegation” to accom-
plish the tasks efficiently. Computation delegation [1, 15,
16] considers a scenario where one party, the delegator
who is computationally weak, wishes to delegate the com-
putation of a function f on various inputs x1, x2, · · · , xk
to one or more servers who are computationally strong.
However, the servers are not fully trusted, the basic secu-
rity requirements of computation delegation are verifiabil-
ity and efficiency, which require that the delegator should
be able to verify the correctness of the values returned by
the worker. Moreover, the verification process should re-
quire substantially less computation efforts than comput-
ing f(x) from scratch. In addition, an important property
of verifiable computation is privacy, which enables the del-
egator to hide some private information from the worker.
As we know, individual DNA and protein sequences are
highly sensitive and vulnerable to re-identification even
when anonymized. Therefore, the outsourcing technique
should enable the desired computation without revealing
any information about the sequences to the parties carry-
ing out the computation.

However, if we trivially apply the traditional compu-
tation delegation scheme to sequence comparison, the re-
sulting scheme becomes severely inefficient. The reason
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is that most of the previous works are based on complex
cryptographic tools, such as fully homomorphic encryp-
tion [17] and proof systems [6, 19].

In [4], Atallah et al. proposed a secure outsourcing
scheme of sequence comparison. However, the protocol
was only proved to be privacy secure in semi-honest ad-
versary model, and the most significant security require-
ment of verifiability was not satisfied. Apart from [4],
most of the previous works related to sequence compari-
son have been done in the framework of two-party com-
putation model [10], in which two parties with private
inputs wish to jointly compute some function of their in-
puts while preserving certain properties like privacy and
correctness. These works are quite related to private pat-
tern matching, which is out of the scope of this paper.
Our contributions. In this paper, we present a new
computation delegation model, which is called refereed
computation delegation of sequence comparison, using
multiple servers. Our contributions are two-fold:

• The user can detect the dishonest servers and get the
correct answer as long as there is at least one honest
server.

• Our scheme satisfies the security requirement of in-
put/output privacy against the malicious servers.

In multi-server model, one trivial method to realize the
verifiability is: the user picks N different servers and asks
each of those to execute his programme and return the
output. Now, the user takes the plurality value of those
answers to be the correct answer. As long as there is
a majority of honest servers, the user gets the correct
answer. The main drawback of this approach is the need
for an honest majority of servers.

To get better performance and abate the assumption
of a plurality of honest servers, we propose a new ap-
proach which is called refereed computation delegation
of sequence comparison based on Canetti’s computation
delegation scheme [12]. In our scheme, the user runs like
a referee who supervises the servers. The servers do the
computation and return the result together with a com-
mitment of the result back to the user. In the verification
process, when the user detects inconsistency between the
returned results, the process of consistency proof and ver-
ification are activated. After that, the user can get the
correct result by performing only a single step of the com-
putation of sequence comparison. Specially, our scheme
is implementable suppose that there are only two servers,
one of which is honest.

As for efficiency, since neither the fully homomorphic
encryption nor the complicated proof systems are used for
the problem generation and result verification, our solu-
tion clearly outperforms the existing schemes in terms of
efficiency. In detail, the computation load of a server is
O(cmn), and the computation complexity of the user is
reduced from O(mn) to O(log2(mn)), where m,n are the
length of the sequences and c is a constant.
Related work. Atallah et al. proposed a secure out-
sourcing scheme of sequence comparison in [4] using two

non-collusion servers. However, the security model of the
protocol is semi-honest and the security requirement of
verifiability was not mentioned. In [14,24,38], the authors
studied the sequence comparison in the framework of two-
party computation model, in which two parties with pri-
vate inputs wish to jointly compute some function of their
inputs while preserving the security requirements like pri-
vacy and correctness. These works are quite related to
private pattern matching [14, 21, 22, 39], where party P1

holds a pattern and party P2 holds a text. The goal of P1

is to learn where the pattern appears in the text, without
revealing it to P2 and learning anything else about P2’s
text.

Computation delegation has received widespread at-
tention due to the rise of cloud computing [13,37], where
businesses buy computing power from a service, rather
than purchasing and maintaining their own computing re-
sources. Another motivation of computation delegation is
the proliferation of mobile devices, such as netbooks and
smart phones. Due to the computation and storage limi-
tations, sometimes it is desirable to off-load heavy compu-
tations, such as cryptographic operations, or photo ma-
nipulation, to the cloud server. However, the cloud server
is not fully trusted and sometimes the applications out-
sourced to the cloud are so critical that it is imperative
to keep the original data private and rule out accidental
errors during the computation.

