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Abstract

Forward-secure public-key schemes with untrusted update
are a variant of forward-secure public-key schemes such
that the private key can be updated in the encrypted ver-
sion. In this paper, we firstly describe forward-secure
public-key scheme with untrusted update and security
definition. We put forward a generic construction and
prove its security in standard model. In our construction,
the forward security is realized by applying a binary tree
encryption and the update security is achieved by using a
symmetric encryption. Meanwhile, we proved our scheme
in the standard model. Our generic construction is very
practical compare with previous works.

Keywords: Composite order bilinear groups, forward se-
curity, key exposure, provable security, public key encryp-
tion, untrusted update

1 Introduction

Traditionally, a forward secure cryptography assumes
that one to mitigate the damage caused by exposure of se-
cret keys. In a forward-secure public-key system, private
keys are updated at regular time periods; an exposure of
the private key SKi corresponding to a given time period
i does not enable an adversary to compromise the secu-
rity of the scheme for any time period prior to i. For the
case of signature, forward security guarantees that past
signatures are protected even if the secret key of the cur-
rent time period exposed. There are a number of known
forward-secure signature schemes [1, 2, 10, 11, 12, 17],
and forward-secure symmetric-key setting has also been
studied [3]. For the case of encryption, forward secu-
rity ensures that even after an adversary having the pri-
vate key SKi(for some i), the adversary can obviously
compromise future usage of the scheme but messages en-
crypted for past periods remains secret. In Eurocrypt

2003, Canetti et al. [8] introduced forward security to
Public-Key Encryption(fsPKE) scheme. Subsequently,
the work of [4, 13, 20, 21] construct forward-secure (Hi-
erarchical) IBE scheme based on the study of a number
of Identity-Based Encryption(IBE) schemes [5, 19]. Re-
cently, Nieto et al. [18] put forth a forward-secure Hierar-
chical Predicate Encryption(HPE) which ensures forward
security for plaintexts and for attributes that are hidden
in HPE ciphertexts.

However, Boyen et al. [7] showed that forward secu-
rity is not applied to many software environments such
as GNU-PG or S/MIME. A Forward-Secure Signature
scheme with Untrusted Update(FSS-UU) was first pro-
posed by Boyen et al. [7] in which the signing key is ad-
ditionally shielded by a second factor and key update can
be performed on an encrypted version of the signing key.
And they left the open problem of adding untrusted up-
date to other existing fsPKE scheme. Sequently, the work
of [15] solved the open problem of [7] and presented a very
efficient generic construction from any FSS scheme by ex-
panding MMM construction [17]. Specializing for the case
of encryption, which is the focus of this work, forward se-
curity with untrusted update guarantees that even if an
adversary learns the encrypted private key EncSKi(for
some i), he can not decrypt correctly any ciphertext.
The work of [16] extended the untrusted update model
to fsPKE scheme. Libert el al. gave the resulting fsPKE
with untrusted update(uufsPKE) scheme with update se-
curity and forward security in the chosen-plaintext set-
ting. In their scheme, their method needs both a fsPKE
and a traditional PKE which is not practical and leads
to double-cost of size of ciphertext,public key and secret
key. Therefore, how to construct more efficient generic
uufsPKE scheme is worth researching.

This paper shows that forward-secure public-key en-
cryption scheme with untrusted update is easier to derive
from Symmetric Encryption and semantically secure Bi-
nary Tree Encryption. We firstly give the formal def-
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inition of forward-secure public-key encryption scheme
with untrusted update and security definition. We pro-
pose a generic transformation of forward-secure public-
key encryption scheme with untrusted update which sup-
ports both forward security and update security. In
our generic transformation, the forward security can be
achieved by applying binary tree encryption scheme and
the update security can be obtained using symmetric en-
cryption scheme. Our scheme does not rely random ora-
cle. Meanwhile, we present a concrete construction based
on Binary Tree Encryption which we propose and prove
its security in standard model. To the author’s knowl-
edge, this is the first provable efficient uufsPKE scheme
which realizes constant ciphertext size and decreases the
size of private key compared with Libert [16].

