
International Journal of Network Security, Vol.17, No.6, PP.683-701, Nov. 2015 683

Towards Generating Real-life Datasets for Network
Intrusion Detection

Monowar H. Bhuyan1, Dhruba K. Bhattacharyya2, and Jugal K. Kalita3

(Corresponding author: Monowar H. Bhuyan)

Department of Computer Science and Engineering, Kaziranga University, Jorhat-785006, Assam, India1

(Email: monowar.tezu@gmail.com)
Department of Computer Science and Engineering, Tezpur University, Tezpur-784028, Assam, India2

(Email: dkb@tezu.ernet.in)
Department of Computer Science, University of Colorado at Colorado Springs, CO 80918, USA3

(Email: jkalita@uccs.edu)

(Received February 5, 2015; revised and accepted Apr. 20 & May 9, 2015)

Abstract

With exponential growth in the number of computer applica-
tions and the sizes of networks, the potential damage that can
be caused by attacks launched over the Internet keeps increas-
ing dramatically. A number of network intrusion detection
methods have been developed with respective strengths and
weaknesses. The majority of network intrusion detection re-
search and development is still based on simulated datasets
due to non-availability of real datasets. A simulated dataset
cannot represent a real network intrusion scenario. It is im-
portant to generate real and timely datasets to ensure accurate
and consistent evaluation of detection methods. In this paper,
we propose a systematic approach to generate unbiased full-
feature real-life network intrusion datasets to compensate for
the crucial shortcomings of existing datasets. We establish the
importance of an intrusion dataset in the development and val-
idation process of detection mechanisms, identify a set of re-
quirements for effective dataset generation, and discuss several
attack scenarios and their incorporation in generating datasets.
We also establish the effectiveness of the generated dataset in
the context of several existing datasets.
Keywords: Dataset, intrusion detection, NetFlow, network
traffic

1 Introduction

In network intrusion detection, particularly when using
anomaly based detection, it is difficult to accurately evaluate,
compare and deploy a system that is expected to detect novel
attacks due to scarcity of adequate datasets. Before deploy-
ing in any real world environment, an anomaly based network
intrusion detection system (ANIDS) must be trained, tested
and evaluated using real labelled network traffic traces with

a intensive set of intrusions or attacks. This is a significant
challenge, since not many such datasets are available. There-
fore the detection methods and systems are evaluated only with
a few publicly available datasets that lack comprehensiveness
and completeness [2, 17] or are outdated. For example, Coop-
erative Association for Internet Data Analysis (CAIDA) Dis-
tributed Denial of Service (DDoS) 2007, Lawrence Berkeley
National Laboratory (LBNL), and ICSI datasets are heavily
anonymized without payload information, decreasing research
utility. Researchers also frequently use a single NetFlow based
intrusion dataset found at [25, 40] with a limited number of at-
tacks.

1.1 Importance of Datasets

In network traffic anomaly detection, it is always important to
test and evaluate detection methods and systems using datasets
as network scenarios evolve. We enumerate the following rea-
sons to justify the importance of a dataset.

• Repeatability of experiments: Researchers should be able
to repeat experiments with the dataset and get similar re-
sults, when using the same approach. This is important
because the proposed method should cope with the evolv-
ing nature of attacks and network scenarios.

• Validation of new approaches: New methods and algo-
rithms are being continuously developed to detect net-
work anomalies. It is necessary that every new approach
be validated.

• Comparison of different approaches: State-of-the-art net-
work anomaly detection methods must not only be vali-
dated, but also show improvements over older methods in
performance in a quantifiable manner. For example, the

International Journal of Network Security, Vol.17, No.6, PP.683-701, Nov. 2015 684

DARPA 1998 dataset [26] is commonly used for perfor-
mance evaluation of anomaly detection systems [24]. So
that one method can be compared against others.

• Parameters tuning: To properly obtain the model to clas-
sify the normal from malicious traffic, it is necessary to
tune model parameters. Network anomaly detection as-
sumes the normality model to identify malicious traffic.
For example, Cemerlic et al. [9] and Thomas et al. [44]
use the attack-free part of the DARPA 1999 dataset for
training to estimate parameter values.

• Dimensionality or the number of features: An optimal set
of features or attributes should be used to represent nor-
mal as well as all possible attack instances.

1.2 Requirements
Although good datasets are necessary for validating and evalu-
ating IDSs, generating such datasets is a time consuming task.
A dataset generation approach should meet the following re-
quirements.

• Real world: A dataset should be generated by monitor-
ing the daily situation in a realistic way, such as the daily
network traffic of an organization.

• Completeness in labelling: The labelling of traffic as be-
nign or malicious must be backed by proper evidence for
each instance. The aim these days should be to provide
labelled datasets at both packet and flow levels for each
piece of benign and malicious traffic.

• Correctness in labelling: Given a dataset, labelling of
each traffic instance must be correct. This means that our
knowledge of security events represented by the data has
to be certain.

• Sufficient trace size: The generated dataset should be un-
biased in terms of size in both benign and malicious traffic
instances.

• Concrete feature extraction: Extraction of an optimal set
of concrete features when generating a dataset is impor-
tant because such features play an important role when
validating a detection mechanisms.

• Diverse attack scenarios: With the increasing frequency,
size, variety and complexity of attacks, intrusion threats
have become more complex including the selection of tar-
geted services and applications. When contemplating at-
tack scenarios for dataset generation, it is important to tilt
toward a diverse set of multi-step attacks that are recent.

• Ratio between normal and attack traffic: Most bench-
mark datasets are biased because the proportion of normal
and attack traffic are not the same. This is because nor-
mal traffic is usually much more common than anomalous
traffic. However, the evaluation of an intrusion detection
method or system using biased datasets may not be fit

for real-time deployment in certain situations. Most ex-
isting datasets have been created based on the following
assumptions.

– Anomalous traffic is statistically different from nor-
mal traffic [13].

– The majority of network traffic instances is nor-
mal [36].

However, unlike most traditional intrusions, DDoS at-
tacks do not follow these assumptions because they
change network traffic rate dynamically and employ
multi-stage attacks. A DDoS dataset must reflect this fact.

1.3 Motivation and Contributions
By considering the aforementioned requirements, we propose
a systematic approach for generating real-life network intru-
sion dataset at both packet and flow levels with a view to
analyzing, testing and evaluating network intrusion detection
methods and systems with a clear focus on anomaly based de-
tectors. The following are the major contributions of this paper.

• We present guidelines for real-life intrusion dataset gen-
eration.

• We discuss systematic generation of both normal and at-
tack traffic.

• We extract features from the captured network traffic
such as basic, content-based, time-based, and connec-
tion-based features using a distributed feature extraction
framework.

• We generate three categories of real-life intrusion
datasets, viz., (i) TUIDS (Tezpur University Intrusion
Detection System) intrusion dataset, (ii) TUIDS coor-
dinated scan dataset, and (iii) TUIDS DDoS dataset.
These datasets are available for the research community
to download for free.

1.4 Organization of the Paper
The remainder of the paper is organized as follows. Section 2
discusses prior datasets and their characteristics. Section 3 is
dedicated to the discussion of a systematic approach to gen-
erate real-life datasets for intrusion detection with a focus on
network anomaly detectors. Finally, Section 4 presents obser-
vations and concluding remarks.

2 Existing Datasets
As discussed earlier, datasets play an important role in the test-
ing and validation of network anomaly detection methods or
systems. A good quality dataset not only allows us to iden-
tify the ability of a method or a system to detect anomalous
behavior, but also allows us to provide potential effective-
ness when deployed in real operating environments. Several

International Journal of Network Security, Vol.17, No.6, PP.683-701, Nov. 2015 685

datasets are publicly available for testing and evaluation of net-
work anomaly detection methods and systems. A taxonomy of
network intrusion datasets is shown in Figure 1. We briefly
discuss each of them below.

Figure 1: A taxonomy of network intrusion datasets [2]

2.1 Synthetic Datasets

Synthetic datasets are generated to meet specific needs or cer-
tain conditions or tests that real data satisfy. Such datasets
are useful when designing any prototype system for theoret-
ical analysis so that the design can be refined. A synthetic
dataset can be used to test and create many different types of
test scenarios. This enables designers to build realistic behav-
ior profiles for normal users and attackers based on the dataset
to test a proposed system. This provides initial validation of
a specific method or a system; if the results prove to be satis-
factory, the developers then continue to evaluate a method or a
system in a specific domain real-life data.

2.2 Benchmark Datasets

We discuss seven publicly available benchmark datasets gener-
ated using simulated environments in large networks. Different
attack scenarios were simulated during the generation of these
datasets.

2.2.1 KDDcup99 Dataset

Since 1999, the KDDcup99 dataset [21] has been the most
widely used dataset for evaluation of network based anomaly
detection methods and systems. This dataset was prepared by
Stolfo et al. [41] and is built upon the data captured in the
DARPA98 IDS evaluation program. The KDD training dataset
consists of approximately 4, 900, 000 single connection vec-
tors, each of which contains 41 features and is labelled as ei-
ther normal or attack of a specific attack type. The test dataset
contains about 300, 000 samples with a total 24 training types,
with an additional 14 attack types in the test dataset only [14].
The represented attacks are mainly four types: denial of ser-
vice, remote-to-local, user-to-root, and surveillance or prob-
ing.

• Denial of Service (DoS): An attacker attempts to prevent
valid users from using a service provided by a system.
Examples include SYN flood, smurf and teardrop attacks.

• Remote to Local (r2l): Attackers try to gain entrance to
a victim machine without having an account on it. An
example is the password guessing attack.

