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Abstract

Detection of anomalous network traffic is accomplished
using a generalized likelihood ratio test (GLRT) applied
to traffic arrival times. The network traffic arrival times
are modelled using a Markov modulated Poisson pro-
cess (MMPP). The GLRT is implemented using an es-
timate of the MMPP parameter obtained from train-
ing data that is not anomalous. MMPP parameter
estimation is accomplished using Rydén’s expectation-
maximization (EM) approach. Using data from the 1999
DARPA intrusion detection evaluation, the performance
of a GLRT using an MMPP, a Poisson process, and a
mixture of exponentials is compared. The MMPP-based
GLRT has the best performance and the largest compu-
tational requirements.

Keywords: Anomaly detection, generalized likelihood ratio
test, markov-modulated Poisson process

1 Introduction

Anomaly detection using network packet arrival times
is a binary hypothesis testing problem. Let H1 denote
the hypothesis that the network is receiving packets with
anomalous arrival times. Let H0 denote the hypothe-
sis that network packet arrival times are not anomalous.
If the probability density functions (pdfs) of the arrival
times under the two hypotheses are known, then optimum
decision rule in the Neyman-Pearson sense is given by the
likelihood ratio test (pp. 32, Theorem 1) [14]. The true
pdfs, however, are not generally known. In the “plug-in”
approach, a parametric form for the pdfs is prescribed,
the parameters are estimated from training signals, and
the resulting pdfs are used in the likelihood ratio test as
if they were the true pdfs. For network anomaly detec-
tion, although training signals for H0 may be available,
appropriate training signals for H1 are generally difficult

to obtain for a number of reasons. Anomalies are gen-
erally difficult to characterize. An intruder attempting
to gain unauthorized network access may enjoy greater
success using an approach that is unknown to network
security systems. In this paper, we apply the generalized
likelihood ratio test (GLRT) [26] to anomaly detection.
The GLRT does not require an explicit pdf for H1. In-
stead, a parametric form for this pdf is assumed and the
parameter is estimated from the test signal. The GLRT
is widely applied in signal classification problems, see e.g.
[1, 13, 25]. Optimality of the GLRT is discussed in [28].
Discussions of the characterization of normal behvavior
H0 can be found in [12, 29].

The Markov modulated Poisson process (MMPP) con-
stitutes the pdf we prescribe for network arrival times.
The MMPP is a conditional Poisson process whose inten-
sity is controlled by a Markov chain. A summary of the
properties of MMPPs can be found in [3]. Other MMPP
applications include modeling rainfall, pollution, minke
whale observations, photon arrivals due to fluorescence,
financial defaults, fraud in banking, and target tracking,
see, e.g., [27] and the references therein. Heffes [7] in 1980
and Heffes and Lucantoni [8] in 1986 established that the
MMPP faithfully models key properties of Internet traf-
fic, including the mean arrival rate and the variance-to-
mean ratio. The MMPP has subsequently become well
established as a model for Internet traffic with numerous
references in the literature, see, e.g., [9, 17, 23] for re-
cent examples. Studies of anomaly detection in network
traffic using other models can be found in [4, 15, 24].
As Internet applications can involve very large amounts
of data, and due to its desirable asymptotic properties,
we aim for a maximum likelihood (ML) estimate of the
MMPP parameter. There is no explicit form for the ML
MMPP parameter estimate. Instead, a number of ex-
pectation maximization (EM) approaches have been pro-
posed. In [21], Rydén developed an EM algorithm that,
in contrast to previous algorithms [2], had explicit ex-
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pectation steps and maximization steps. Computational
aspects of Rydén’s algorithm were improved by [19].