Previous research on computation delegation can be
classified into two categories: 1) the generic compu-
tation delegation [1, 15, 16]: it can be applied for ar-
bitrary functions; 2) the concrete computation delega-
tion [2, 5, 7, 23, 25, 29, 30]: they are designed for some
specific functions, such as polynomial evaluation and lin-
ear algebra. In the generic model, most of the previous
works are based on fully homomorphic encryption [17]
and proof systems, such as interactive proofs [6, 19],
efficient arguments based on probabilistically checkable
proofs (PCP) [26, 27], CS proofs [32]and the muggles
proofs in [18]. The complex cryptographic tools used
in the generic model result in inefficiency when applying
these protocols to some concrete functions.

For the computation delegation of specific functions,
plenty of research works have been proposed. Benjamin
and Atallah [8] addressed the problem of secure out-
sourcing for widely applicable linear algebra computa-
tions. However, the proposed protocols required the ex-
pensive operations of homomorphic encryptions. Atallah
and Frikken [1] further studied this problem and gave im-
proved protocols based on the so-called weak secret hid-
ing assumption. Benabbas et al. [7] presented the first
practical computation delegation scheme for high degree
polynomial functions based on the approach of [16]. In
2011, Green et al. [20] proposed new methods for effi-
ciently and securely outsourcing decryption of attribute-
based encryption (ABE) ciphertexts. Based on this work,
Parno et al. [35] showed a construction of a multi-function
computation delegation scheme.

Organization. The paper is organized as follows. In
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Section 2, we give a brief description of the preliminaries
which will be used in the following sections, In Section 3,
we present the system model and security definition of
our scheme. The construction of our scheme is presented
in Section 4. In Section 5, we give the efficiency analysis
and security proof of our scheme. Finally, we conclude in
Section 6.

2 Preliminaries and Tools

2.1 Edit Distance

We now precisely give the definition of edit distance [40].
Consider a finite alphabet set Σ whose elements will be
used to construct strings. Let CI , CD, CS be finite sets
whose elements are finite integers. And let the function
I : Σ→ CI be insertion cost function, i.e., I(a) is the cost
of inserting an element a ∈ Σ to a given string. Similarly,
define the deletion cost function as D : Σ → CD, i.e.,
D(a) is the cost of deleting an element a ∈ Σ from a
given string. And define the substitution cost function as
S : Σ × Σ → CS , i.e., S(a, b) is the cost of replacing an
element a ∈ Σ in a given string by an element b ∈ Σ.

If we let λ be a string of length n, λ = λ1, λ2, · · · , λn,
and µ be a string of length m, µ = µ1, µ2, · · · , µm, both
are strings over alphabet set Σ. As mentioned above,
there are three allowed edit operations to be operated on
λ, insertion of an element, deletion of an element and
substitution of one element by another. Each sequence of
operations that transforms λ into µ has an aggregate cost
associated with it, which is equal to the sum of the costs
of the operations in it. The least-cost of such sequences
is the edit distance.

We now give a brief review of the standard dynamic
programming for computing edit distance [40]. Let
M(i, j) (0 ≤ i ≤ n, 0 ≤ j ≤ m)be the minimum cost
of transforming the prefix of λ of length i into the prefix
of µ of length j, i.e., of transforming λ1, λ2, · · · , λi into
µ1, µ2, · · · , µj . Then M(0, 0) = 0, M(0, j) =

∑j
k=0 I(µk)

for 1 ≤ j ≤ m, and M(i, 0) =
∑i

k=0D(λk), for 0 ≤ i ≤ n.
For positive i and j, we have

M(i, j) = min

 M(i− 1, j − 1) + S(λi, µj)
M(i− 1, j) +D(λi)
M(i, j − 1) + I(µj)

for all 1 ≤ i ≤ n, 1 ≤ j ≤ m. Hence, M(i, j) can be
evaluated row by row or column by column in O(mn).
Observe that, of all the entries of the M -matrix, only the
three entries M(i− 1, j − 1), M(i− 1, j) and M(i, j − 1)
are involved in the computation of the final value M(i, j).

2.2 Merkle Hash Tree

Merkel Hash Tree (MHT) [31] is a common primitive that
allows one to hash a long string of n characters in a way
that the hash can later be used to reveal any part of
the string and supply a short proof of consistency. The

construction of MHT is based on the collision-resistant
hash function, and given a collision-resistant hash func-
tion H and string str of length n, the tree has n leaf
nodes where leaf node i has the value of H(str[i]), str[i]
is the i-th character of str. The next level has the values
of H(H(str[i])||H(str[i+ 1])), for i = 1, 3, · · · , n− 1, and
so on for the other levels. The proof of consistency for
character i consists of H(str[i]) and all the sibling hash
values of the nodes along the path from the root to the
leaf node H(str[i]).