• User to Root (u2r): Attackers have access to a local vic-
tim machine and attempt to gain privilege of a superuser.
Examples include buffer overflow attacks.

• Probe: Attackers attempt to acquire information about the
target host. Some examples of probe attacks are port-
scans and ping-sweep attacks.

Background traffic was simulated and the attacks were all
known. The training set, consisting of seven weeks of la-
belled data, is available to the developers of intrusion detec-
tion systems. The testing set also consists of simulated back-
ground traffic and known attacks, including some attacks that
are not present in the training set. The distribution of normal
and attack traffic for this dataset is reported in Table 1. We
also identify the services associated with each category of at-
tacks [12, 22] and summarize them in Table 2.

2.2.2 NSL-KDD Dataset

Analysis of the KDD dataset showed that there were two im-
portant issues with the dataset, which highly affect the perfor-
mance of evaluated systems often resulting in poor evaluation
of anomaly detection methods [43]. To address these issues, a
new dataset known as NSL-KDD [32], consisting of selected
records of the complete KDD dataset was introduced. This
dataset is also publicly available for researchers1 and has the
following advantages over the original KDD dataset.

• This dataset doesn’t contain superfluous and repeated
records in the training set, so classifiers or detection meth-
ods will not be biased towards more frequent records.

• There are no duplicate records in the test set. Therefore,
the performance of learners is not biased by the methods
which have better detection rates on frequent records.

• The number of selected records from each difficulty level
is inversely proportional to the percentage of records in
the original KDD dataset. As a result, the classification
rates of various machine learning methods vary in a wider
range, which makes it more efficient to have an accurate
evaluation of various learning techniques.

• The number of records in the training and testing sets is
reasonable, which makes it practical to run experiments
on the complete set without the need to randomly select a
small portion. Consequently, evaluation results of differ-
ent research groups are consistent and comparable.

1http://www.iscx.ca/NSL-KDD/

International Journal of Network Security, Vol.17, No.6, PP.683-701, Nov. 2015 686

Ta
bl

e
1:

D
is

tr
ib

ut
io

n
of

no
rm

al
an

d
at

ta
ck

tr
af

fic
in

st
an

ce
s

in
K

D
D

C
up

99
da

ta
se

t
D

oS
Pr

ob
e

u2
r

r2
l

D
at

as
et

To
ta

l
in

-
st

an
ce

s
A

tta
ck

s
To

ta
l

in
-

st
an

ce
s

A
tta

ck
s

To
ta

l
in

-
st

an
ce

s
A

tta
ck

s
To

ta
l

in
-

st
an

ce
s

A
tta

ck
s

N
or

m
al

10
%

K
D

D
39

14
58

sm
ur

f,
ne

p-
tu

ne
,

41
07

sa
ta

n,
ip

sw
ee

p,
52

bu
ff

er
ov

er
flo

w
,

ro
ot

ki
t,

11
26

w
ar

ez
cl

ie
nt

,g
ue

ss
pa

ss
w

d,
97

27
7

C
or

re
ct

ed
K

D
D

22
98

53
ba

ck
,

te
ar

dr
op

,
po

d,
la

nd
41

07
po

rt
sw

ee
p,

nm
ap

52
lo

ad
m

od
ul

e,
pe

rl
11

26
w

ar
ez

m
as

te
r,

im
ap

,f
tp

w
ri

te
,

97
27

7

W
ho

le
K

D
D

22
98

53
41

07
52

11
26

m
ul

tih
op

,p
hf

,s
py

97
27

7

Ta
bl

e
2:

L
is

to
fa

tta
ck

s
an

d
co

rr
es

po
nd

in
g

se
rv

ic
es

in
K

D
D

cu
p9

9
da

ta
se

t
D

oS
Pr

ob
e

u2
r

r2
l

D
at

as
et

A
tta

ck
na

m
e

Se
rv

ic
e(

s)
A

tta
ck

na
m

e
Se

rv
ic

e(
s)

A
tta

ck
na

m
e

Se
rv

ic
e(

s)
A

tta
ck

na
m

e
Se

rv
ic

e(
s)

ap
ac

he
2

ht
tp

ip
sw

ee
p

ic
m

p
ej

ec
t

A
ny

us
er

se
ss

io
n

di
ct

io
na

ry
te

ln
et

,r
lo

gi
n,

po
p,

im
ap

,f
tp

ba
ck

ht
tp

m
sc

an
m

an
y

ff
bc

on
fig

A
ny

us
er

se
ss

io
n

ft
p-

w
ri

te
ft

p
la

nd
N

/A
nm

ap
m

an
y

fd
fo

rm
at

A
ny

us
er

se
ss

io
n

gu
es

t
te

ln
et

,r
lo

gi
n

K
D

D
99

m
ai

lb
om

b
sm

tp
sa

in
t

m
an

y
lo

ad
m

od
ul

e
A

ny
us

er
se

ss
io

n
im

ap
im

ap
SY

N
flo

od
A

ny
T

C
P

sa
ta

n
m

an
y

pe
rl

A
ny

us
er

se
ss

io
n

na
m

ed
dn

s
pi

ng
of

de
at

h
ic

m
p

ps
A

ny
us

er
se

ss
io

n
na

m
ed

dn
s

pr
oc

es
s

ta
bl

e
A

ny
T

C
P

X
te

rm
A

ny
us

er
se

ss
io

n
se

nd
m

ai
l

sm
tp

sm
ur

f
ic

m
p

-
-

xl
oc

k
X

sy
sl

og
d

sy
sl

og
xs

no
op

X
te

ar
dr

op
N

/A
-

-
ud

ps
to

rm
ec

ho
/c

ha
rg

en
-

-

The NSL-KDD dataset consists of two parts: (i) KDDTrain+

and (ii) KDDTest+. The KDDTrain+ part of the NSL-KDD
dataset is used to train a detection method or system to de-
tect network intrusions. It contains four classes of attacks
and a normal class dataset. The KDDTest+ part of NSL-
KDD dataset is used for testing a detection method or a system
when it is evaluated for performance. It also contains the same
classes of traffic present in the training set. The distribution of
attack and normal instances in the NSL-KDD dataset is shown
in Table 3.

Table 3: Distribution of normal and attack traffic instances in
NSL-KDD dataset

Dataset DoS u2r r2l Probe Normal Total

KDDTrain+ 45927 52 995 11656 67343 125973

KDDTest+ 7458 67 2887 2422 9710 22544

2.2.3 DARPA 2000 Dataset

A DARPA2 evaluation project [18] targeted the detection of
complex attacks that contain multiple steps. Two attack sce-
narios were simulated in the DARPA 2000 evaluation contest,
namely Lincoln Laboratory scenario DDoS (LLDOS) 1.0 and
LLDOS 2.0. To achieve variations, these two attack scenar-
ios were carried out over several network and audit scenarios.
These sessions were grouped into four attack phases: (a) prob-
ing, (b) breaking into the system by exploiting vulnerability,
(c) installing DDoS software for the compromised system, and
(d) launching DDoS attack against another target. LLDOS 2.0
is different from LLDOS 1.0 in that attacks are more stealthy
and thus harder to detect. Since this dataset contains multi-
stage attack scenarios, it is also commonly used for evaluation
of alert correlation techniques.

2.2.4 DEFCON Dataset

The DEFCON3 dataset is another commonly used dataset for
evaluation of IDSs [11]. It contains network traffic captured
during a hacker competition called Capture The Flag (CTF),
in which competing teams are divided into two groups: attack-
ers and defenders. The traffic produced during CTF is very
different from real world network traffic since it contains only
intrusive traffic without any normal background traffic. Due to
this limitation, DEFCON dataset has been found useful only in
evaluating alert correlation techniques.

2.2.5 CAIDA Dataset

CAIDA4 collects many different types of data and makes them
available to the research community. CAIDA datasets [8] are
very specific to particular events or attacks. Most of its longer

2http://www.ll.mit.edu/mission/communications/ist/corpora/
ideval/data/index.html

3http://cctf.shmoo.com/data/
4http://www.caida.org/home/

International Journal of Network Security, Vol.17, No.6, PP.683-701, Nov. 2015 687

traces are anonymized backbone traces without their payload.
The CAIDA DDoS 2007 attack dataset contains one hour of
anonymized traffic traces from DDoS attacks on August 4,
2007, which attempted to consume a large amount of net-
work resources when connecting to Internet servers. The traf-
fic traces contain only attack traffic to the victim and responses
from the victim with 5 minutes split form. All traffic traces are
in pcap (tcpdump) format. The creators removed non-attack
traffic as much as possible when creating the CAIDA DDoS
2007 dataset.

2.2.6 LBNL Dataset

LBNL’s internal enterprise traffic traces are full header net-
work traces without payload [23]. This dataset suffers from
heavy anonymization to the extent that scanning traffic was
extracted and separately anonymized to remove any informa-
tion which could identify individual IPs. The background and
attack traffic in the LBNL dataset are described below.

• LBNL background traffic: This dataset can be ob-
tained from the Lawrence Berkeley National Laboratory
(LBNL) in the US. Traffic in this dataset is comprised
of packet level incoming, outgoing and internally routed
traffic streams at the LBNL edge routers. Traffic was
anonymized using the tcpmkpub tool [35]. The main ap-
plications observed in the internal and external traffic are
Web, email and name services. Other applications like
Windows services, network file services and backup were
used by internal hosts. The details of each service and
information on each packet and other relevant description
are given in [34]. The background network traffic statis-
tics of the LBNL dataset are given in Table 4.