The MMPP has been previously applied to anomaly
detection, but not, to our knowledge, as part of a GLRT.
Detection of fraudulent intrusions on a telephone network
was investigated by Scott [22] using an 2-state MMPP
where one state represented a valid call and the other
state represented a fraudulent call. Gibbs sampling was
applied for parameter estimation. An anomaly was de-
clared if the posterior probability of the fraud state was
greater than a threshold. Ihler, Hutchins, and Smyth [11]
applied an MMPP to anomalous event detection in free-
way traffic and in building entry data. The MMPP pa-
rameter was estimated using Markov chain Monte-Carlo
techniques and events were detected using their posterior
probability. Pawling et al. [18] investigated detection of
emergencies and natural disasters using the Kolmogorov-
Smirnov test to compare simulated MMPP data to real
cellular communication data. The MMPP parameter was
estimated using a clustering algorithm.

The remainder of this paper is organized as follows.
In Section 2, we formulate the GLRT for anomaly detec-
tion. In Section 3, we describe Rydén’s EM algorithm for
MMPP parameter estimation with the computational im-
provements of [19]. In Section 4, we describe numerical
experiments performed using data from the 1999 DARPA
intrusion detection evaluation [6]. In Section 5, we pro-
vide some concluding comments.

2 Binary Hypothesis Testing

Let Y n = {Y1, . . . , Yn} denote a sequence of n posi-
tive random variables representing network packet inter-
arrival times. Let yn = {y1, . . . yn} denote a realization of
Y n. Let p(yn;φ) denote an assumed parametric form of
the pdf of Y n, where φ is the parameter. Let φ0 denote
the parameter corresponding to network traffic that is not
anomalous. Anomaly detection is to chose which of the
following two hypotheses is true

H0 : yn ∼ p(yn;φ0),

H1 : yn ∼ p(yn;φ) where φ 6= φ0.

In statistical parlance, this is a classification problem for
one simple and one composite hypothesis [14]. A hypoth-
esis is called simple if the signal is described by a known
pdf. A hypothesis is called composite if the pdf of the
signal is only known to be a member of a family of pdfs.
If φ is assumed random with a known pdf, the composite
hypothesis can be represented as a simple hypothesis us-
ing a Bayesian approach, see, e.g., [20]. Here we adopt
an approach based on the GLRT [26]. In this form of the
GLRT, the unknown parameter of the process under the
composite hypothesis is estimated in ML sense from the
test signal, and used as if it were the correct parameter.
The GLRT test statistic is given by

δ(yn;φ0) =
p(yn;φ0)

maxφ p(yn;φ)
, (1)

and the decision is made according to

1

n
log δ(yn;φ0)

H0

≷
H1

η (2)

where η is a threshold. The GLRT does not require knowl-
edge of the parameter corresponding to H1. It does, how-
ever, require an explicit φ0 which may be estimated from
training signals obtained when the network is not under
attack.

Asymptotic optimality of a GLRT in the Neyman-
Pearson sense was shown for independent identically dis-
tributed (iid) sources [10] and Markov chain sources of
any given order [5, 28, 30]. Optimality of an extension of
the GLRT to model order estimation was shown in [16].
Although optimality of the GLRT has not been shown for
the processes we consider, the GLRT is widely applied in
other applications, see e.g. [1, 13, 25], where optimality
also cannot be shown.

There are two events useful for characterizing perfor-
mance of the GLRT: a false alarm, i.e., choosing H1 when
H0 is true and a detection, i.e., choosing H1 when H1 is
true. The loci of the probabilities of these events for var-
ious thresholds η is termed a receiver operator character-
istic (ROC) curve. Generally, it is the relative frequencies
of these events obtained from known test signals that are
plotted.

3 MMPP Description and Esti-
mation

An MMPP is a conditional Poisson process whose in-
tensity is determined by an underlying continuous-time
Markov chain. Let {N(t), t > 0} denote the observed
conditional Poisson process and let {X(t), t ≥ 0} denote
the underlying continuous-time Markov chain with a state
space {1, . . . , r}. Let the r × r matrix Q denote the gen-
erator matrix of X(t). Let π denote a 1 × r vector of
initial state probabilities of X(t). Let the intensity of
the conditional Poisson process at time t be given by λi
when X(t) = i. Let Λ be the r × r diagonal matrix with
diagonal elements given by {λi}. Generally, the expres-
sions that we consider involve the sequence of event inter-
arrival times Y n, so that the event count N(t) is given by

N(t) = max{j |
∑j
i=0 Yi ≤ t}, where Y0 = 0. Generically,

the role of π diminishes as t → ∞. Therefore, we define
the MMPP parameter of interest as φ = {Q,Λ}.