Given a MHT of a string str, denote by MHroot(str)
the value of the root, by MHproof (str, i) the
proof of consistency for the i-th character, and by
V erMHP (root, i, stri, p) the verification function that
given a claimed proof p = MHproof (str, i)) outputs true
if p is valid and false otherwise. Note that the size of the
proof is log n and the complexity of verification function
is O(log n).

3 System Model and Security
Definitions

3.1 System Model

A refereed computation delegation RCD [12] for a func-
tion f is a protocol between a user (or referee) R and
N servers S1, S2, · · · , SN . The difference between tradi-
tional computation delegation model and RCD is that the
user acts like a referee in the delegation procedure. The
user is able to detect the dishonest server when there is
a dispute. The user and the servers receive the input x.
The servers compute the function in parallel and claim
different result of the computation of f(x), and the user
should be able to detect the dishonest servers and deter-
mine the correct f(x) with overwhelming probability as
long as there is at least one honest server. Formally, for
any input x and for all i ∈ {1, · · · , N}, if Si is honest, then
for any potentially dishonest S∗1 , · · · , S∗i−1, S∗i+1, · · · , S∗N ,
the output of R is f(x) with probability at least 1 − ε,
where ε is negligible. An optional security requirement of
RCD is I/O privacy. In the following subsection, we will
give a formal definitions of the security requirements.

Firstly, we retrospect the traditional verifiable compu-
tation model. In detail, the traditional verifiable compu-
tation scheme consists of four algorithms defined below
(KeyGen,ProbGen, Compute, Verify):

• (pk, sk)← KeyGen(f,λ): Based on the security param-
eter λ, the randomized key generation algorithm gen-
erates a public key pk that encodes the target func-
tion f(·), which is used by the cloud server to com-
pute f(·). It also computes a matching secret key sk,
which is kept secret by the user U .

• (σx, τx)← ProbGensk(x): The problem generation al-
gorithm uses the secret key sk to encode the input x
as a public value σx, which is given to the cloud server
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to compute with, and a secret value τx, which is kept
private by the user U .

• σy ← Computepk(σx): Using the user’s public key pk
and the encoded input σx, the server computes and
outputs an encoded version of the result y = f(x).

• y ∨ ⊥ ← Verifysk(σy, τx): Using the secret key sk
and the secret ”decoding” value τx, the verification
algorithm converts the cloud server’s encoded output
into the output of y = f(x) or ⊥ indicating that σy
does not represent the valid output of f(·) on x.

Now we give a formal description of refereed compu-
tation delegation. In detail, a refereed computation dele-
gation scheme RCD=(KeyGen, ProbGen, Compute, Verify)
consists of four algorithms as defined below, which is the
same as that in the verifiable computation [7, 16], except
that now N servers receive the same input from the user
and return the results to the user.

• (pk, sk)← KeyGen(f,κ): Based on the security param-
eter κ, the randomized key generation algorithm gen-
erates a public key/secret key pair pk/sk for the func-
tion f(·). The public key is provided to the servers,
while the secret key is kept private by the user.

• (σx, τx)← ProbGensk(x): The problem generation al-
gorithm uses the secret key sk to encode the input x
as a public value σx, which is given to all the cloud
servers to compute with, and a secret value τx, which
is kept private by the user U .

• σy ← ComputePK(σx): Using the user’s public key
pk and the encoded input σx, the servers compute
and output an encoded version of the result y = f(x),
respectively.

• y∪⊥ ← Verifysk(σy): Using the secret key sk and the
secret ”decoding” value τx, the verification algorithm
converts the cloud servers’ encoded output y∗. Note
that y∗ 6= y if the server is dishonest. Then U verifies
the correctness of y∗ and obtains the correct result as
long as there is at least one honest server.

The basic efficiency requirement of a RCD scheme is that
the time to encode the input and verify the output must
be smaller than the time to compute the function from
scratch, and the complexity of the servers is polynomial
in the complexity of evaluating f . Formally, A RCD can
be outsourced if it permits efficient problem generation
and verification. This implies that for any input x and
output σy, the time required for ProbGensk(x) plus the
time required for Verifysk(τx, σy) is smaller than T , where
T is the time to compute the function f(x) from scratch.

3.2 Security Requirements

A refereed computation delegation scheme should be both
correct and secure. Intuitively, a RCD scheme is correct if
the user always outputs the correct result f(x) as long as

there is at least one honest cloud server. In the following
experiments, A denotes the set of malicious cloud servers
who are allowed to collude with each other, of which the
size is at most N−1. Note that in the refereed delegation
of computation, all the servers receive the same input,
therefore, the oracle answer for an adversary set A just
contains one answer. And the members of the adversary
set A will output the same result in order to improve the
probability of successful attack. Thus, the adversary set
A can be viewed as one party.