• LBNL attack traffic: This dataset identifies attack traf-
fic by isolating scans in aggregate traffic traces. Scans
are identified by flagging those hosts which unsuccess-
fully probe more than 20 hosts, out of which 16 hosts are
probed in ascending or descending IP order [35]. Mali-
cious traffic mostly consists of failed incoming TCP SYN
requests, i.e., TCP port scans targeted towards LBNL
hosts. However, there are also some outgoing TCP scans
in the dataset. Most UDP traffic observed in the data (in-
coming and outgoing) is comprised of successful con-
nections, i.e., host replies for the received UDP flows.
Clearly, the attack rate is significantly lower than the
background traffic rate. Details of the attack traffic in this
dataset are shown in Table 4. Complexity and privacy
were two main reservations of the participants of the end-
point data collection study. To address these reservations,
the dataset creators developed a custom multi-threaded
MS Windows tool using the Winpcap API [7] for data
collection. To reduce packet logging complexity at the
endpoints, they only logged very elementary session-level
information (bidirectional communication between two
IP addresses on different ports) for the TCP and UDP
packets. To ensure user privacy, an anonymization pol-
icy was used to anonymize all traffic instances.

2.2.7 Endpoint Dataset

The background and attack traffic for the endpoint datasets are
described below.

• Endpoint background traffic: In the endpoint context, we
see in Table 5 that home computers generate significantly
higher traffic volumes than office and university comput-
ers because: (i) they are generally shared between mul-
tiple users, and (ii) they run peer-to-peer and multimedia
applications. The large traffic volumes of home comput-
ers are also evident from their high mean number of ses-
sions per second. To generate attack traffic, developers
on infect Virtual Machines (VMs) at the endpoints with
different malware, viz., Zotob.G, Forbot-FU, Sdbot-AFR,
Dloader-NY, So-Big.E@mm, MyDoom.A@mm, Blaster,
Rbot-AQJ, and RBOT.CCC. Details of the malware can
be found in [42]. Characteristics of the attack traffic in
this dataset are given in Table 6. These malwares have
diverse scanning rates and attack ports or applications.

• Endpoint attack traffic: The attack traffic logged at the
endpoints is mostly comprised of outgoing port scans.
Note that this is the opposite of the LBNL dataset, in
which most attack traffic is inbound. Moreover, the attack
traffic rates at the endpoints are generally much higher
than the background traffic rates of the LBNL datasets.
This diversity in attack direction and rates provides a
sound basis for performance comparison among scan de-
tectors. For each malware, attack traffic of 15 minute
duration was inserted in the background traffic for each
endpoint at a random time instance. This operation was
repeated to insert 100 non-overlapping attacks of each
worm inside each endpoint’s background traffic.

2.3 Real-life Datasets
We discuss three real-life datasets created by collecting net-
work traffic on several consecutive days. The details include
both normal as well as attack traffic in appropriate proportions
in the authors’ respective campus networks (i.e., testbeds).

2.3.1 UNIBS Dataset

The UNIBS packet traces [45] were collected on the edge
router of the campus network of the University of Brescia
in Italy, on three consecutive working days. The dataset in-
cludes traffic captured or collected and stored using 20 work-
stations, each running the GT (Ground Truth) client daemon.
The dataset creators collected the traffic by running tcpdump
on the faculty router, which was a dual Xeon Linux box that
connected the local network to the Internet through a dedicated
100Mb/s uplink. They captured and stored the traces on a ded-
icated disk of a workstation connected to the router through a
dedicated ATA controller.

2.3.2 ISCX-UNB Dataset

The ISCX-UNB dataset [37] is built on the concept of profiles
that include the details of intrusions. The datasets were col-

International Journal of Network Security, Vol.17, No.6, PP.683-701, Nov. 2015 688

Table 4: Background and attack traffic information for the LBNL datasets
Date Duration

(mins)
LBNL hosts Remote hosts Background traffic rate

(packet/sec)
Attack traffic rate
(packet/sec)

10/04/2004 10 min 4,767 4,342 8.47 0.41
12/15/2004 60 min 5,761 10,478 3.5 0.061
12/16/2004 60 min 5,210 7,138 243.83 72

Table 5: Background traffic information for four endpoints
with high and low rates

Endpoint
ID

Endpoint
type

Duration
(months)

Total ses-
sions

Mean session
rate (/sec)

3 Home 3 3,73,009 1.92
4 home 2 4,44,345 5.28
6 University 9 60,979 0.19
10 University 13 1,52,048 0.21

Table 6: Endpoint attack traffic for two high and two low-rate
worms

Malware Release Date Avg. Scan rate
(/sec)

Port (s) Used

Dloader-NY Jul 2005 46.84 sps TCP 1,35,139
Forbot-FU Sept 2005 32.53 sps TCP 445
Rbot-AQJ Oct 2005 0.68 sps TCP 1,39,769
MyDoom-A Jan 2006 0.14 sps TCP 3127-3198

lected using a real-time testbed by incorporating multi-stage
attacks. It uses two profiles - α and β - during the generation
of the datasets. α profiles are constructed using the knowledge
of specific attacks and β profiles are built using the filtered
traffic traces. Real packet traces were analyzed to create α and
β profiles for agents that generate real-time traffic for HTTP,
SMTP, SSH, IMAP, POP3 and FTP protocols. Various mul-
tistage attack scenarios were explored to generate malicious
traffic.

2.3.3 KU Dataset

The Kyoto University dataset5 is a collection of network traffic
data obtained from honeypots. The raw dataset obtained from
the honeypot system consisted of 24 statistical features, out of
which 14 significant features were extracted [38]. The dataset
developers extracted 10 additional features that could be used
to investigate network events inside the university more effec-
tively. The initial 14 features extracted are similar to those in
the KDDcup99 datasets. Only 14 conventional features were
used during training and testing.

2.4 Discussion
The datasets described above are valuable assets for the intru-
sion detection community. However, the benchmark datasets
suffer from the fact that they are not good representatives of
real world traffic. For example, the DARPA dataset has been
questioned about the realism of the background traffic [27, 29]

5http://www.takakura.com/kyoto data

because it is synthetically generated. In addition to the diffi-
culty of simulating real time network traffic, there are addi-
tional challenges in IDS evaluation [30]. These include diffi-
culties in collecting attack scripts and victim software, differ-
ing requirements for testing signature based vs. anomaly based
IDSs, and host-based vs. network based IDSs. In addition to
these, we make the following observations based on our anal-
ysis.

• Most datasets are not labelled properly due to non-
availability of actual attack information. These include
KDDcup99, UNIBS, Endpoint and LBNL datasets.

• The proportion of normal and attack ratios are different in
different datasets [21, 38, 45].

• Several existing datasets [21, 23, 38] have not been main-
tained or updated to reflect recent trends in network traffic
by incorporating evolved network attacks.

• Most existing datasets are annonymized [8, 18] due to po-
tential security risks to an organization. They do not share
their raw data with researchers.

• Several datasets [8, 23, 18, 45] lack in traffic features.
They have only raw traffic traces but it is important to
extract relevant traffic features for individual attack iden-
tification.

3 Real-life Datasets Generation
As noted above, the generation of an unbiased real-life intru-
sion dataset incorporating a large number of real world attacks
is important to evaluate network anomaly detection methods
and systems. In this paper, we describe the generation of
three real-life network intrusion datasets6 including (a) a TU-
IDS (Tezpur University Intrusion Detection System) intrusion
dataset, (b) a TUIDS coordinated scan dataset, and (c) a TU-
IDS DDoS dataset at both packet and flow levels [16]. The
resulting details and supporting infrastructure is discussed in
the following subsections.

3.1 Testbed Network Architecture
The TUIDS testbed network consists of 250 hosts, 15 L2
switches, 8 L3 switches, 3 wireless controllers, and 4 routers
that compose 5 different networks inside the Tezpur University
campus. The architectures of the TUIDS testbed and TUIDS
testbed for DDoS dataset generation are given in Figures 2 and

6http://agnigarh.tezu.ernet.in/∼dkb/resources.html

International Journal of Network Security, Vol.17, No.6, PP.683-701, Nov. 2015 689

3, respectively. The hosts are divided into several VLANs,
each VLAN belonging to an L3 switch or an L2 switch inside
the network. All servers are installed inside a DMZ7 to pro-
vide an additional layer of protection in the security system of
an organization.

3.2 Network Traffic Generation
To generate real time normal and attack traffic, we configured
several hosts, workstations, and servers in the TUIDS testbed
network. The network consists of 6 interconnected Ubuntu
10.10 workstations. On each workstation, we have installed
several severs including a network file server (Samba), a mail
sever (Dovecot), a telnet server, an FTP server, a Web server,
and an SQL sever with PHP compatibility. We also installed
and configured 4 Windows Servers 2003 to exploit a diverse
set of known vulnerabilities against the testbed environment.
Servers and their services running on our testbed are summa-
rized in Table 7.

Table 7: Servers and their services running on the testbed net-
work

Server Operating
system

Services Provider

Main Server Ubuntu 10.10 Web, eMail Apache 2.4.3,
Dovecot 2.1.14

Network File
Server

Ubuntu 10.10 Samba Samba 4.0.2

Telnet Server Ubuntu 10.10 Telnet telnet-0.17-
36bulid1

FTP Server Ubuntu 10.10 ftp vsFTPd 2.3.0

Windows Server Windows
Server 2003

Web IIS v7.5

MySQL Server Ubuntu 10.10 database MySQL 5.5.30

The normal network traffic is generated based on the day-
to-day activities of users and especially generated traffic from
configured servers. It is important to generate different types
of normal traffic. So, we capture traffic from students, faculty
members, system administrators, and office staff on different
days within the University. The attack traffic is generated by
launching attacks within the testbed network in three different
subsets, viz., a TUIDS intrusion dataset, a coordinated scan
dataset and a DDoS dataset. The attacks launched in the gen-
eration of these real-life datasets are summarized in Table 8.

