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Abstract

Multi-proxy signature (MPS) allows an original signer to
authorize a group of proxy signers as his proxy agent to
sign co-operatively a message. As per the literature, the
relative computation cost of a pairing is approximately
more than ten times of the scalar multiplication over el-
liptic curve group which indicates that pairing is a very
expensive operation. Moreover the map-to-point func-
tion is also very expensive. Therefore, we propose a
new MPS scheme without pairings having general crypto-
graphic hash function after formalizing a security model.
Our proposal is provable secure and much efficient than
previously proposed schemes in practice.
Keywords: Bilinear pairings, digital signature, elliptic
curve discrete log problem, multi-proxy signature, random
oracle model

1 Introduction

The concept of proxy signature was firstly introduced by
Mambo et al. [13], to sign the messages on behalf of orig-
inal signer. In a proxy signature scheme, an authorized
person, called the proxy signer, is delegated by the origi-
nal signer to generate a proxy signature on behalf of the
original signer. To delegate the signing rights, a warrant
message is used which consist of the identity of original
as well as proxy signer’s group, delegation period, infor-
mation about the message etc. Original signer generates
the delegation by signing the message warrant. Proxy
signatures can be verified using a modified verification
equation such that the verifier can be convinced that the
signature is generated by the authorized proxy entity of
the original signer. On the other hand, proxy signature is
needed in some other forms also that are described in the
article [17] in detail. For example, two or more vice presi-
dents can cooperatively make a significant decision or sign
an important document on behalf of the president in his

absence. MPS is the solution of such a problem which al-
lows the original signer to delegate his/her signing power
to a group of proxy signers such that all proxy signers
must cooperatively generate a valid proxy signature.

On the other side, if a group of original signer want to
authorize a proxy signer to generate a signature on behalf
of the original signer group, to handle such a situation in
2000, Yi et al. [26] firstly proposed proxy multi-signature
(PMS) scheme. After that, some other variants multi-
proxy multi-signature (MPMS) schemes have also been
proposed [7].

Since proxy signature appeared, many new proxy sig-
nature schemes [4, 5, 6, 8, 19, 21, 27] have been pro-
posed. Motivated by the recent work [6], authors pro-
posed the ID-based proxy multi-signature [16] and multi-
proxy multi-signature [18] schemes without pairings. In
this paper, we focus on MPS scheme. Till now, many
MPS schemes [2, 10, 11, 20, 22, 23, 24, 25] etc from
bilinear pairings and ElGamal type have been proposed.
There are some literatures [1, 6] etc showing that the rel-
ative computation cost of a pairing operation is approx-
imately more than ten times of the scalar multiplication
over elliptic curve group. In addition, the map-to-point
hash function is also very expensive cryptographic oper-
ation. Due to bilinear pairings and map-to-point hash
function, the above schemes are less efficient and so not
very applicable in practice. Therefore, schemes without
bilinear pairings in general hash function setting with
elliptic curve cryptography would be more appealing in
terms of efficiency while maintaining the security.

Elliptic curve cryptography (ECC) was introduced by
Koblitz [9] and Miller [14] independently in 1985 using the
group of points on an elliptic curve defined over a finite
field. Security of the cryptosystem based on ECC relies
on elliptic curve discrete log problem (ECDLP). The main
advantage of ECC is that it provides the same security
level with smaller key size [12] than RSA and ElGamal
cryptosystems. Smaller key means less management time
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and smaller storage, which supplies convenience to real-
ization by software and hardware. To achieve 1024− bits
RSA level security, 512− bits supersingular elliptic curve
and 160 − bits non-supersingular elliptic curves are used
in applications. In general, pairing is defined on the su-
persingular elliptic curve while the ECC without pairings
uses non supersingular elliptic curves.