The rest of this paper is organized as follows. In Sec-
tion 2, we provide some necessary preliminaries about bi-
nary tree encryption and symmetric encryption. In Sec-
tion 3, we define uufsPKE scheme and its security notion
formally. Our generic construction and its security proof
will be proposed in Section 4. Finally, we conclude in
Section 5.

2 Preliminaries

For a positive integer T , [T ] denotes {1, · · · , T}. Let N
be a positive integer and ZN = {1, . . . , N − 1}. We let

x be chosen uniformly from ZN denote by x
$←− ZN . By

negl(λ), we denote a negligible function of parameter λ.
PPT stands for probabilistic polynomial time. Algorithm
A with input x and random tape r is denoted by A(x; r).In
this section, we give the definitions of primitives which our
scheme is based on.

2.1 Composite Order Bilinear Groups

We will use composite order bilinear groups introduced
in [6]. In the group generator algorithm G takes as in-
put a security parameter 1λ and outputs the description
of a bilinear group G of composite order N = p1p2p3

where p1, p2, p3 are three prime numbers of magnitude
Θ(2λ). We let G1, G2, G3 denote these subgroups. We
assume that the generator algorithm outputs the values
of p1, p2, p3 and gi is a generator of subgroup Gi.

For i, j = {1, 2, 3}, we also let Gij denote the subgroup
of order pipj . If hi ∈ Gi and hj ∈ Gj for i 6= j, we have
that e(hi, hj) = 1GT

.

2.2 Hardness Assumptions

We define the following three assumptions in composite
order bilinear groups.

Assumption 1. The challenger runs G(1λ) and gives
to the adversary A the tuple D1 = (N,G,GT , e, g1, g3).
Then the challenger flips a random coin ν ∈R {0, 1} and

picks random (z, ξ)
$←− Zp1 × Zp2 . He computes T 1

0 = gz1

and T 1
1 = gz1g

ξ
2, sends T 1

ν to A. In the end, A outputs a
bit ν′, and succeeds if ν′ = ν.

Assumption 2. The challenger runs G(1λ) and picks

random exponents (z, υ, µ, τ)
$←− Zp1×Zp2×Zp2×Zp3 . He

gives to A the tuple D2 = (N,G,GT , e, g1, g3, g
z
1g
υ
2 , g

µ
2 g

τ
3 ).

Then he flips a random coin ν ← {0, 1} and picks random

(γ, ξ, κ)
$←− Zp1 ×Zp2 ×Zp3 . He computes T 2

0 = gγ1 g
κ
3 and

T 2
1 = gγ1 g

ξ
2g
κ
3 , sends T 2

ν to A. In the end, A outputs a bit
ν′, and succeeds if ν′ = ν.

Assumption 3. The challenger runs G(1λ) and picks

random exponents (α, s, ξ, µ,$)
$←− Zp1 × Zp1 ×

Zp2 × Zp2 × Zp2 . He gives to A the tuple D3 =

(N,G,GT , e, g1, g3, g
α
1 g

ξ
2, g

s
1g
µ
2 , g

$
2 ). Then he flips a ran-

dom coin ν ← {0, 1} and picks a random w
$←− Zp1 . He

computes T 3
0 = e(g1, g1)αs and T 3

1 = e(g1, g1)αw, sends
T 3
ν to A. In the end, A outputs a bit ν′, and succeeds if
ν′ = ν.

Assumption 4. The advantage of any PPT adversary
A in Assumption i where i ∈ {1, 2, 3} is AdviG,A =
1

2
(Pr[A(Di, T i0) = 0] − Pr[A(Di, T i1) = 0]). We say

that G satisfies Assumption i for all PPT algorithms A,
AdviG,A ≤ negl(n).

2.3 Binary Tree Encryption Scheme

Binary tree encryption (BTE) was introduced by Canetti
et al. [8]. In a BTE scheme, each node w has two chil-
dren (labeled w0 and w1) while in a HIBE scheme, each
node has arbitrarily-many children labeled with arbitrary
strings. We review the relevant definitions of BTE scheme
due to [8].