As seen in the table above, 22 distinct attack types (1-22 in
Table 8) were used to generate the attack traffic for the TUIDS
intrusion dataset; six attacks (17-22 in Table 8) were used to
generate the attack traffic for the coordinated scan dataset and
finally six attacks (23-28 in Table 8) were used to generate
the attack traffic for a DDoS dataset with combination of TCP,
UDP and ICMP protocols.

7Demilitarized zone is a network segment located between a secured local
network and unsecured external networks (Internet). A DMZ usually contains
servers that provide services to users on the external network, such as Web,
mail and DNS servers that are hardened systems. Typically, two firewalls are
installed to form the DMZ.

Table 8: List of real time attacks and their generation tools

Attack name Generation
tool

Attack name Generation tool

1.bonk targa2.c 15.linux-icmp linux-icmp.c

2.jolt targa2.c 16.syn-flood synflood.c

3.land targa2.c 17.window-scan nmap/rnmap

4.saihyousen targa2.c 18.syn-scan nmap/rnmap

5.teardrop targa2.c 19.xmasstree-scan nmap/rnmap

6.newtear targa2.c 20.fin-scan nmap/rnmap

7.1234 targa2.c 21.null-scan nmap/rnmap

8.winnuke targa2.c 22.udp-scan nmap/rnmap

9.oshare targa2.c 23.syn-
flood(DDoS)

LOIC

10.nestea targa2.c 24.rst-flood(DDoS) Trinity v3

11.syndrop targa2.c 25.udp-
flood(DDoS)

LOIC

12.smurf smurf4.c 26.ping-
flood(DDoS)

DDoS ping v2.0

13.opentear opentear.c 27.fraggle udp-
flood(DDoS)

Trinoo

14.fraggle fraggle.c 28.smurf icmp-
flood(DDoS)

TFN2K

3.3 Attack Scenarios

The attack scenarios start with information gathering tech-
niques collecting target network IP ranges, identities of name
servers, mail servers and user e-mail accounts, etc. This is
achieved by querying the DNS for resource records using net-
work administrative tools like nslookup and dig. We consider
six attack scenarios when collecting real time network traffic
for dataset generation.

3.3.1 Scenario 1: Denial of Service Using Targa

This attack scenario is designed to perform attacks on a target
using the targa8 tool until it is successful. Targa is a very pow-
erful tool to quickly damage a particular network belonging to
an organization. We ran targa by specifying different parame-
ter values such as IP ranges, attacks to run and number of times
to repeat the attack.

3.3.2 Scenario 2: Probing Using nmap

In this scenario, we attempt to acquire information about the
target host and then launch the attack by exploiting the vulner-
abilities found using the nmap9 tool. Examples of attacks that
can be launched by this method are syn-scan and ping-sweep.

3.3.3 Scenario 3: Coordinated Scan Using rnmap

This scenario starts with a goal to perform coordinated port
scans to single and multiple targets. Tasks are distributed

8http://packetstormsecurity.com/
9http://nmap.org/

International Journal of Network Security, Vol.17, No.6, PP.683-701, Nov. 2015 690

Figure 2: Testbed network architecture used during TUIDS dataset generation

Figure 3: Testbed network architecture used during DDoS dataset generation

among multiple hosts for individual actions which may be syn-
chronized. We use the rnmap10 tool to launch coordinated
scans in our testbed network during the collection of traffic.

3.3.4 Scenario 4: User to Root Using Brute Force ssh

These attacks are very common against networks as they tend
to break into accounts with weak username and password com-

10http://rnmap.sourceforge.net/

binations. This attack has been designed with the goal of ac-
quiring an SSH account by running a brute force dictionary at-
tack against our central server. We use the brutessh11 tool and
a customized dictionary list. The dictionary consists of over
6100 alphanumeric entries of varying length. We executed the
attack for 60 minutes, during which superuser credentials were
returned from the server. This ID and password combination
was used to download other users’ credentials immediately.

11http://www.securitytube-tools.net/

International Journal of Network Security, Vol.17, No.6, PP.683-701, Nov. 2015 691

3.3.5 Scenario 5: Distributed Denial of Service Using
Agent-handler Network

This scenario mainly attempts to exploit an agent handler net-
work to launch the DDoS attack in the TUIDS testbed net-
work. The agent-handler network consists of clients, handlers
and agents. The handlers are software packages that are used
by the attacker to communicate indirectly with the agents. The
agent software exists in compromised systems that will even-
tually carry out the attack on the victim system. The attacker
may communicate with any number of handlers, thus making
sure that the agents are up and running. We use Trinity v3,
TFN2K, Trinoo, and DDoS ping 2.0 to launch the attacks in
our testbed.

3.3.6 Scenario 6: Distributed Denial of Service Using IRC
Botnet

Botnets are an emerging threat to all organizations because
they can compromise a network and steal important informa-
tion and distribute malware. Botnets combine individual ma-
licious behaviors into a single platform by simplifying the ac-
tions needed to be performed by users to initiate sophisticated
attacks against computers or networks around the world. These
behaviors include coordinated scanning, DDoS activities, di-
rect attacks, indirect attacks and other deceitful activities tak-
ing place across the Internet.

The main goal of this scenario is to perform distributed at-
tacks using infected hosts on the testbed. An Internet Relay
Chat (IRC) bot network allow users to create public, private
and secret channels. For this, we use a LOIC12, an IRC-based
DDoS attack generation tool. The IRC systems have sev-
eral other significant advantages for launching DDoS attacks.
Among the three important benefits are (i) they afford a high
degree of anonymity, (ii) they are difficult to detect, and (iii)
they provide a strong, guaranteed delivery system. Further-
more, the attacker no longer needs to maintain a list of agents,
since he can simply log on to the IRC server and see a list of
all available agents. The IRC channels receive communica-
tions from the agent software regarding the status of the agents
(i.e., up or down) and participate in notifying the attackers re-
garding the status of the agents.

3.4 Capturing Traffic
The key tasks in network traffic monitoring are lossless packet
capturing and precise timestamping. Therefore, software or
hardware is required with a guarantee that all traffic is cap-
tured and stored. The real network traffic is captured using
the Libpcap [19, 20] library, an open source C library offer-
ing an interface for capturing link-layer frames over a wide
range of system architectures. It provides a high-level com-
mon Application Programming Interface (API) to the differ-
ent packet capture frameworks of various operating systems.
The offered abstraction layer allows programmers to rapidly
develop highly portable applications. A hierarchy of network
traffic capturing components is given in Figure 4 [10].

12http://sourceforge.net/projects/loic/

Figure 4: Hierarchy of Network Traffic Capturing Components

Libpcap defines a common standard format for files in
which captured frames are stored, also known as the tcpdump
format, currently a de facto standard used widely in public net-
work traffic archives. Modern kernel-level capture frameworks
on UNIX operating systems are mostly based on the BSD (or
Berkeley) Packet Filter (BPF) [28]. The BPF is a software de-
vice that taps network interfaces, copying packets into kernel
buffers and filtering out unwanted packets directly in interrupt
context. Definitions of packets to be filtered can be written
in a simple human readable format using Boolean operators
and can be compiled into a pseudo-code to be passed to the
BPF device driver by a system call. The pseudo-code is in-
terpreted by the BPF Pseudo-Machine, a lightweight, high-
performance, state machine specifically designed for packet
filtering. Libpcap also allows programmers to write appli-
cations that transparently support a rich set of constructs to
build detailed filtering expressions for most network protocols.
A few Libpcap system calls can be read directly from user’s
command line, compile into pseudo-code and passed it to the
Berkeley Packet Filter. Libpcap and the BPF interact to al-
low network packet data to traverse several layers to finally
be processed and transformed into capture files (i.e., tcpdump
format) or samples for statistical analysis.

With the goal of preparing both packet and flow level
datasets, we capture both packet and NetFlow traffic from dif-
ferent locations in the TUIDS testbed. The capturing period
started at 08:00:05 am on Monday February 21, 2011 and con-
tinuously ran for an exact duration of seven days, ending at
08:00:05 am on Sunday February 27th. Attacks were executed
during this period for the TUIDS intrusion and the coordinated
scan datasets. DDoS traffic was also collected for the same
amount of time but during October, 2012 with several varia-
tions of real time DDoS attacks. Figure 5 illustrates the pro-
tocol composition and the average throughput during the last
hour of data capture for the TUIDS intrusion dataset.

We use a tool known as lossless gigabit remote packet cap-
ture with Linux (Gulp13) for capturing packet level traffic in a
mirror port as shown in the TUIDS testbed architecture. Gulp
reads packets directly from the network card and writes to the
disk at a high rate of packet capture without dropping pack-
ets. For low-rate packets, Gulp flushes the ring buffer if it
has not written anything in the last second. Gulp writes into

13http://staff.washington.edu/corey/gulp/

International Journal of Network Security, Vol.17, No.6, PP.683-701, Nov. 2015 692

Figure 5: (a) composition of protocols and (b) average throughput during last hour of data capture for the TUIDS intrusion
dataset seen in our lab’s traffic

even block boundaries for excellent writing performance when
the data rate increases. It stops filling the ring buffer after re-
ceiving an interrupt but it would write into the disk whatever
remains in the ring buffer.