Experiment ExpC
A[RCD, f, κ]

(pk, sk)← KeyGen(f, κ);

For i = 1, · · · , l = poly(κ)

xi ← A(x1, σx1
, β1, · · · , xi−1, σxi−1

, βi−1);

(σxi , τxi)← ProbGensk(xi);

σyi
← A(pk, x1, σx1

, β1, · · · , xi−1, σxi−1
, βxi−1

, σxi
);

βi = Verifysk(τxi
, σyi

);

x← A(pk, x1, σx1
, β1, · · · , xl, σxl

, βl)

(σx, τx)← ProbGensk(x);

σy ← A(pk, x1, σx1
, β1, · · · , xl, σxl

, βl, σx);

ŷ ← Verifysk(τx, σy);

ŷ 6= f(x), output 1, else 0;

In the above experiment, the malicious servers are
given oracle access to generate the encoding of multiple
problem instances, and also oracle access to the result of
the verification algorithm on arbitrary strings on those
instances. The adversary succeeds if they convince the
user to output wrong result for a given input value. Our
goal is to make the adversary succeed only with negligible
probability.

Correctness. For a refereed computation delegation
scheme RCD, we define the advantage of a set of adver-
saries A in the experiment above as:

AdvA(RCD, f, κ) = Pr[ExpC
A[RCD, f, κ] = 1]

A refereed computation delegation schemeRCD is correct
if for any function f ∈ F , and for any adversary set A
whose members run in probabilistic polynomial time,

AdvA(RCD, f, κ) ≤ neg(κ)

where neg(·) is a negligible function of its input.
While the basic security requirements of correctness

protects the integrity of RCD, it is also desirable to pro-
tect the input and output of the refereed computation
delegation scheme against the malicious servers. Below,
we define the input/output privacy based on a typical
indistinguisability argument that guarantees that no in-
formation about the inputs/outputs is leaked.

Intuitively, a refereed verifiable computation scheme
is input private when the public outputs of the problem
generation algorithm ProbGen over two different inputs
are indistinguishable. In the following experiment, the
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adversaries are allowed to request the encoding of any
input they desires. The PubProbGen returns the public
parameter σx to the adversary.

Experiment ExpIPriv
A [RCD, f, κ]

(pk, sk)←KeyGen(f, κ)

(x0, x1)← APubProbGen(·)(pk)

(σ0, τ0)← ProbGensk(x0)

(σ1, τ1)← ProbGensk(x1)

b←R {0, 1}
b̂← APubProbGensk(·)(pk, x0, x1, σb)
If b̂ = b, output1, else 0.

Input Privacy. For a refereed delegation of computation
scheme, we define the advantage of an adversary set A in
the experiment above as :

AdvIPriv
A (RCD, f, κ) = |Pr[ExpIPriv

A [RCD, f, κ] = 1]−1

2
|.

A refereed computation delegation scheme is input pri-
vate for a function f , if for any adversary set A whose
members run in probabilistic polynomial time,

AdvIPriv
A (RCD, f, κ) ≤ neg(κ)

where neg() is a negligible function of its input.
A similar definition can be made for output privacy.

We consider the following the experiment. During the
process, the adversaries are allowed to request the output
of the algorithm y ∪⊥ ← Verify. In the challenged phase,
the adversary has to submit two encoded outputs σ0 and
σ1. After the adversaries have chosen the challenged out-
put, they can continue the query process. The experi-
ment ideally simulates the execution process of the refer-
eed computation delegation scheme. The oracle OVerify
returns the output of the algorithm y∪⊥ ← Verify to the
adversaries.

Experiment ExpOPriv
A [RCD, f, λ]

(pk, sk)←KeyGen(f, λ)

(σy0 , σy1)← AOVerify
PubProbGen(pk, f, λ)

y0 ← Verify(σy0 , f, λ)

y1 ← Verify(σy1
, f, λ)

b← {0, 1}
b̂← AOVerify

PubProbGen(f, pk, yb)

if b̂ = b, output 1, else 0.

Output Privacy. For a refereed computation delegation
scheme RCD, we define the advantage of an adversary set
A in the experiment above as:

AdvOpriv
A (RCD, f, κ) = |Pr[ExpOpriv

A [RCD, f, κ] = 1− 1

2
|

A refereed delegation of computation scheme is output
private if for the legal encoded output set σ, and for any

adversary set A whose members run in probabilistic poly-
nomial time,

AdvOpriv
A (RCD, f, κ) ≤ neg(κ)

where neg() is a negligible function of its input.