Definition 1. A binary tree encryption scheme BTE is a
4-tuple of PPT algorithms (Gen,Der,Enc,Dec) such that:

Gen(λ, `)→ (skε, pk). The randomized algorithm inputs
a security parameter k and the maximum tree depth
`. It outputs some system parameters pk along with
a master (root) secret key skε. (We assume that λ
and ` are implicit in pk and all secret keys.)

Der(w, skw)→ (skw0, skw1). The key derivation algo-
rithm takes as input the name of a node w ∈ {0, 1}≤`
and its associated secret key skw. It outputs secret
keys skw0, skw1 for the two children of w.

Enc(w, pk,M)→ CT . It takes as input pk, the name of
a node w ∈ {0, 1}≤`, and a message M , and returns
a ciphertext CT .

Dec(w, skw, CT )→M . The deterministic algorithm
takes as input w ∈ {0, 1}≤`, its associated secret key
skw, and a ciphertext CT . It returns a message M
or the distinguished symbol ⊥.



International Journal of Network Security, Vol.17, No.5, PP.619-628, Sept. 2015 621

We require that for all (pk, skw) output by Gen, any
w ∈ {0, 1}≤` and any correctly-generated secret key skw
for this node, any message M , and all CT output by
Encpk(w,M) we have Decskw(w,Encpk(w,M)) = M .

Definition 2. A binary tree encryption scheme BTE
is secure against selective-node, chosen-plaintext attacks
(SN-CPA) if for all polynomially-bounded functions `(·)
the advantage of any PPT adversary A in the following
game cpa-bte is negligible in the security parameter k.

Setup Phase. A(k, `(k)) outputs a node label w∗ ∈
{0, 1}≤`(k). Algorithm Gen(1λ, 1`) outputs (pk, skε).

Phase 1. In addition, algorithm Der() is run to generate
the secret keys of all the nodes on the path from the
root to w∗ (we denote this path by P ). The adversary
is given pk and the secret keys skw for all nodes w of
the following form:

• w = w′b,where w′b is a prefix of w∗ and b ∈
{0, 1}(w is a sibling of some node in P );

• w = w∗0 and w = w∗1, if |w∗| < `(w is a
child of w∗). Note that it allows the adversary
to compute skw′ for any node w′ ∈ {0, 1}≤` that
is not a prefix of w∗.

Challenge Phase. The adversary generates a request
challenge (M0,M1). A random bit b is selected and
the adversary is given C∗ = Enc(pk,w∗,Mb).

Guess Phase. Eventually, A outputs a guess b′
$←−−

{0, 1}.

2.4 Symmetric Encryption

A symmetric encryption (SE) scheme is a tuple of PPT
algorithms Π = (Gen,Enc,Dec) such that:

1) The key-generation algorithm Gen is a randomized
algorithm. Takes as input the security parameter 1n

and outputs a key k; we write this as k ← Gen(1n).
Without loss of generality, we assume that any key k
output by Gen(1n) satisfies n ≤ |k|.

2) The encryption algorithm Enc may be randomized.
Takes as input a key k and a plaintext message m ∈
{0, 1}∗, and outputs a ciphertext c, write by c ←
Enck(m).

3) The decryption algorithm Dec is deterministic.
Takes as input a key k, a ciphertext c and outputs a
message m. That is, m := Deck(c).

It is required that for every n, every key k output
by Gen(1n), and every m ∈ {0, 1}∗, it holds that
Deck(Enck(m)) = m.

We present the formal security definition against
chosen-ciphertext attacks where the adversary has access
to a decryption oracle and the encryption oracle. Con-
sider the following game c/a for any private-key encryp-
tion scheme Π = (Gen,Enc,Dec), adversary A and the
security parameter n.

1) A random key k is generated by running Gen(1n).

2) The adversary A is given input 1n and oracle to
Enck(·) and Deck(·). It outputs a pair of messages
m0,m1 of the same length.

3) A random bit b ← {0, 1} is chosen, and then a ci-
phertext c← Enck(mb) is computed and given to A.
We call c the challenge ciphertext.

4) The adversary A continues to have oracle access to
Enck(·) and Deck(·), but is not allowed to query the
latter on the challenge ciphertext itself. Eventually,
A outputs a bit b′ ← {0, 1}.