In the last few years, NetFlow has become the most popular
approach for IP network monitoring, since it helps cope with
scalability issues introduced by increasing network speeds.
Now major vendors offer flow-enabled devices, such as Cisco
routers with NetFlow. A NetFlow is a stream of packets that
arrives on a source interface with the key values shown in
Figure 6. A key is an identified value for a field within the
packet. Cisco routers have NetFlow features that can be en-
abled to generate NetFlow records. The principle of NetFlow
is as follows: When the router receives a packet, its NetFlow
module scans the source IP address, the destination IP address,
the source port number, the destination port number, the proto-
col type, the type of service (ToS) bit in the IP header, and the
input or output interface number on the router of the IP packet
to judge whether it belongs to a NetFlow record that already
exists in the cache. If so, it updates the NetFlow record; oth-
erwise, a new NetFlow record is generated in the cache. The
expired NetFlow records in the cache are exported periodically
to a destination IP address using a UDP port.

For capturing the NetFlow traffic, we need a NetFlow col-
lector that can listen to a specific UDP port for getting traffic.
The NetFlow collector captures exported traffic from multiple
routers and periodically stores it in summarized or aggregated
format into a round robin database (RRD). The following tools
are used to capture and visualize the NetFlow traffic.

Figure 6: Common NetFlow parameters

(a) NFDUMP: This tool captures and displays NetFlow traf-
fic. All versions of nfdump support NetFlow v5, v7, and v9.
nfcapd is a NetFlow capture daemon that reads the NetFlow
data from the routers and stores the data into files periodically.
It automatically rotates files every n minutes (by default it is
5 minutes). We need one nfcapd process for each NetFlow
stream. Nfdump reads the NetFlow data from the files stored
by nfcapd. The syntax is similar to that of tcpdump. Nfdump
displays NetFlow data and can create top N statistics for flows
based on the parameters selected. The main goal is to analyze
NetFlow data from the past as well as to track interesting traffic

International Journal of Network Security, Vol.17, No.6, PP.683-701, Nov. 2015 693

Table 9: Parameters identified for packet level data
Sl.
No.

Parameter
name

Description

1 Time Time since occurrence of first frame
2 Frame No Frame number
3 Frame Len Length of a frame
4 Capture Len Capture length
5 TTL Time to live
6 Protocol Protocols (such as, TCP, UDP, ICMP etc.)
7 Src IP Source IP address
8 Dst IP Destination IP address
9 Src port Source port
10 Dst port Destination port
11 Len Data length
12 Seq No Sequence number
13 Header Len Header length
14 CWR Congestion window record
15 ECN Explicit congestion notification
16 URG Urgent TCP flag
17 ACK Acknowledgement flag
18 PSH Push flag
19 RST Reset flag
20 SYN TCP syn flag
21 FIN TCP fin flag
22 Win Size Window Size
23 MSS Maximum segment size

patterns continuously from high speed networks. The amount
of time from the past is limited only by the disk space available
for all NetFlow data.

Nfdump has four fixed output formats: raw, line, long and
extended. In addition, the user may specify any desired out-
put format by customizing it. The default format is line, un-
less specified. The raw format displays each record in multiple
lines and prints any available information in the traffic record.
(b) NFSEN: NfSen is a graphical Web based front end tool for
visualization of NetFlow traffic. NfSen facilitates the visual-
ization of several traffic statistics, e.g., flow-wise statistics for
various features, navigation through the NetFlow traffic, pro-
cesses within a time span and continuous profiles. It can also
add own plugins to process NetFlow traffic in a customized
manner at a regular time interval.

Normal traffic is captured by restricting it to the internal
networks, where 80% of the hosts are connected to the router,
including wireless networks. We assume that normal traf-
fic follows the normal probability distribution. Attack traffic
is captured as we launch various attacks in the testbed for a
week. For DDoS attacks, we used packet-craft14 to generate
customized packets. Figures 7 and 8 show the number of flows
per second and also the protocol-wise distribution of flows dur-
ing the capturing period, respectively.

3.5 Feature Extraction

We use wireshark and Java routines for filtering unwanted
packets (such as packets with routing protocols, and packets
with application layer protocols) as well as irrelevant informa-
tion from captured packets. Finally, we retrieve all relevant
information from each packet using Java routines and store it

14http://www.packet-craft.net/

Figure 7: Number of flows per second in TUIDS intrusion
datasets during the capture period

Figure 8: Protocol-wise distribution of flow per second in TU-
IDS intrusion dataset during the capture period

in comma separated form in a text file. The details of parame-
ters identified for packet level data are shown in Table 9.

We developed several C routines and used them for filter-
ing NetFlow data and for extracting features from the captured
data. A detailed list of parameters identified for flow level data

International Journal of Network Security, Vol.17, No.6, PP.683-701, Nov. 2015 694

is given in Table 10.
We capture, preprocess and extract various features in both

packet and flow level network traffic. We introduce a frame-
work for fast distributed feature extraction from raw network
traffic, correlation computation and data labelling, as shown
in Figure 9. We extract four types of features: basic, content
based, time based and connection based, from the raw network
traffic. We use T = 5 seconds as the time window for extrac-
tion of both time based and connection based traffic features.
S1 and S2 are servers used for preprocessing, attack labelling
and profile generation. WS1 and WS2 are high-end worksta-
tions used for basic feature extraction and merging packet and
NetFlow traffic. N1, N2, · · ·N6 are independent nodes used
for protocol specific feature extraction. The lists of extracted
features at both packet and flow levels for the intrusion datasets
are presented in Table 11 and Table 12, respectively. The list
of features available in the KDDcup99 intrusion dataset is also
shown in Table 13.

Table 10: Parameters identified for flow level data
Sl.
No.

Parameter
name

Description

1 flow-start Starting of flow
2 Duration Total life time of a flow
3 Proto Protocol, i.e., TCP, UDP, ICMP etc.
3 Src-IP Source IP address
4 Src-port Source port
5 Dest-IP Destination IP address
6 Dest-port Destination port
7 Flags TCP flags
8 ToS Type of Service
9 Packets Packets per flow
10 Bytes Bytes per flow
11 Pps Packet per second
12 Bps Bit per second
13 Bpp Byte per packet

3.6 Data Processing and Labelling
As reported in the previous section, traffic features are ex-
tracted separately (within a time interval). So, it is impor-
tant to correlate each feature (i.e., basic, content based, time
based, and connection based) to a time interval. Once cor-
relation is performed for both packet and flow level traffic,
labelling of each feature data as normal or anomalous is im-
portant. The labelling process enriches the feature data with
information such as (i) the type and structure of malicious or
anomalous data, and (ii) dependencies among different iso-
lated malicious activities. The correlation and labelling of each
feature traffic as normal or anomalous is made using Algorithm
1. F = {α, β, γ, δ} is the set of extracted features, where α
is the set of basic features, β is the set of content-based fea-
tures, γ is the set of time-based features and δ is the set of
connection-based features. Both normal and anomalous traf-
fic are collected separately in several sessions within a week.
We remove normal traffic from anomalous traces as much as
possible.

The overall traffic composition with protocol distribution in
the generated datasets is summarized in Table 14. The traffic

Algorithm 1 : FC and labelling (F)
Input: extracted feature set, F = {α, β, γ, δ}
Output: correlated and labelled feature data, D

1: initialize D
2: call FeatureExtraction(), F ← {α, β, γ, δ}, . the pro-

cedure FeatureExtraction() extracts the features separately
for all cases

3: for i← 1 to |N | do . N is the total traffic instances
4: for i← 1 to |F | do . F is the total traffic features
5: if (unique(src.ip ∧ dst.ip)) then
6: store D[ij]← αij , βij
7: end if
8: if ((T == 5s) ∧ (LnP == 100)) then . T is the

time window, LnP is the last n packets
9: Store D[ij]← γij , δij

10: end if
11: end for
12: D[ij]← {normal, attack} .

label each traffic feature instance based on the duration of
the collected traffic

13: end for

includes the TUIDS intrusion dataset, the TUIDS coordinated
scan dataset and the TUIDS DDoS dataset. The final labelled
feature datasets for each category with the distribution of nor-
mal and attack information are summarized in Table 15. All
datasets are prepared at both packet and flow levels and pre-
sented in terms of training and testing in Table 15.

3.7 Comparison with Other Public Datasets
Several real network traffic traces are readily available to the
research community as reported in Section 2. Although these
traffic traces are invaluable to the research community most
if not all, fail to satisfy one or more requirements described
in Section 1. This paper is mostly distinguished by the fact
that the issue of data generation is approached from what other
datasets have been unable to provide, for the network secu-
rity community. It attempts to resolve the issues seen in other
datasets by presenting a systematic approach to generate real-
life network intrusion datasets. Table 16 summarizes a com-
parison between the prior datasets and the dataset generated
through the application of our systematic approach to fulfill
the principal objectives outlined for qualifying dataset.

Most datasets are unlabelled as labelling is labor-intensive
and requires a comprehensive search to tag anomalous traffic.
Although an IDS helps by reducing the work, there is no guar-
antee that all anomalous activity is labelled. This has been a
major issue with all datasets and one of the reasons behind the
post insertion of attack traffic in the DARPA 1999 dataset, so
that anomalous traffic can be labelled in a deterministic man-
ner. Having seen the inconsistencies produced by traffic merg-
ing, this paper has adopted a different approach to provide the
same level of deterministic behavior with respect to anomalous
traffic by conducting anomalous activity within the capturing
period using available network resources. Through the use of
logging, all ill-intended activity can be effectively labelled.

International Journal of Network Security, Vol.17, No.6, PP.683-701, Nov. 2015 695

Figure 9: Fast distributed feature extraction, correlation and labelling framework

The extent and scope of network traffic capture become
relevant in situations where the information contained in the
traces may breach the privacy of individuals or organizations.
In order to prevent privacy issues, almost all publicly avail-
able datasets remove any identifying information such as pay-
load, protocol, destination and flags. In addition, the data is
anonymized where necessary header information is cropped or
flows are just summarized.