In this paper, we propose an efficient MPS scheme
without bilinear pairings which has smaller key size than
pairing based schemes. Proposed scheme is proven se-
cure against adaptive chosen message attack [3] under
ECDLP assumption. With the pairing-free realization,
proposed scheme is much efficient than previous related
schemes from pairings in practice. In addition, it is obvi-
ously much efficient in practice than ElGamal based MPS
schemes since ECC provides the same security than El-
Gamal based cryptosystems at less bit parameters.

The rest of this paper is organized as follows. Some pre-
liminary works are given in Section 2. The formal models
of MPS scheme is described in Section 3. Our provable
secure MPS scheme is presented in Section 4. We analyze
the security of proposed scheme in Section 5. Section 6
presents the comparative analysis. Finally, conclusions
are given in Section 7.

2 Preliminaries

2.1 Background of Elliptic Curve Group

An elliptic curve E over a prime finite field Fp (denoted
by E/Fp) is the set of points (x, y) with x, y ∈ Fp which
satisfy the equation y2 = (x3 + ax + b) mod p, a, b ∈
Fp,point say −R. Then P + Q is the reflected point −R.
There is a together with an extra point {∞} (called the
point at infinity). If the discriminant ∆ = (4a3 + 27b2)
mod p 6= 0, equivalently, the polynomial x3 + ax + b has
distinct factors then E/Fp is nonsingular i.e it does not
have any cusp or node singularity. Therefore, we can
define a binary operation (the point addition “ + ”) on
the points of E/Fp as follows: Let P, Q ∈ E/Fp, l be the
line joining P and Q (tangent line to E/Fp if P = Q), and
R, the third point of intersection of l with E/Fp. Let l′

be the vertical line through R which intersects the elliptic
curve E/Fp at another problem that vertical line through
P and −P does not intersect elliptic curve E/Fp at a
third point and we need a third point to define P +(−P ).
Since there is no point in the plane that works, we create
an extra point ∞ at infinity. Here ∞ is a point on every
vertical line.

Thus elliptic curve with this binary operation “ + ”
forms an additive abelian group (E/Fp, “ + ”) = {(x, y) :
x, y ∈ Fp, E(x, y) = 0} ∪ {∞}. Let G be a cyclic additive
subgroup of (E/Fp, “+”) with generator P of prime order
n.

2.2 Mathematical Formulas for Addition
on E/Fp

Suppose that we want to add the points P1 = (x1, y1) and
P2 = (x2, y2) on the elliptic curve E as defined above.

Let the line connecting P1 to P2 be L : y = mx + c.
Explicitly, the slope and y-intercept of L are given by

m =

{
y2−y1
x2−x1

mod p, if P1 6= P2

3x1
2+a

2y1
mod p, if P1 = P2

c = (y1 −mx1) mod p.

Now we find the intersection of E/FP : y2 = (x3 +ax+
b) a, b ∈ Fp, and L: y = mx + c by solving (mx + c)2 =
x3 + ax + b under modulo p. We already know that x1

and x2 are solutions, so we can find the third solution x3

by comparing the two sides of x3 + ax + b− (mx + c)2 =
(x−x1)(x−x2)(x−x3) mod p. Equating the coefficients of
x2, gives m2 = (x1+x2+x3) mod p and hence x3 = (m2−
x1−x2) mod p. Then we compute y3 using y3 = (mx3+c)
mod p and finally P1 + P2 = (x3,−y3).
In Short: Addition algorithm for P1 = (x1, y1) and P2 =
(x2, y2) on the elliptic curve E is:

1) If P1 6= P2 and x1 = x2 then P1 + P2 = {O}.

2) If P1 = P2 and y1 = 0 then P1 + P2 = 2P1 = {O}.

3) If P1 6= P2 (and x1 6= x2), let m = y2−y1
x2−x1

mod p and
c = y1x2−y2x1

x2−x1
mod p.

4) If P1 = P2 and y1 6= 0, let m = 3x1
2+a

2y1
mod p and

c = −x3+ax+b
2y mod p.