Let 1 denote a r× 1 vector of ones. The MMPP pdf is
given by

p(yn;φ) = π

n∏
t=1

f(yt;φ)1,

where f(yt;φ) represents the MMPP transition density
matrix

f(yt;φ) = exp((Q− Λ)yt)Λ.

Considering yn as training signals, we aim to find an ML
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estimate

φ̂ = arg max
φ

p(yn;φ)

There is no explicit form for the ML estimate, therefore
we resort to Rydén’s MMPP EM algorithm using compu-
tational improvements suggested in [19]. Here we pro-
vide only the details necessary for implementation; the
full derivations are available in [19, 21]. Let φ = {Q,Λ}
denote an existing parameter estimate. The first step is
to recursively calculate the 1×r vectors of forward densi-
ties {L(t)} and r×1 vectors of backward densities {R(t)}.
Define L(0) = π and R(k+ 1) = 1. The scaled recursions
are given by

L(t) =
L(t− 1)f(yt)

ct
, R(t) =

f(yt)R(t+ 1)

ct
, (3)

where the scaling factor ct is given by

ct = L(t− 1)f(yt)1. (4)

The log-likelihood of yn can be readily calculated using

log p(yn;φ) =

n∑
t=1

log ct. (5)

Given the forward and backward densities, we can then
calculate the r×1 vector M and the 2r×2r matrices {Ct}
given by

M =

n∑
t=1

L(t)′ �R(t+ 1),

where � denotes element-wise multiplication and

Ct =

[
Q− Λ ΛR(t+ 1)L(t− 1)

0 Q− Λ

]
Denote by It the upper-right r×r block of the matrix ex-
ponential eCtyt , and let m = Q�

∑n
t=1 It/ct The updated

estimates φ̂ = {Q̂, Λ̂} are calculated using

λ̂i =
qiiMi

mii
,

q̂ij =
qiimij

mii
, i 6= j.

The diagonal elements of Q̂ are set so the rows of Q̂ sum
to zero. Let {φ̂k} = {(Q̂k, Λ̂k)} denote a sequence of esti-
mates resulting from the iteration of this procedure. The
EM algorithm guarantees that p(yn; φ̂k) ≥ p(yn; φ̂k−1).
The EM algorithm is terminated when the following con-
vergence criterion is satisfied

log p(yn; φ̂k)− log p(yn; φ̂k−1) < ε (6)

for ε > 0.

4 Numerical Results

Performance of the MMPP-based GLRT applied is mea-
sured using an intrusion detection evaluation data set [6]
developed in 1999 by the Massachusetts Institute of Tech-
nology, Lincoln Laboratories under the sponsorship of the
Defense Advanced Research Projects Agency (DARPA)
and the Air Force Research Laboratory. Henceforth, this
data set is referred to as the DARPA data set. This data
set consists of five weeks of simulated network traffic,
generated using statistics obtained from a real network
located on a United States Air Force base. Of the five
weeks, we use data from weeks 1–3: weeks 1 and 3 have
no attacks, week 2 contains labeled attacks and weeks 4
and 5 contain unlabeled data. We used the portion of the
database corresponding to packets resulting from commu-
nications between external and internal computers. EM
estimation and GLRT classification algorithms were im-
plemented in Matlab on a machine with a 2.93 GHz Intel
Xeon X7350 processor.

4.1 Estimation of φ0

Let yn denote the training signal used to estimate φ0
consisting of all week 1 packet inter-arrival times, with
n = 7293600. We conducted numerical experiments as-
suming three parametric forms for p(yn;φ): an MMPP,
a mixture of exponentials, and a Poisson process, i.e., an
MMPP with r = 1.