In addition to anomalous traffic, traces must contain back-
ground traffic. Most captured datasets have little control over
the anomalous activities included in the traces. However, a
major concern with evaluating anomaly based detection ap-
proaches is the requirement that anomalous traffic must be
present at a certain scale. Anomalous traffic also tends to be-
come outdated with the introduction of more sophisticated at-
tacks. So, we have generated more up-to-date datasets that
reflect the current trends and are tailored to evaluate certain
characteristics of detection mechanisms which are unique to
themselves.

As discussed earlier, several datasets are available for evalu-
ating an IDS. Network intrusion detection researchers evaluate
detection methods using intrusion datasets to demonstrate how
their methods can handle recent attacks and network environ-
ments. We have used our datasets to evaluate several network
intrusion detection methods. Some of them are outlier-based
network anomaly detection approach (NADO) [4], an unsu-
pervised method [3, 6], an adaptive outlier-based coordinated
scan detection approach (AOCD) [5], and a multi-level hybrid
IDS (MLH-IDS) [15]. We found better results in almost all the
experiments when we used TUIDS dataset in terms of false
positive rate, true positive rate and F-measure.

3.8 Comparison with Other Relevant Work

Our approach differs from other works as follows.

• The NSL-KDD [32] dataset is an enhanced version of
the KDDcup99 intrusion dataset prepared by Tavallaee
et al. [43]. This dataset is too old to evaluate a mod-
ern detection method or a system that has been devel-
oped recently. It removes repeated traffic records from
the old KDDcup99 dataset. In contrast, our datasets are
prepared using diverse attack scenarios incorporating re-
cent attacks. Our datasets contain both packet and flow
level information that help detect attacks more effectively
in high speed networks.

• Song et al. [39] prepared the KU dataset and used the
dataset to evaluate an unsupervised network anomaly de-
tection method. This dataset contains 17 different features
at packet level only. In contrast, we present a systematic
approach to generate real-life network intrusion datasets
and prepared three different categories of datasets at both
packet and flow levels.

• Like Shiravi et al. [37], our approach considers recently
developed attacks and attacks on network layers when
generating the datasets. Shiravi et al. concentrate mostly
on application-layer attacks. They build profiles for dif-
ferent real-world attack scenarios and use them to gener-
ate traffic that follows the same behavior while generating
the dataset at packet level. In comparison, we generate
three different categories of datasets at both packet and
flow levels for the research community to evaluate detec-
tion methods or systems. Since we have extracted more
number of features at both packet and flow levels. Our

International Journal of Network Security, Vol.17, No.6, PP.683-701, Nov. 2015 696

Table 11: List of packet level features in TUIDS intrusion dataset
Label/feature name Type Description
Basic features
1. Duration C Length (number of seconds) of the connection
2. Protocol-type D Type of protocol, e.g., tcp, udp, etc.
3. Src-ip C Source host IP address
4. Dest-ip C Destination IP address
5. Src-port C Source host port number
6. Dest-port C Destination host port number
7. Service D Network service at the destination, e.g., http, telnet, etc.
8. num-bytes-src-dst C The number of data bytes flowing from source to destination
9. num-bytes-dst-src C The number of data bytes flowing from destination to source
10. Fr-no C Frame number
11. Fr-len C Frame length
12. Cap-len C Captured frame length
13. Head-len C Header length of the packet
14. Frag-off D Fragment offset: ‘1’ for the second packet overwrite everything, ‘0’ otherwise
15. TTL C Time to live: ‘0’ discards the packet
16. Seq-no C Sequence number of the packet
17. CWR D Congestion window record
18. ECN D Explicit congestion notification
19. URG D Urgent TCP flag
20. ACK D Acknowledgement flag value
21. PSH D Push TCP flag
22. RST D Reset TCP flag
23. SYN D Syn TCP flag
24. FIN D Fin TCP flag
25. Land D 1 if connection is from/to the same host/port; 0 otherwise
Content-based features
26. Mss-src-dest-requested C Maximum segment size from source to destination requested
27. Mss-dest-src-requested C Maximum segment size from destination to source requested
28. Ttt-len-src-dst C Time to live length from source to destination
29. Ttt-len-dst-src C Time to live length from destination to source
30. Conn-status C Status of the connection (e.g., ‘1’ for complete, ‘0’ for reset)
Time-based features
31. count-fr-dest C Number of frames received by unique destinations in the last T seconds from the same source
32. count-fr-src C Number of frames received from unique sources in the last T seconds from the same destination
33. count-serv-src C Number of frames from the source to the same destination port in the last T seconds
34. count-serv-dest C Number of frames from destination to the same source port in the last T seconds
35. num-pushed-src-dst C The number of pushed packets flowing from source to destination
36. num-pushed-dst-src C The number of pushed packets flowing from destination to source
37. num-SYN-FIN-src-dst C The number of SYN/FIN packets flowing from source to destination
38. num-SYN-FIN-dst-src C The number of SYN/FIN packets flowing from destination to source
39. num-FIN-src-dst C The number of FIN packets flowing from source to destination
40. num-FIN-dst-src C The number of FIN packets flowing from destination to source
Connection-based features
41. count-dest-conn C Number of frames to unique destinations in the last N packets from the same source
42. count-src-conn C Number of frames from unique sources in the last N packets to the same destination
43. count-serv-srcconn C Number of frames from the source to the same destination port in the last N packets
44. count-serv-destconn C Number of frames from the destination to the same source port in the last N packets
45. num-packets-src-dst C The number of packets flowing from source to destination
46. num-packets-dst-src C The number of packets flowing from destination to source
47. num-acks-src-dst C The number of acknowledgement packets flowing from source to destination
48. num-acks-dst-src C The number of acknowledgement packets flowing from destination to source
49. num-retransmit-src-dst C The number of retransmitted packets flowing from source to destination
50. num-retransmit-dst-src C The number of retransmitted packets flowing from destination to source
C-Continuous, D-Discrete

datasets will help to identify individual attacks in more
effectively in high speed networks.

4 Observations and Conclusion

Several questions may be raised with respect to what consti-
tutes a perfect dataset when dealing with the datasets gener-
ation task. These include qualities of normal, anomalous or
realistic traffic included in the dataset. We provide a path and
a template to generate a dataset that simultaneously exhibits
the appropriate levels of normality, anomalousness and real-
ism while avoiding the various weak points of currently avail-
able datasets, pointed out earlier. Quantitative measurements
can be obtained only when specific methods are applied to the
dataset.

The following are the major observations and requirements
when generating an unbiased real-life dataset for intrusion de-
tection.

• The dataset should not exhibit any unintended property in
both normal and anomalous traffic.

• The dataset should be labelled properly.

• The dataset should cover all possible current network sce-
narios.

• The dataset should be entirely nonanonymized.

• In most benchmark datasets, the two basic assumptions
described in Section 1 are valid but this bias should be
avoided as much as possible.

International Journal of Network Security, Vol.17, No.6, PP.683-701, Nov. 2015 697

Table 12: List of flow level features in TUIDS intrusion dataset
Label/feature name Type Description
Basic features
1. Duration C Length (number of seconds) of the flow
2. Protocol-type D Type of protocol, e.g., TCP, UDP, ICMP
3. Src-ip C Source host IP address
4. Dest-ip C Destination IP address
5. Src-port C Source host port number
6. Dest-port C Destination host port number
7. ToS D Type of service
8. URG D TCP urgent flag
9. ACK D TCP acknowledgement flag
10. PSH D TCP push flag
11. RST D TCP reset flag
12. SYN D TCP SYN flag
13. FIN D TCP FIN flag
14. Src-bytes C Number of data bytes transfered from source to destination
15. Dest-bytes C Number of data bytes transfered from destination to source
16. Land D 1 if connection is from/to the same host/port; 0 otherwise
Content-based features
17. Conn-status C Status of the connection (e.g., ‘1’ for complete, ‘0’ for reset)
Time-based features
18. count-dest C Number of flows to unique destination IPs in the last T seconds from the same source
19. count-src C Number of flows from unique source IPs in the last T seconds to the same destination
20. count-serv-src C Number of flows from the source to the same destination port in the last T seconds
21. count-serv-dest C Number of flows from the destination to the same source port in the last T seconds
Connection-based features
22. count-dest-conn C Number of flows to unique destination IPs in the last N flows from the same source
23. count-src-conn C Number of flows from unique source IPs in the last N flows to the same destination
24. count-serv-srcconn C Number of flows from the source IP to the same destination port in the last N flows
25. count-serv-destconn C Number of flows to the destination IP to the same source port in the last N flows
C-Continuous, D-Discrete

• Several datasets lack traffic features, although it is impor-
tant to extract traffic features with their relevancy for a
particular attack.

Despite the effort needed to create unbiased datasets, there
will always be deficiencies in any one particular dataset.
Therefore, it is very important to generate dynamic datasets
which not only reflect the traffic compositions and intrusions
types of the time, but are also modifiable, extensible, and re-
producible. Therefore, new datasets must be generated from
time to time for the purpose of analysis, testing and evalua-
tion of network intrusion detection methods and systems from
multiple perspectives.

In this paper, we provide a systematic approach to generate
real-life network intrusion datasets using both packet and flow
level traffic information. Three different types of datasets has
been generated using the TUIDS testbed. They are (i) the TU-
IDS intrusion dataset, (ii) the TUIDS coordinated scan dataset,
and (iii) the TUIDS DDoS dataset. We incorporate the maxi-
mum number of possible attacks and scenarios when generat-
ing the datasets on our testbed network.