Then P1 + P2 = ((m2 − x1 − x2) mod p, (−m3 +
m(x1 + x2) − c) mod p). Scalar multiplication tP over
E/Fp means tP = P + P + ..... + P (t times), that can
be calculated using double-and-add method.

2.3 Complexity Assumption

Elliptic curve discrete logarithm problem (ECDLP):
Given x ∈R Zn

∗ and P the generator of G and Q ∈ G, to
compute x s.t. Q = xP is called ECDLP and assumed to
be intractable.

3 Formal Models of Multi Proxy
Signature Scheme

The proposed model involves three parties: the original
signer A, a set of l proxy signers L = {PS1, PS2, .., PSl},
and a verifier. One of the proxy signers plays the role of
clerk who combines all the partial proxy signatures and
generates an MPS.
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3.1 Definition of MPS Scheme

A MPS scheme is specified by the following polynomial-
time algorithms.

• Setup: Given a security parameter k, this algorithm
outputs the system parameters.

• Extract: It takes the security parameter k and out-
puts the secret-public key pair (skU , pkU ), for each
user U participating in the scheme.

• DelGen: Given the systems’ parameter, the original
signer’s private key and the warrant mw to be signed,
this algorithm outputs the delegation WA→PSi , (1 ≤
i ≤ l).

• DelVerif: The delegation verification algorithm,
takes the original signer’s public key, delegation
WA→PSi

, (1 ≤ i ≤ l) as inputs and verifies whether
it is a valid delegation came from A.

• PKGen: The proxy key generation algorithm, takes
WA→PSi

, (1 ≤ i ≤ l) and some other secret infor-
mation (for example, the secret keys of the execu-
tors) as inputs, and outputs a proxy signing key pskPi

∀1 ≤ i ≤ l for proxy signature.

• MPSign: The proxy signing algorithm, takes the
proxy signing keys pskPi , ∀1 ≤ i ≤ l of all proxy sign-
ers and a message m ∈ {0, 1}∗ as inputs, and outputs
an MPS signature on behalf of A.

• MPVerif: The proxy verification algorithm, takes
public keys of original signer, all proxy signers, and a
proxy signature (mw, σ,m, S) as inputs, and outputs
0 or 1. In the later case, (m,S) is a valid MPS for m
by the proxy group L on behalf of the original signer
A.

3.2 Security Model of MPS Scheme

We define the security of our MPS scheme under existen-
tial unforgeability against adaptive chosen message at-
tack (EUF-ACMA) [3]. The security notion is based on
the following game played between a challenger C and a
probabilistic polynomial time adversary T under an ex-
periment ExpMPS

T of the adversary T .

• Setup: The challenger C runs this algorithm with in-
put k and generates the public parameters. In addi-
tion C runs the Extract algorithm to obtain a public
key pk and private key sk. The adversary T is given
pk and system parameters while sk is kept secret.

• Queries. T can make the following queries adaptively
to C.

1) DelGen-query: T requests for the delegations
with at-most qs no of message warrant’s for
proxy signers with pkPSi , (i = 1, 2, ...l) on
behalf of original signer with pkA adaptively.

There exist a simulator S that simulates the
DelGen oracle and outputs the corresponding
valid delegations WA→PSi

for each query.

2) MPSign-query: T queries the signature oracle
for at-most qs no of messages under the obtained
delegation WA→PSi . There exist a simulator S
that simulates the MPSign oracle and outputs
the valid signature tuples.

• Output: Eventually, T outputs a tuple (mw, pkA,
pkpsi, σ, m, S), (i = 1, 2, , l) and wins the game i.e
ExpMPS

T returns yes if

1) Message warrant mw and message m are not
queried before for delegation and signature re-
spectively.

2) DelVerif (pkA, PKpsi; mw, sigma) = valid.

3) MPVerif (pkA, PKpsi,mw, sigma, m, S) =
valid.

4) Otherwise returns No.