4.1.1 Poisson Process

The Poisson process is parameterized only by the inten-
sity λ, thus φ = λ. The pdf is given by p(yn;φ) =∏n
t=1 λ exp(−λyt). Let λ̃ denote the ML estimate of λ

given by λ̃ = n/
∑n
t=1 yt = 18.418. The estimation of

λ̃ took 0.05 seconds using the computing configuration
specified above.

4.1.2 Mixture of Exponentials

A mixture of r exponentials has pdf

p(yt;φ) =

r∑
i=1

α(i)λ(i)e−λ(i)yt ,

where {α(i)} are the mixture weights and
{λ(i)} are the exponential rates. Thus φ =
{λ(1), . . . λ(r), α(1), . . . , α(r)} is the parameter of
the mixture model. An EM algorithm to estimate φ is
given by

λ̂k+1(i) =

∑
t ξt(i; φ̂

k)∑
t ξt(i; φ̂

k)yt
, α̂k+1(i) =

∑
t ξt(i; φ̂

k)

n
(7)

where conditional probabilities ξt(i; φ̂
k) are calculated us-

ing

ξt(i; φ̂
k) =

α̂k(i)λ̂k(i) exp(−λ̂k(i)yt)

p(yt; φ̂k)
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We chose the number of states r = 4 to allow for diverse
traffic patterns while keeping computational overhead to
a minimum. Additional parameters λ̂0 and α̂0(i) were

chosen as λ̂0 = (1000, 100, 10, 1)T and α̂0(i) = 1/4 for i =
1, . . . , 4 in order to capture behaviors of different orders of
magnitude. Because parameters are estimated using an
EM algorithm, values of parameters are subject to local
extrema.

Using ε = 10−4 in Equation (6), the EM algorithm

converged in k = 19 iterations with log p(yn; φ̂k)/n =
3.406. The resulting estimates were

λ̂k =


1023.740

79.725
20.163
2.069

 , α̂k =


0.435
0.409
0.062
0.095

 (8)

Each iteration of the EM algorithm took approximately
6.4 seconds on the computing configuration specified
above.

4.1.3 MMPP

The MMPP EM algorithm used r = 4, the same number
of states as the exponential mixture model. Estimates
for the parameters {Q,Λ} must be initialized for MMPP
training. The diagonal elements of the initial estimate
Λ̂0 were the final estimates of the mixture of exponentials
given in Equation (8): Λ̂0 = diag(λ̂k). Let A denote
the r × r empirical transition matrix of the exponential
mixture states, where the state Syt during yt is considered
to be the exponential mixture i = 1 . . . n with largest
conditional probability. The initial estimate Q̂0 is given
by Q̂0 = log(A)λ̃. If A has negative eigenvalues, Q̂0 will
not be a valid generator matrix. In this case, the rows of
Q̂0 can be scaled to produce a valid generator matrix.

Using ε = 10−4 in Equation (6), Rydén’s EM algorithm

converged in k = 59 iterations with log p(yn; φ̂k)/n =
3.457. The resulting estimates were

Λ̂k = diag(556.587, 39.232, 0.030, 0.828),

Q̂k =


−298.766 23.529 275.238 1.94 · 10−7

17.974 −40.703 7.447 15.282
98.148 53.904 −152.052 6.56 · 10−6

1.286 0.127 0.159 −1.572


Each iteration of the EM algorithm took approximately
42.7 minutes using the computing configuration specified
above.

4.2 Implementation and Performance of
GLRT

Assume now that yn denotes a test sequence that we wish
to classify using the GLRT as arising from H0 or H1. The
GLRT is implemented using the estimates of φ0 given in
the previous section. The denominator of Equation (1)
is calculated using the ML estimate of φ where p(yn;φ)
is assumed to be a Poisson process. This assumption is

made as estimation is simplified considerably compared to
estimation when an MMPP is assumed. Furthermore, n is
generally too small to produce reliable MMPP estimates
on test intervals. With this assumption, the GLRT test
statistic comprised of Equations (1)–(2) is given by

log δ(yn;φ0) = log p(yn;φ0)− n(log λ̃− 1).