Acknowledgments

This work is partially supported by Department of Information
Technology (DIT) and Council of Scientific & Industrial Re-
search (CSIR), Government of India. The authors are thankful
to the funding agencies and also gratefully acknowledge the
anonymous reviewers for their valuable comments.

References

[1] M. H. Bhuyan, D. K. Bhattacharyya, and J. K. Kalita,
“RODD: An effective reference-based outlier detection
technique for large datasets,” in Proceedings of First In-
ternational Conference on Computer Science and Infor-
mation Technology, pp. 76–84, Bangalore, India, 2011.

[2] M. H. Bhuyan, D. K. Bhattacharyya, and J. K. Kalita,
“Network anomaly detection: Methods, systems and
tools,” IEEE Communications Surveys and Tutorials,
vol. 16, no. 1, pp. 303–336, 2014.

[3] M. H. Bhuyan, D. K. Bhattacharyya, and J. K. Kalita,
“Towards an unsupervised method for network anomaly
detection in large datasets,” Computing and Informatics,
vol. 33, no. 1, pp. 1–34, 2014.

[4] M. H. Bhuyan, D. K. Bhattacharyya, and J. K. Kalita,
“NADO: Network anomaly detection using outlier ap-
proach,” in Proceedings of ACM International Con-
ference on Communication, Computing & Security,
pp. 531–536, New York, USA, 2011.

[5] M. H. Bhuyan, D. K. Bhattacharyya, and J. K. Kalita,
“AOCD: An adaptive outlier based coordinated scan de-
tection approach,” International Journal of Network Se-
curity, vol. 14, no. 6, pp. 339–351, 2012.

[6] M. H. Bhuyan, D. K. Bhattacharyya, and J. K. Kalita,
“An effective unsupervised network anomaly detection
method,” in Proceedings of ACM International Confer-
ence on Advances in Computing, Communications and
Informatics, pp. 533–539, New York, USA, 2012.

[7] CACE Technologies, WinPcap, June 2015.
(http://www.winpcap.org)

[8] CAIDA, The Cooperative Analysis for Internet Data
Analysis, 2011. (http://www.caida.org)

International Journal of Network Security, Vol.17, No.6, PP.683-701, Nov. 2015 698

Table 13: List of features in the KDDcup99 intrusion dataset
Label/feature name Type Description
Basic features
1. Duration C Length (number of seconds) of the connection
2. Protocol-type D Type of protocol, e.g., tcp, udp, etc.
3. Service D Network service at the destination, e.g., http, telnet, etc.
4. Flag D Normal or error status of the connection
5. Src-bytes C Number of data bytes from source to destination
6. Dst-bytes C Number of data bytes from destination to source
7. Land D 1 if connection is from/to the same host/port; 0 otherwise
8. Wrong-fragment C Number of “wrong” fragments
9. Urgen C Number of urgent packets
Content-based features
10. Hot C Number of “hot” indicators (hot: number of directory accesses, create and execute program)
11. Num-failed-logins C Number of failed login attempts
12. Logged-in D 1 if successfully logged-in; 0 otherwise
13. Num-compromised C Number of “compromised” conditions (compromised condition: number of file/path not found errors and jumping commands)
14. Root-shell D 1 if root-shell is obtained; 0 otherwise
15. Su-attempted D 1 if “su root” command attempted; 0 otherwise
16. Num-root C Number of “root” accesses
17. Num-file-creations C Number of file creation operations
18. Num-shells C Number of shell prompts
19. Num-access-files C Number of operations on access control files
20. Num-outbound-cmds C Number of outbound commands in an ftp session
21. Is-host-login D 1 if login belongs to the “hot” list; 0 otherwise
22. Is-guest-login D 1 if the login is a “guest” login; 0 otherwise
Time-based features
23. Count C Number of connections to the same host as the current connection in the past 2 seconds
24. Srv-count C Number of connections to the same service as the current connection in the past 2 seconds (same-host connections)
25. Serror-rate C % of connections that have “SYN” errors (same-host connections)
26. Srv-serror-rate C % of connections that have “SYN” errors (same-service connections)
27. Rerror-rate C % of connections that have “REJ” errors (same-host connections)
28. Srv-rerror-rate C % of connections that have “REJ” errors (same-service connections)
29. Same-srv-rate C % of connections to the same service (same-host connections)
30. Diff-srv-rate C % of connections to different services (same-host connections)
31. Srv-diff-host-rate C % of connections to different hosts (same-service connections)
Connection-based features
32. Dst-host-count C Count of destination hosts
33. Dst-host-srv-count C Srv count for destination host
34. Dst-host-same-srv-rate C Same srv rate for destination host
35. Dst-host-diff-srv-rate C Diff srv rate for destination host
36. Dst-host-same-src-port-rate C Same src port rate for destination host
37. Dst-host-srv-diff-host-rate C Diff host rate for destination host
38. Dst-host-serror-rate C Serror rate for destination host
39. Dst-host-srv-serror-rate C Srv serror rate for destination host
40. Dst-host-rerror-rate C Rerror rate for destination host
41. Dst-host-srv-rerror-rate C Srv rerror rate for destination host
C-Continuous, D-Discrete

Table 14: TUIDS dataset traffic composition
Protocol Size (MB) (%)
(a) Total traffic composition
IP 66784.29 99.99
ARP 3.96 0.005
IPv6 0.00 0.00
IPX 0.00 0.00
STP 0.00 0.00
Other 0.00 0.00
(b) TCP/UDP/ICMP traffic composi-
tion
TCP 49049.29 73.44%
UDP 14940.53 22.37%
ICMP 2798.43 4.19%
ICMPv6 0.00 0.00
Other 0.00 0.00

[9] A. Cemerlic, L. Yang, and J.M. Kizza, “Network intru-
sion detection based on bayesian networks,” in Proceed-
ings of the 20th International Conference on Software
Engineering and Knowledge Engineering, pp. 791–794,
San Francisco, USA, 2008.

[10] A. Dainotti and A. Pescape, “PLAB: A packet cap-
ture and analysis architecture,” 2004. (http://traffic.
comics.unina.it/software/ITG/D-ITGpublications/TR-

DIS-122004.pdf)
[11] DEFCON, The SHMOO Group, 2011. (http://cctf.

shmoo.com/)
[12] L. Delooze, Applying Soft-Computing Techniques to

Intrusion Detection, Ph.D. Thesis, Computer Science
Department, University of Colorado, Colorado Springs,
2005.

[13] D. E. Denning, “An intrusion-detection model,” IEEE
Transactions on Software Engineering, vol. 13, pp. 222–
232, Feb. 1987.

[14] A. A. Ghorbani, W. Lu, and M. Tavallaee, “Network at-
tacks,” in Network Intrusion Detection and Prevention,
pp. 1–25, Springer-verlag, 2010.

[15] P. Gogoi, D. K. Bhattacharyya, B. Bora, and J. K.
Kalita, “MLH-IDS: A multi-level hybrid intrusion detec-
tion method,” The Computer Journal, vol. 57, pp. 602–
623, May 2014.

[16] P. Gogoi, M. H. Bhuyan, D. K. Bhattacharyya, and
J. K. Kalita, “Packet and flow-based network intrusion
dataset,” in Proceedings of the 5th International Con-
ference on Contemporary Computing, LNCS-CCIS 306,
pp. 322–334, Springer, 2012.

International Journal of Network Security, Vol.17, No.6, PP.683-701, Nov. 2015 699

Table 15: Distribution of normal and attack connection instances in real time packet and flow level TUIDS datasets
Dataset type

Connection type Training dataset Testing dataset

(a) TUIDS intrusion dataset
Packet level
Normal 71785 58.87% 47895 55.52%
DoS 42592 34.93% 30613 35.49%
Probe 7550 6.19% 7757 8.99%
Total 121927 - 86265 -
Flow level
Normal 23120 43.75% 16770 41.17%
DoS 21441 40.57% 14475 35.54%
Probe 8282 15.67% 9480 23.28%
Total 52843 - 40725 -
(b) TUIDS coordinated scan dataset
Packet level
Normal 65285 90.14% 41095 84.95%
Probe 7140 9.86% 7283 15.05%
Total 72425 - 48378 -
Flow level
Normal 20180 73.44% 15853 65.52%
Probe 7297 26.56% 8357 34.52%
Total 27477 - 24210 -
(c) TUIDS DDoS dataset
Packet level
Normal 46513 68.62% 44328 60.50%
Flooding attacks 21273 31.38% 28936 39.49%
Total 67786 - 73264 -
Flow level
Normal 27411 57.67% 28841 61.38%
Flooding attacks 20117 42.33% 18150 38.62%
Total 47528 - 46991 -

Table 16: Comparison of existing datasets and their characteristics
Dataset u v w No. of instances No. of attributes x y z Some references
Synthetic No No Yes user dependent user dependent Not known any user dependent [4, 1]
KDDcup99 Yes No Yes 805050 41 BCTW P C1 [48, 33, 47, 31]
NSL-KDD Yes No Yes 148517 41 BCTW P C1 [43]
DARPA 2000 Yes No No Huge Not known Raw Raw C2 [37]
DEFCON No No No Huge Not known Raw P C2 [37]
CAIDA Yes Yes No Huge Not known Raw P C1 [37]
LBNL Yes Yes No Huge Not known Raw P C2 [46]
Endpoint Yes Yes No Huge Not known Raw P C2, C3 [46]
UNIBS Yes Yes No Huge Not known Raw P C2 [46]
ISCX-UNB Yes Yes Yes Huge Not known Raw P A [37]
KU Yes Yes No Huge 24 BTW P C1 [39]
TUIDS Yes Yes Yes Huge 50,24 BCTW P,F C1 [4, 1]
u-realistic network configuration
v-indicates realistic traffic
w-describes the label information
x-types of features extracted as basic features (B), content based features (C), time based features(T)

and window based features(W)
y-explains the types of data as packet based (P) or flow based (F) or hybrid (H) or others (O)
z-represents the attack category as C1-all attacks, C2-denial of service, C3-probe, C4-user to root,
C5-remote to local, and A-application layer attacks

[17] D. Hoplaros, Z Tari, and I. Khalil, “Data summarization
for network traffic monitoring,” Journal of Network and
Computer Applications, vol. 37, pp. 194–205, 2014.