4 Construction

Main Idea. In the following sections, we only discuss
the case where there are two pairs of servers (W11,W12)
and (W21,W22), of which one pair of servers is honest. In
the following subsections, we will explain how to extend
it to N server model. Suppose the user has two sequences
λ and µ over some finite alphabet Σ = {0, · · · , σ − 1}
and he wants to delegate the sequence comparison of λ
and µ to the cloud servers. We assume each pair of cloud
servers cooperatively execute the protocol, but they do
not collude with each other. The reason why we use a
pair of cloud servers as a server unit will be explained in
the following sections.

As stated in Figure 1., the user starts by splitting the
sequence λ into λ′ and λ′′ such that λ′ and λ′′ are over
the same alphabet Σ = {0, 1, · · · , σ−1} and λi = λ′i +λ′′i
for all 1 ≤ i ≤ n. To split λ, the user can first generate a
random sequence λ′ over the alphabet Σ of length n, and
then set λ′′i = λi − λ′i mod σ, for all 1 ≤ i ≤ n. Similarly,
the user splits µ into µ′ and µ′′ such that µj = µ′j + µ′′j ,
for all 1 ≤ j ≤ m. Then, λ′, µ′ are sent to W11 and
λ′′, µ′′ are sent to W12. The servers W11, W12 collabora-
tively compute the the edit distance M(n,m) of λ and µ
in an additively split fashion. That is, W11 and W12 each
maintain a matrix M (1)′ and M (1)′′ such that M(i, j) =
M (1)′(i, j) +M (1)′′(i, j) for 1 ≤ i ≤ n, 1 ≤ j ≤ m. In ad-
dition, W11 and W12 each construct the Merkle Hash Tree
for all the values of the matrixes M (1)′ and M (1)′′ , and
return the result M (1)′(n,m), M (1)′′(n,m) together with
the value MHroot(M

(1′)(n,m)), MHroot(M
(1′′)(n,m)),

which is the root value of the Merkle Hash Tree for their
respective result. The second pair of servers (W21,W22)
do the same as described above. Thereafter, the user runs
the consistency proof with (W11,W12), (W21,W22), and
outputs the correct result if at least one pair of servers
are honest.

As described in Section 2, a refereed computation dele-
gation of sequence comparison scheme consists of four al-
gorithms (KeyGen, ProbGen, Compute, Verify), which will
be formally defined below. The framework of our scheme
is presented in Figure. 1.

• (pk, sk)← KeyGen(f,κ): Based on the security pa-
rameter κ, the randomized key generation algo-
rithm generates the additively homomorphic encryp-
tion [?, 33, 34]key pair (pk, sk) for every cloud server
and randomly selects a hash function H.

• (σx, τx)← ProbGen(x): On private input x = (λ, µ),
the user splits the sequence λ into λ′ and λ′′, such
that λ = λ′ + λ′′ mod σ, and similarly splits
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Figure 1: Framework of refereed computation delegation of private sequence comparison

µ into µ′ and µ′′ such that µ = µ′ + µ′′ mod
σ. Meanwhile, U generates two vectors of random
numbers, a = (a1, · · · , an) and b = (b1, · · · , bm).
Then U computes two vectors c = (c1, · · · , cn) and

d = (d1, · · · , dm) where ci =
∑i

k=1D(λk) − ai,

for 1 ≤ i ≤ n, and dj =
∑j

k=1 I(µk) − bj , for
1 ≤ j ≤ m. The outputs of the algorithm is set
to be (σx, τx)=((λ′, λ′′, µ′, µ′′, a, b, c, d), (λ, µ)). Then
U sends λ′, µ′, b, c to Wk1, and sends λ′′, µ′′, a, d,
to Wk2, k = 1, 2.

• σy ← Compute(σx): As described in Figure 2.
(Wk1,Wk2), k = 1, 2, collaboratively compute
M(i, j) for all 1 ≤ i ≤ n, 1 ≤ j ≤ m. Note that Wk1

owns M (k)(i, j)′ and Wk2 owns M (k)(i, j)′′, such that
M(i, j) = M (k)(i, j)′ +M (k)(i, j)′′.

The protocol specifications are described as follows:

1) Wk1 and Wk2 first initialize their respec-
tive matrix, and then cooperatively compute
(u(k)

′
, v(k)

′
, w(k)′) and (u(k)

′′
, v(k)

′′
, w(k)′′).

2) After the minimum finding protocol [3], Wk1

gets M (k)′(i, j) and Wk2 gets M (k)′′(i, j).

3) Then Wk1 and Wk2 each construct the
Merkel Hash Tree for the result matri-
ces M (k)′ and M (k)′′ respectively and
return the result and root value to the
user. Thus, the output σy=(M (k)′(n,m),

MHroot(M
(k)′),M (k)′′(n,m),MHroot(M

(k)′′)),
k = 1, 2.