An MPS scheme is said to be existential delegation
and signature unforgeable against adaptive chosen mes-
sage attack (DS-EUF-ACMA), if for any polynomial-time
adversary T , Pr[ExpMPS

T (k) = yes] is negligible.

4 Proposed Scheme

In this section, we present an MPS scheme without
pairings. The proposed scheme involves three parties:
the original signer A, a set of l proxy signers L =
{PS1, PS2, .., PSl}, and a verifier. One of the proxy sign-
ers plays the role of clerk who combines all the partial
proxy signatures and generates an MPS on message m
which confirms the warrant mw. Our scheme mainly con-
sists of the following seven algorithms.

• Setup: Takes a security parameter k, and returns the
system parameters Ω = {Fp, E/Fp, G, P, H1, H2, } as
defined in 2.1. H1 : {0, 1}∗ × G → Z∗n and H2 :
{0, 1}∗ ×G → Z∗p are two cryptographic secure hash
functions.

• Extract: Each participant U of the scheme picks at
random skU ∈ Z∗n and computes pkU = skUP . Thus
(skU , pkU ) is the (secret, public) key pair of user U .

• DelGen: This algorithm takes A’s secret key skA and
a warrant mw as inputs, and outputs the delegation
WA→PSi , 1 ≤ i ≤ l as follows:

1) Generates a random a ∈ Z∗n, computes K = aP .

2) Computes hiA
= H2(mw,K, pkPSi

), hA =∑l
1 hiA and σ = (hAskA + a) mod n.

A sends delegation WA→PSi =
{pkA, pkPSi

,mw,K, σ} to each proxy signer PSi,
1 ≤ i ≤ l.
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• DelVerif: To verify the delegation WA→PSi on war-
rant mw, each proxy signer PSi first computes hiA

=
H2(mw,K, pkPSi

) and hA =
∑l

1 hiA
, then checks

whether σP = hApkA + K holds. Accepts if it is
equal, otherwise rejects.

• PKGen: If PSi accepts the delegation WA→PSi
, he

computes the proxy signing key pskPSi
, 1 ≤ i ≤ l

as follows: pskPSi
= (σhp + skPSi

) mod n, where
hp = H1(mw, pkA, K). Using pskPSi

, these proxy
signers can cooperate to sign any message m which
confirms to mw on behalf of the original signer A.

• MPSign: Each proxy signer PSi, (1 ≤ i ≤ l)
chooses ai ∈ Z∗n, computes Ni = aiP and broad-
casts his Ni to the other l − 1 proxy signers. Then
each PSi computes SPSi

= (pskPSi
+ aih) mod

n where h = H2(m,N), N =
∑l

1 Ni and sends
(pkA, pkPSi

,K, mw,m, SPSi
), (1 ≤ i ≤ l, i 6= j,

if PSj is designated as clerk) to the clerk as his
partial proxy signature. The clerk verifies the
partial proxy signatures by checking the equation
SPSi

P = hp(hApkA +K)+ pkPSi
+hNi, where N =∑l

1 Ni, h = H2(m,N), hA =
∑l

1 H2(mw,K, pkPSi
)

and hp = H1(mw, pkA,K). If it holds, then
he combines S =

∑l
1 SPSi and sends the tuple

(pkA, pkPSi
,K, N, mw,m, S), ∀1 ≤ i ≤ l to verifier.

• MPVerif: To verify the signature (pkA, pkPSi
, K,

N , mw, m, S), ∀1 ≤ i ≤ l for message m, the verifier
does as follows.

Checks whether the message m confirms to the
warrant mw. If not, stop. Otherwise, continue.
Checks whether the l proxy signers are autho-
rized by the original signer in the warrant mw.
If not, stop. Otherwise, continue. Computes
hiA = H2(mw,K, pkPSi

), hA =
∑l

1 hiA , hp =
H1(mw, pkA, K) and h = H2(m, N), then checks
whether the equation: SP = lhp(hApkA + K) +∑l

1 pkPSi
+ hN holds. If holds then accepts oth-

erwise rejects it.