[18] Information Systems Technology Group MIT Lin-
coln Lab, DARPA Intrusion Detection Data Sets,
Mar. 2000. (http://www.ll.mit.edu/mission/ communica-
tions/ist/corpora/ideval/data/2000data.html)

[19] V. Jacobson, C. Leres, and S. McCanne, “The tcpdump
manual page,” Lawrence Berkeley Laboratory, Berkeley,
CA, 1989.

[20] V. Jacobson, C. Leres, and S. McCanne, “Libpcap,”
Lawrence Berkeley Laboratory, Berkeley, CA, Initial
public release, June 1994.

[21] KDDcup99, “Knowledge discovery in databases
DARPA archive,” 1999. (https://archive.ics.uci.edu/ml/

databases/kddcup99/)
[22] K. Kendall, A Database of Computer Attacks for the

Evaluation of Intrusion Detection Systems, Master’s The-
sis, MIT, 1999.

[23] Lawrence Berkeley National Laboratory (LBNL),
ICSI, LBNL/ICSI Enterprise Tracing Project, 2005.
(http://www.icir.org/enterprise-tracing/)

[24] A. Lazarevic, L. Ertoz, V. Kumar, A. Ozgur, and J. Sri-
vastava, “A comparative study of anomaly detection
schemes in network intrusion detection,” in Proceedings
of the 3rd SIAM International Conference on Data Min-
ing, pp. 25–36, 2003.

[25] B. Li, J. Springer, G. Bebis, and M. H. Gunes, “A sur-
vey of network flow applications,” Journal of Network

International Journal of Network Security, Vol.17, No.6, PP.683-701, Nov. 2015 700

and Computer Applications, vol. 36, no. 2, pp. 567–581,
2013.

[26] R. P. Lippmann, D. J. Fried, I. Graf, et al., “Evaluating
intrusion detection systems: The 1998 DARPA offline
intrusion detection evaluation,” in Proceedings of the
DARPA Information Survivability Conference and Expo-
sition, pp. 12–26, 2000.

[27] M. V. Mahoney and P. K. Chan, “An analysis of the 1999
DARPA/Lincoln laboratory evaluation data for network
anomaly detection,” in Proceedings of the 6th Interna-
tional Symposium on Recent Advances in Intrusion De-
tection, pp. 220–237, 2003.

[28] S. McCanne and V. Jacobson, “The BSD packet fil-
ter: A new architecture for user level packet capture,”
in Proceedings of the Winter 1993 USENIX Conference,
pp. 259–269, 1993.

[29] J. McHugh, “Testing intrusion detection systems: a cri-
tique of the 1998 and 1999 DARPA intrusion detection
system evaluations as performed by lincoln laboratory,”
ACM Transactions on Information and System Security,
vol. 3, pp. 262–294, Nov. 2000.

[30] P. Mell, V. Hu, R. Lippmann, J. Haines, and M. Zissman,
An Overview of Issues in Testing Intrusion Detection Sys-
tems, 2003. (http://citeseer.ist.psu.edu/621355.html)

[31] Z. Muda, W. Yassin, M. N. Sulaiman, and N. I. Udzir,
“A K-means and naive bayes learning approach for bet-
ter intrusion detection,” Information Technology Journal,
vol. 10, no. 3, pp. 648–655, 2011.

[32] NSL-KDD, NSL-KDD Data Set for Network-based
Intrusion Detection Systems, Mar. 2009. (http://iscx.cs.
unb.ca/NSL-KDD/)

[33] M. E. Otey, A. Ghoting, and S. Parthasarathy, “Fast dis-
tributed outlier detection in mixed-attribute data sets,”
Data Mining and Knowledge Discovery, vol. 12, no. 2-
3, pp. 203–228, 2006.

[34] R. Pang, M. Allman, M. Bennett, J. Lee, V. Paxson, and
B. Tierney, “A first look at modern enterprise traffic,” in
Proceedings of the 5th ACM SIGCOMM Conference on
Internet Measurement, pp. 2, Berkeley, USA, 2005.

[35] R. Pang, M. Allman, V. Paxson, and J. Lee, “The devil
and packet trace anonymization,” SIGCOMM Computer
Communication Review, vol. 36, no. 1, pp. 29–38, 2006.

[36] L. Portnoy, E. Eskin, and S. Stolfo, “Intrusion detection
with unlabeled data using clustering,” in Proceedings of
ACM CSS Workshop on Data Mining Applied to Security,
pp. 5–8, 2001.

[37] A. Shiravi, H. Shiravi, M. Tavallaee, and A. A. Ghorbani,
“Towards developing a systematic approach to generate
benchmark datasets for intrusion detection,” Computers
& Security, vol. 31, no. 3, pp. 357–374, 2012.

[38] J. Song, H. Takakura, and Y. Okabe, “Description
of kyoto university benchmark data,”. pp. 1–3. 2006.
(http://www.takakura.com/Kyoto data/BenchmarkData-
Description-v5.pdf)

[39] J. Song, H. Takakura, Y. Okabe, and K. Nakao, “Toward a
more practical unsupervised anomaly detection system,”
Information Sciences, vol. 231, pp. 4–14, Aug. 2013.

[40] A. Sperotto, R. Sadre, F. Vliet, and A. Pras, “A labeled
data set for flow-based intrusion detection,” in Proceed-
ings of the 9th IEEE International Workshop on IP Oper-
ations and Management, pp. 39–50, Venice, Italy, 2009.

[41] S. J. Stolfo, W. Fan, W. Lee, A. Prodromidis, and P. K.
Chan, “Cost-based modeling for fraud and intrusion de-
tection: Results from the JAM project,” in Proceedings of
the IEEE DARPA Information Survivability Conference
and Exposition, vol. 2, pp. 130–144, USA, 2000.

[42] symantec.com, Symantec Security Response, June 2015.
(http://securityresponse.symantec.com/avcenter)

[43] M. Tavallaee, E. Bagheri, W. Lu, and A. A. Ghorbani,
“A detailed analysis of the KDD CUP 99 data set,” in
Proceedings of the 2nd IEEE International Conference
on Computational Intelligence for Security and Defense
Applications, pp. 53–58, USA, 2009.

[44] C. Thomas, V. Sharma, and N. Balakrishnan, “Usefulness
of DARPA dataset for intrusion detection system evalua-
tion,” in Proceedings of the Data Mining, Intrusion De-
tection, Information Assurance, and Data Networks Se-
curity, SPIE 6973, Orlando, FL, 2008.

[45] UNIBS, University of Brescia Dataset, 2009.
(http://www.ing.unibs.it/ntw/tools/traces/)

[46] J. Xu and C. R. Shelton, “Intrusion detection using con-
tinuous time bayesian networks,” Journal of Artificial In-
telligence Research, vol. 39, pp. 745–774, 2010.

[47] G. Zhang, S. Jiang, G. Wei, and Q. Guan, “A prediction-
based detection algorithm against distributed denial-of-
service attacks,” in Proceedings of the ACM International
Conference on Wireless Communications and Mobile
Computing: Connecting the World Wirelessly, pp. 106–
110, Leipzig, Germany, 2009.

[48] Y. F. Zhang, Z. Y. Xiong, and X. Q. Wang, “Distributed
intrusion detection based on clustering,” in Proceeding of
the International Conference on Machine Learning and
Cybernetics, vol. 4, pp. 2379–2383, Aug. 2005.

Monowar H. Bhuyan is an assistant professor in the Depart-
ment of Computer Science and Engineering at Kaziranga Uni-
versity, Jorhat, Assam, India. He received his Ph.D. in Com-
puter Science & Engineering from Tezpur University (a Cen-
tral University) in February 2014. He is a life member of IETE,
India. His research areas include data mining, cloud security,
computer and network security. He has published 20 papers
in international journals and referred conference proceedings.
He is on the programme committee members/referees of sev-
eral international conferences/journals.

Dhruba K. Bhattacharyya received his Ph.D. in Computer
Science from Tezpur University in 1999. Currently, he is a
Professor in the Computer Science & Engineering Department
at Tezpur University. His research areas include data min-
ing, network security and bioinformatics. Prof. Bhattacharyya
has published more than 220 research papers in leading in-
ternational journals and conference proceedings. Dr. Bhat-
tacharyya also has written/edited 10 books. He is on the edito-
rial boards of several international journals and also on the pro-
gramme committees/advisory bodies of several international
conferences/workshops.

International Journal of Network Security, Vol.17, No.6, PP.683-701, Nov. 2015 701

Jugal K. Kalita is a professor of Computer Science at the Uni-
versity of Colorado at Colorado Springs. He received his Ph.D.
from the University of Pennsylvania in 1990. His research
interests are in natural language processing, machine learn-
ing, artificial intelligence, bioinformatics and applications of
AI techniques to computer and network security. He has pub-
lished more than 150 papers in international journals and re-
ferred conference proceedings and has written two technical
books. Professor Kalita is a frequent visitor of Tezpur Uni-
versity where he collaborates on research projects with faculty
and students.