Note that γ′ and γ′′ are computed through the fol-
lowing split-S protocol.

1) Wk1 generates a σ×σ table Ŝ with Ŝ(r, l) equals
to Epkk1

(S(r+λ′imod σ, l)) and sends it to Wk2.

2) For 1 ≤ j ≤ m, Wk2 extracts the λ′′i -th

row of Ŝ as a vector v, vl = Epkk1
(S(λ′′i +

λ′imod σ, l)) = Epkk1
(S(λi, l)). Then Wk2 cir-

cularly left-shift the vector v µ′′j positions and
updates v with a random number γ′′, as a re-
sult vl = Epkk1

(S(λi, µ
′′
j + l) ∗ Epkk1

(−γ′′)) =
Epkk1

(S(λi, µ
′′
j + l)− γ′′).

3) Wk1 uses 1-out-of-m oblivious transfer proto-
col [36]to get the µ′j-th item of v and decrypts
it as γ′ = S(λi, µ

′′
j + µ′j)− γ′′ = S(λi, µj)− γ′′.

• y ∪ ⊥ ← Verifysk(σy): U first verifies whether
M (1)(n,m)′ + M (1)(n,m)′′ = M (2)(n,m)′ +
M (2)(n,m)′′ or not. In case the equation holds, the
answer is correct. Else, the user continues to a binary
search as described as follows.

Remark. Assume that the split edit distance matrix
is reordered in row-major principle as a vector m̂ when
the cloud servers construct the Merkle Hash Tree for
them. We use variable ng to denote the good posi-

tions which means that m̂(1)′(ng)+m̂(1)′′(ng)=m̂(2)′(ng)+

m̂(2)′′(ng), and use variable nb to denote the bad posi-
tions. When the binary search ends, U ask W11 and
W12 for the consistency proof at the positions ng and
nb. If the verification process returns true, U outputs
M(n,m) = M (1)(n,m)′ + M (1)(n,m)′′. Otherwise, he
outputs M(n,m) = M (2)(n,m)′+M (2)(n,m)′′. The spec-
ifications are presented as follows:

1) U initializes position variables as ng = 1, nb = mn
and asks Wk1 and Wk2, k = 1, 2, for the mid-th value
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For k = 1, 2

Initialization:

Wk1 sets M (k)′(0, j) = bj , for 1 ≤ j ≤ m, and sets M (k)′(i, 0) = ci, for 1 ≤ i ≤ n.

Wk2 sets M (k)′′(0, j) = dj , for 1 ≤ j ≤ m, and sets M (k)′′(i, 0) = ai, or 1 ≤ i ≤ n.

For 1 ≤ i ≤ n, 1 ≤ j ≤ m
(1). Wk1 computes u(k)

′
= M (k)′(i− 1, j) +M (k)′(i, 0)−M (k)′(i− 1, 0)

= M (k)′(i− 1, j) +D(λi)− ai + ai−1.

Wk2 computes u(k)
′′

= M (k)′′(i− 1, j) +M (k)′′(i, 0)−M (k)′′(i− 1, 0)

= M (k)′′(i− 1, j) + ai − ai−1.

u(k)
′
+ u(k)

′′
= M (k)′(i− 1, j) +M (k)′′(i− 1, j) = M(i− 1, j) +D(λi).

(2). Wk1 computes v(k)
′

= M (k)′(i, j − 1) +M (k)′(0, j)−M (k)′(0, j − 1)

= M (k)′(i, j − 1) + bj − bj−1.
Wk2 computes v(k)

′′
= M (k)′′(i, j − 1) +M (k)′′(0, j)−M (k)′′(0, j − 1)

= M (k)′′(i, j − 1)− bj + bj−1 + I(µj).

v(k)
′
+ v(k)

′′
= M (k)′(i, j − 1) +M (k)′′(i, j − 1) = M(i, j − 1) + I(µj).

(3). Wk1 sets w(k)′ = M (k)′(i− 1, j − 1) + γ′.

Wk2 sets w(k)′′ = M (k)′′(i− 1, j − 1) + γ′′.

w(k)′ + w(k)′′ = M(i− 1, j − 1) + S(λi, µj)

(4). After the implementation of minimum finding protocol, Wk1 and Wk2 get

M (k)′(i, j), M (k)′′(i,j) respectively, such that

M (k)′(i, j) +M (k)′′(i, j) = min

 M(i− 1, j − 1) + S(λi, µj)
M(i− 1, j) +D(λi)
M(i, j − 1) + I(µi)



Figure 2: Specifications for the algorithm Compute

of the result vector and the consistency proof of the
values, where mid = (ng + nb)/2. If m̂(1)′(mid) +

m̂(1)′′(mid)=m̂(2)′(mid) + m̂(2)′′(mid), he sets ng =
mid, otherwise, he sets nb = mid. U continues the
binary search in that way till he gets nb = ng + 1.