5) The adversary wins the game if output of the game
is 1, that is, b′ = b.

Definition 3. The symmetric encryption scheme SE has
indistinguishable encryptions under a chosen-ciphertext
attack(IND-CCA) if for every PPT adversaries A has the

advantage Adv
c/a
SE,A(·) is negligible.

3 Our Model

Our model extends the forward security model of the
work [8] to untrusted update setting. We focus here on
public-key encryption schemes secure against breakin at-
tack in the untrusted update environments.

3.1 Forward-Secure Public-Key Encryp-
tion Scheme with Untrusted Update

We give the formal definition of Forward-Secure Public-
Key encryption scheme with untrusted update (uuf-
sPKE).

Definition 4. A uufsPKE scheme consists of four algo-
rithms, each of which is described in the following.

KeyGenuu(λ,N). The key setup algorithm is a proba-
bilistic algorithm that takes as input a security pa-
rameter λ and time period N , outputs decryption key
DecK, initial encrypted secret key EncSK0 and pub-
lic parameters PK.

Updateuu(EncSKi−1, i). The untrusted update algorithm
that takes as input the encrypted secret key
EncSKi−1 for time period i−1, generates a new en-
crypted secret key EncSKi. Then deletes the old key
EncSKi−1. Note that this algorithm does not require
the decryption key.

Encryptuu(PK, i,M). The encryption algorithm is a
probabilistic algorithm that takes as input public pa-
rameters, the current time period i and a message
M , outputs the ciphertext CT for time period i.

Decryptuu(PK, i, EncSKi, DecK,CT ). The decryption
algorithm is a deterministic algorithm that takes as
input public parameters PK, the current time period
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i, the current encrypted secret key EncSKi, the de-
cryption key DecK and a ciphertext CT , outputs the
message M .

Decyption Consistency Requirements. For any
message M , the public key PK, the decryption key
DecK, the secret key SKi for time period i and
the output of Encryptuu(PK, i, M), Decrypt(PK,
SKw, Encryptuu(PK, i, M)) = M always holds.

3.2 Security Definitions for uufsPKE

Now we give the formal security definition for Forward-
secure Public-Key encryption scheme with untrusted up-
date in terms of two games.

3.2.1 Forward Security

Formally, for a uufsPKE scheme, its semantic security
against an adaptive chosen ciphertext attack under an
adaptive break-in attack can be defined via the following
game fsc between an attacker A and a challenger B.

Setup Phase. The challenger B runs algorithm
KeyGenuu(λ,N) and gives A the resulting
public parameters PK, keeping the secret key
(EncSK0, DecK) to itself. Here, a handle counter i
is set to 0.

Phase 1. A adaptively issues the following three queries:

• update(i) queries. B runs algorithm Updateuu
and updates the handle counter to i← i+ 1.

• breakin(i′) queries. At any time i′, B firstly
checks if i′ ≤ N − 1. If this is true, it re-
sponds with the corresponding private-key share
EncSKi′ for current time period i′.

• decryption(j, CT ) queries. At any time
j, A picks a ciphertext CT and sends
to B. The challenger makes a call to
Decryptuu(PK, j, EncSKj , DecK,CT ) using
the corresponding private-key and forwards the
result to A.

Challenge Phase. A submits two message M0,M1

of equal size. B flips a uniform coin v
$←−−

{0, 1} and encrypts Mv under i∗ with a call to
Encryptuu(i∗,Mv, PK), where i∗ is the index of the
current time period. Then B sends the resulting ci-
phertext CT ∗ to A.

Phase 2. The adversary A continues to issue additional
queries as in Phase 1 other than decryption(i∗, CT )
with CT 6= CT ∗ or decryption(i, CT ∗) with i 6= i∗.

Guess Phase. Finally, A outputs a guess v′
$←−− {0, 1}.

We refer to the above game as an IND-fs-CCA2 game.
We let AdvfscΠ,A denote the advantage of an attacker A in
this game fsc.

Definition 5. An uufsPKE scheme Π is IND-fs-CCA2
secure if for every PPT adversary A, we have AdvfscΠ,A ≤
negl(λ) in the above IND-fs-CCA2 game.