Correctness. Since, SPSiP = hp(hApkA +K)+pkPSi
+

hNi and N =
∑l

1 Ni, we have,

SP =
l∑
1

SPSiP

=
l∑
1

[hp(hApkA + K) + pkPSi
+ hNi]

= lhp(hApkA + K) +
l∑
1

pkPSi
+ hN.

5 Security Analysis

In this section, we will examine the security of our pro-
posed scheme. Assume there is an adversary T who can

break our proxy signature scheme (say
∑

). We will con-
struct a polynomial-time algorithm F that, by simulat-
ing the challenger C and interacting with T , solves the
ECDLP.

Theorem 1. Consider an adaptively chosen message at-
tack in the random oracle model(ROM) against

∑
. If

there is an attacker T that can break
∑

with at most qH2

H2-queries and qs signature queries within time bound t
and non negligible probability ε. Then there exist an algo-
rithm that solves ECDLP with non-negligible probability.

Proof. Suppose an attacker T can break
∑

through adap-
tively chosen message attack then Pr[ExpMPS

T (k) = yes]
is non negligible. We will show that using the ability of
T and forking lemma [15], an algorithm F can be con-
structed for solving the ECDLP. Forking reduction tech-
nique works because the challenger sets the random oracle
answers so that one set of questions from adversary are
answered with a number of completely independent sets
of answers.

For this purpose F sets {Fp, E/Fp, G, P, Ppub,H1, H2}
as system parameters and answers T ’s queries 3.2 as
follows.

Case 1. (Existential Delegation Unforgeable under Adap-
tive Chosen Message Attack). The challenger C interacts
with forger T and responds as follows.

• Setup: C starts to obtain public key pk and private
key sk. The adversary T is given pk.

• DelGen-query: T is allowed to query the delegation
oracle for mw, pkA, pkPSi

,∀1 ≤ i ≤ l. There exist a
simulator S that simulates the oracle and outputs
(σ,K) that satisfies the equation σP = hApkA + K.
Thus σ is a valid signature on mw for pkA.

• Output: If T can forge a valid delegation on
warrant mw without knowing the secret key with
the probability Pr[ExpMPS

T (k) = yes] = ε ≥
10(qH2 + 1)(qH2 + qs)/2k where mw has not been
queried to the delegation oracle (as Lemma 4 of [15]
aims), then a replay of F with the same ran-
dom tape but different choice of H2 will output
two valid delegations {pkA, pkPSi

,mw,K, σ, hA} and
{pkA, pkPSi

,mw,K, σ
′
, h

′
A}.

Then we have

σP = hApkA + K (1)

σ
′
P = h

′
ApkA + K. (2)

From Equations (1) and (2), we have

(σ − σ
′
)P = (hA − h

′
A)skAP.

Let u = σ − σ
′
and v = (hA − h

′
A)−1, then

skA = uv mod n.



International Journal of Network Security, Vol.17, No.6, PP.736-742, Nov. 2015 740

Table 1: Cryptographic operation time (in milliseconds)

Operation Modular exp. OP MP ME HM General hash
Time 5.31 20.04 6.38 2.21 3.04 < 0.001

Table 2: Computational cost comparison

Scheme Extract DelGen DelVerif PKGen MPSign MPVerif Total
Scheme [10] 1MP 1MP + 1HM 1HM + 2OP 1Mp + 1HM 2MP + 1HM + 3Op 1HM + 2OP 5MP + 5HM + 7OP

Scheme [23] 1MP 1MP + 1HM 1HM + 2OP 1Mp + 1HM 2MP + 1HM + 3Op2MP + 1HM + 2OP 6MP + 5HM + 7OP

Our scheme 1ME 1ME 2ME 0ME 5ME 4ME 13ME

Table 3: Running time comparison (in ms)

Scheme Extract DelGen DelVerif PKGen MPSign MPVerif Total
Scheme [10] 9.42 9.42 49.50 6.38 61.36 49.50 185.58
Scheme [23] 9.42 19.14 46.46 6.38 50.74 58.92 191.06
Our scheme 2.21 2.21 6.63 ≈ 0 15.47 13.26 39.78

According to Lemma 4 [15] the ECDLP can be solved
with probability ε

′ ≥ 1/9 and time t
′ ≤ 23 qH2t/ε.