2) W11 returns the consistency proof

p1g = MHpoof (m̂(1)′ , ng), p1b = MHpoof (m̂(1)′ , nb),

W12 returns

p2g = MHpoof (m̂(1)′′ , ng), p2b = MHpoof (m̂(1)′′ , nb).

3) U runs

V erMHP (MHroot(m̂
(1)′), ng, m̂

(1)′(ng), p1g)

V erMHP (MHroot(m̂
(1)′), nb, m̂

(1)′(nb), p1b)

V erMHP (MHroot(m̂
(1)′′), ng, m̂

(1)′′(ng), p2g)

V erMHP (MHroot(m̂
(1)′′), nb, m̂

(1)′′(nb), p2b)

to verify the consistency proof. If either proof is in-
valid, the cloud servers Wk1 and Wk2 are marked as
dishonest. Otherwise, U proceeds as follows.

4) Suppose that m̂(1)′(ng) is equivalent to M (1)′(α, β),

then m̂(1)′(ng −m) and m̂(1)′(ng −m+ 1) are equiv-

alent to M (1)′(α− 1, β), M (1)′(α− 1, β + 1). As de-
scribed above, U asks W11 and W12 for consistency
proof at the position ng − m and ng − m + 1, and
then computes

M(α− 1, β) = M (1)′(α− 1, β) +M (1)′′(α− 1, β)

M(α−1, β+1) = M (1)′(α−1, β+1)+M (1)′′(α−1, β+1).

Now that U owns M(α, β), M(α− 1, β), and M(α−
1, β + 1), he can compute M(α, β + 1) by himself
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using the dynamic programming algorithm. Then
U verifies whether M(α, β + 1) = M (1)′(α, β + 1) +
M (1)′′(α, β + 1) holds (Remember that M (1)′(α, β +
1) = m̂(1)′(nb), M

(1)′′(α, β + 1) = m̂(1)′′(nb). If the
equation holds, U outputs the value of M(n,m) =
M (1)′(n,m) + M (1)′′(n,m). Otherwise, M(n,m) =
M (2)′(n,m) +M (2)′′(n,m).

Extensions. Here we show a trivial method of how, given
refereed computation delegation scheme with two servers,
one can construct a refereed delegation of computation
with N servers, where we only need to assume that at
least one of them if honest. The idea is to execute the ref-
ereed delegation of computation with two servers between
each pair of servers. By the soundness of the refereed del-
egation of computation, with high probability there exists
an honest server pair Wi that convinces the user in all of
his games. The user outputs the claimed result of Wi.

In addition to the trivial method for extending the pro-
tocol to N servers, we can extend this specific protocol
also in the following way. Our protocol can be executed
with all servers, where the user marks the intermediate
value as a good value only if all answers for this position
match. At the end of the binary search, the user checks if
the computation is consecutive for each one of the servers.
After the execution of this protocol, at least one pair of
malicious servers will be caught lying and will be declared
as a cheater. The user continues to the next round with
the other servers, again, executes the protocol to find at
least one cheater and then excludes him (or them) from
the next rounds. The protocol ends when all the remain-
ing servers agree on the output.

5 Efficiency and Security Analysis

5.1 Efficiency Analysis

First of all, our protocol, which works in the multi-server
model, is qualitatively more practical than known tech-
niques for computation delegation in single-server setting.
As we know, all known protocols rely either on arithme-
tization and PCP techniques [18], or rely on fully homo-
morphic encryption [15,16]. Neither approach is currently
viable in practice as a result of low efficiency.

Our protocol neither utilizes the complex proof sys-
tems nor fully homomorphic encryption, it is very effi-
cient on both the user side and server side. The compu-
tation and communication complexity of splitting the se-
quence λ and µ and sending the result shares is O(m+n),
which is also the lower bound of problem generation al-
gorithm. In the verification procedure, the user searches
for inconsistencies between the intermediate values of the
two servers’ computations. Note that the binary search
algorithm ends within O(log mn) steps, where log m and
log n are the bit lengths of m and n, respectively. And on
finding an inconsistency, the user can detect the cheater
by performing a single step of the edit distance compu-
tation algorithm. The collision-resistant hash functions

are used to allow the server to commit to the large inter-
mediate internal values of the computation using small
commitments. And in each verification process of these
commitments, the user does O(logmn) hash computa-
tions. Therefore, the overall computation complexity of
the user is O(log2(mn)).