Performance of the models was evaluated on test data
containing so-called SYN flood attacks obtained from
week 2 of the DARPA data set. The target computers
of such attacks are inundated with network packets re-
questing that the target establishes a connection with a
remote machine. The target can become overwhelmed
when such requests are left unresolved. There are two
SYN flood attacks, each of which are approximately 206
seconds long. This data was segmented into 16, 30-second
intervals. From week 3, a week with no attacks, we se-
lected 12, 3-minute intervals of bursty traffic, for a total of
72, 30-second intervals of test data free of attacks. These
88, 30-second intervals each constitute a yn used in our
experiments.

The empirical ROC curves are shown in Figure 1 by
plotting the relative frequencies of detections and false
alarms for varying thresholds. The curves for the Poisson
process, mixture of exponentials, and MMPP is shown as
a dashed, dotted-dashed, and solid line, respectively. The
curve representing completely random guesses is shown as
a dotted line. On our computer configuration, the MMPP
classifier operated at speeds of approximately 50 times
real time, i.e. the 30 second test signals were classified
in just under one second. The mixture of exponential
classifier operated at speeds approximately 2 orders of
magnitude faster.
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Figure 1: Empirical ROC curves obtained using DARPA
data set. The relative frequencies of false alarms and
attack detections are plotted for each detection method:
Poisson model, exponential mixture model, and MMPP.
The dotted line indicating completely random guesses is
also shown.

Comparing the ROC curves in Figure 1, we can see
that the MMPP achieves lift over the exponential mix-
ture model, which achieves lift over the Poisson model.
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Let fD and fFA denote the relative rates of attack detec-
tion and false alarms, respectively. Of particular interest
is the region of the low false alarm rate near fFA = 0.
The MMPP-based GLRT is able to detect 11 of 16 attack
segments before suffering a single false alarms. Both the
Poisson process and the exponential mixture produce at
least one false alarm without successfully detecting any
attacks. In this region, the MMPP produces a lower false
alarm rate than the other two methods. At full detection
(fD = 1), the MMPP-based GLRT suffers significantly
fewer false alarms. When fD = 1, out of the 72 seg-
ments tested, the MMPP based GLRT produces 12 false
alarms. At the same detection rate, the GLRT assuming
Poisson and mixture of exponentials, suffer 28 and 24 false
alarms, respectively. At peak performance, the MMPP-
based GLRT detects 81.25% of attacks with a false alarm
rate of 8.57%.

5 Conclusions and Comments

The ROC curve shown in Figure 1 shows that the each
model in the GLRT achieves lift over those models that
are less sophisticated, indicating that detection perfor-
mance of each model in the GLRT increases with model
sophistication. Using an MMPP yields the highest perfor-
mance, suggesting that its assumption of Markovian rates
is representative of real traffic. The mixture of exponen-
tials is a less elaborate model, assuming iid observations,
but requires substantially less computation. The Poisson
processes is the simplest model, assuming iid observations
and a single traffic rate, but it has very low computational
requirements.

The low computational requirements of the GLRTs us-
ing a Poisson process and a mixture of exponentials may
allow them to be used advantageously in a multi-tiered
approach. In this approach, the Poisson-based GLRT is
applied first. If H1 is chosen, the GLRT with a mixture
of exponentials is applied. If this classifier also chooses
H1, the MMPP-based GLRT is applied. H0 is chosen as
the final result if any of the individual classifiers choose
it, otherwise H1 is chosen. The thresholds for the tests
may need to be carefully chosen. The multi-tiered ap-
proach may be particularly applicable for networks which
carry significantly more traffic than the network consid-
ered here.
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