Case 2. (Existential Signature Unforgeable under Adap-
tive Chosen Message Attack). From Case 1, it is clear
that the adversary T can not generate a valid delegation.
In this Case the challenger C interacts with forger T as
follows.

• Setup: C starts to obtain public key pk and private
key sk. The adversary T is given pk.

• MPSign-query: T is allowed to query the signa-
ture oracle for m under the delegation WA→PSi =
{pkA, pkPSi

,mw,K, σ}. There exist a simulator S
that simulates the oracle and generates a tuple (N,S)
that satisfies the equation SP = lhp(hApkA + K) +∑l

1 pkPSi
+ hN .

• Output: If T can forge a valid signature on mes-
sage m with the probability Pr[ExpMPS

T (k) = yes] =
ε ≥ 10(qH2 + 1)(qH2 + qs)/2k where m has not been
queried to the signature oracle, then a replay of F
four times with the same random response but dif-
ferent choices of H2, will output four valid signatures
(pkA, pkPSi , K,N,mw,m, Sj , hj

A, hj), ∀1 ≤ i ≤ l and
j = 1, 2, 3, 4.

Then we have

SjP = lhp(h
j
ApkA + K) +

l∑
1

pkPSi
+ hjN. (3)

If skA, a, b, y denote elliptic curve discrete logarithms of
pkA, K,

∑l
1 pkPSi

and N respectively. Then from equa-

tion (3), we have

Sj = lhp(h
j
AskA + a) + b + hjy, j = 1, 2, 3, 4.

Since, in the above four equations, the unknowns
skA, a, b, y neither have any power nor multiplied to-
gether. So these equations are linear. We consider that
with high probability the determinant of the system ob-
tained by the above four linear equations is non zero and
so these equations are linearly independent.

Therefore, there exist an algorithm F that solves the
above four linearly independent equations, and outputs
skA as the solution of the ECDLP with probability ε

′ ≥
1/9 and time t

′ ≤ 23qH2t/ε (Lemma 4 [15]).

6 Comparative Analysis

In this section, we will compare the efficiency of our
scheme with the schemes [10, 23]. We use the run-
ning time of different cryptographic operations calculated
by [6] in some cryptographic environment for such effi-
ciency comparison as given in Table 1.

Where ME ,MP ,HM , OP stand for one ECC based
scalar multiplication, pairing based scalar multiplication,
Map-to-point hash function and pairing operation respec-
tively.

Computational cost and running time analysis of our
scheme with schemes [10, 23] are given in Tables 2 and 3,
respectively.

From the above Table 2, it is clear that the running
time of MPSign algorithm of our scheme is 14.54% of
scheme [10] as well as of scheme [23]. Total running time
of our scheme is 20.50% of scheme [10] and 17.85% of the
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scheme [23].

Note: Although our proposed scheme is based on ECC, it
does not use pairings. Therefore one can easily conclude
by efficiency comparison that our proposal is much more
efficient than other existing MPS schemes from pairings.

7 Conclusion

In this paper, we proposed an efficient provable secure
multi-proxy signature scheme based on ECC without us-
ing pairings that also avoids the map-to-point hash func-
tion. For this proposal, we first defined a model and then
proved the security of proposed scheme against adaptive
chosen message attack under ECDL-assumption. Com-
pared with previous schemes, the new scheme reduces the
running time of signing algorithms heavily. Therefore, our
scheme is more efficient and applicable than the previous
related schemes in practice.
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