On the server side, each pair of servers runs mn steps
of the dynamic program and construct the Merkle Hash
Tree for the final result. In each step of the dynamic pro-
gram, the communication complexity between Wk1 and
Wk2 is O(σ2) + O(1) due to the computation of γ′ and
γ′′ and the minimum finding protocol. In addition, the
computation complexity of constructing the Merkle Hash
Tree for the result is O(mn). Therefore, the total com-
putation and communication complexity of each server is
O(σ2mn), which means that the complexity of the server
is polynomial in the complexity of evaluating f .

5.2 Security Analysis

Theorem 1. Suppose that the hash function in use is
collision resistant, and the probability that a server hon-
estly executes the protocol is p, then our scheme satisfies
the security requirement of correctness against malicious
servers with probability 1-(1−p)N , where N is the number
of server pairs.

Proof. Review that in our scheme, the servers construct
the Merkle Hash Tree for their respective edit distance
matrix M and return the root value MHroot to the user.
MHroot can be viewed as a commitment of M . During
the following verification process, the malicious server is
unable to change the committed intermediate value of M .
Otherwise, if a malicious server tampered the intermedi-
ate value but successfully pass the correctness verification,
which means that the server generated a fake consistency
proof that has the same root value of the Merkle Hash
Tree as in the committed edit distance matrix M . Thus,
he got a collision in some node along the path to the
tampered intermediate value, which contradicts our as-
sumption about the collusion resistant hash function.

In the experiment ExpC
A[RCD, f, κ], the ProbGen() or-

acle and Verify() oracle do not leak useful information
for the adversary, as the splitted input sequence λ′, µ′

are uniformly distributed over the the alphabet set Σ.
And we assume that the minimum finding protocol is se-
cure in the two party computation model against mali-
cious adversary, so that the output does not leak any
useful information either. In the challenge phrase, af-
ter the binary search, U asks W11 and W12 for the con-
sistency proof for the position ng and nb of the result

vectors m̂(1)′ and m̂(1)′′ . If all the proofs are verified to
be valid, U simulates one step of the edit distance com-
putation at the position ng. The verification equation

M(α, β + 1) = M (1)′(α, β + 1) + M (1)′′(α, β + 1) holds
with probability 1 if the first server is honest and 0 other-
wise. For N pairs of servers, the probability that at least
one pair of servers are honest is 1-(1−p)N , the probability
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is also the probability that the user can get the correct
result in our scheme.

Theorem 2. Suppose that any pair of servers do not col-
lude with each other, the additively homomorphic encryp-
tion scheme is semantically secure, 1-out-of-n OT is re-
ceiver secure, and the minimum finding protocol is secure
in two-party computation model against malicious adver-
saries. Then, our scheme satisfies the security require-
ment of input an output privacy.

Proof. Firstly, recall that the original sequence λ and µ
are splitted into λ′,λ′′ and µ′, µ′′, such that λi = λ′i + λ′′i
mod σ, µj = µ′j + µ′′j mod σ. λ′i, λ

′′
i , µ′j and µ′′j are

uniformly distributed over the alphabet set
∑

. There-
fore, in the experiment ExpIPriv

A [RCD, f, λ], the oracle
reply of PubProbGen(·) does not leak any information
about the original sequence to the malicious server. Sec-
ondly, we assume that the additively homomorphic en-
cryption scheme is semantically secure, which assures that
the server Wk1 does not leak any information about λ′

to Wk2 in the interactive algorithm σy ← Compute(σx).
The OT scheme used in our scheme is receiver secure, so
nothing about λ′′ is leaked to Wk1 either. In summa-
rization, our scheme satisfies the security requirement of
input privacy. For output privacy, the secure minimum
finding protocol used in our protocol guarantees that Wk1

obtains M (k)′(i, j) but nothing about M (k)′′(i, j), mean-
while Wk2 gets M (k)′′(i, j) but nothing about M (k)′(i, j),
such that M(i, j) = M (k)′(i, j) + M (k)′′(i, j). Therefore,
in the challenge phrase, if any adversary is able to corrupt
the output privacy our scheme, he can successfully attack
the underlying minimum finding protocol with the same
probability, which contradicts our assumption.

6 Conclusion

In this paper, we propose the refereed computation del-
egation of sequence comparison for the first time. Com-
pared with previous computation delegation schemes, our
scheme is qualitatively more practical. Our scheme works
in the multi-server model, and the user can get the cor-
rect result of the computation as long as there is at least
one honest server. For the sequences of length m and
n, respectively, our scheme reduce the user computation
complexity from O(mn) to O(log2(mn)). The security
analysis shows that our scheme satisfies the security re-
quirements of I/O privacy and correctness.
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