3.2.2 Update Security

Formally, we define update security for a uufsPKE scheme
via the following game uuc between A and B.

Setup Phase. The challenger B runs algorithm
KeyGenuu(λ,N) and gives (PK,EncSK0) to A,
keeping the secret key DecK for itself. Also, a
handle counter i is set to 0.

Phase 1. A adaptively issues the following two queries:

• update(i) queries. B updates the handle counter
to i← i+ 1.

• decryption(j, CT ) queries. At any time j, A
picks a ciphertext CT and sends to B. The
challenger runs algorithm Decryptuu using
(EncSK0, DecK) and sends the result to A.

Challenge Phase. Once A decides that Phase1 is over,
it submits two message M0,M1 of equal size. B flips

a uniform coin c
$←−− {0, 1} and encrypts Mc under

i∗ with a call to Encryptuu(i∗,Mc, PK), where i∗ is
the index of the current time period. Then B sends
the resulting ciphertext CT ∗ to A.

Phase 2. A issues additional queries as in Phase 1
other than decryption(i∗, CT ) with CT 6= CT ∗) or
decryption(i, CT ∗) with i 6= i∗.

Guess Phase. Finally, A outputs a guess c′
$←−− {0, 1}.

We refer to the above adversary A as a IND-uu-CCA2
adversary. We let AdvuucΠ,A denote the advantage of an
attacker A in this game uuc.

Definition 6. An uufsPKE scheme Π is IND-uu-CCA2
secure if for any PPT adversary A, we have AdvuucΠ,A ≤
negl(λ) in the above IND-uu-CCA2 game.

4 Generic Construction from BTE
and SE

In our construction, it allows for automated updates of
encrypted keys and the user holding the second factor
does not have to intervene in operations where the update
algorithm is programmed to update the blinded version
of the secret key at the beginning of each period. The
second factor is only needed for decrypting messages as
in many typical implementations of public key encryption.
Beyond the forward security requirement, such a scheme
prevents an adversary just in possession of the encrypted
secret key from forging ciphertext for past, current, and
future periods.
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4.1 The General Transformation

In this section, we present the generic construction of
uufsPKE from any binary tree encryption. We ap-
ply a symmetric encryption scheme to implement up-
date security. And we can use any chosen cipher-
text secure symmetric encryption. Formally, a BTE
consists of PPT algorithms E1 = (Gen,Der,Enc,Dec)
and a SE scheme E2 = (Gen′, Enc′, Dec′). Our
scheme can be described by four algorithms, denoted by
Π = (KeyGenuu,Updateuu,Encryptuu,Decryptuu).

KeyGenuu(k,N). It runs algorithm Gen(k, `) →
(skε, pk) that takes as input a security parameter
k ∈ N and `, the smallest integer satisfying N ≤ 2`.
Firstly, sets DecK ← Gen′(1k) Then, symmetric en-
cryption algorithm generates eskε = Enc′DecK(skε)
and uses eskε generating the initial encrypted
secret key of our generic construction by call-
ing algorithm Der(., .). Denoted by EncSK0 =
(esk0` , {esk1, esk01, esk001, ..., esk0`−11}). Finally,
it returns public key (pk,N) and the secret key
(EncSK0, DecK).

Updateuu(EncSKi, i+ 1). The encrypted secret key
EncSKi be organized as a stack of node keys where
the secret key esk〈i〉 on top. Here, 〈i〉 = i1i2...i`
is the binary expression for the ith time period.
Firstly, pops the top off the stack. If i` = 0,
search the only path from node 〈i〉 to root, de-
noted by Pi. And generate another set Ri =
({eski1...il}l∈{1,...,`}s.t.il=0). Push the node secret key
onto the stack from Ri according the relation be-
tween the leaf 〈i〉 and the sibling of the node in Ri.
The closer two nodes, then first-in stack. Other-
wise, let h ∈ {1, ..., `} denote the largest index such
that ih = 0. It have w = i1i2...ih−11 ∈ {0, 1}h
and recursively use Der(w, eskw) to generate node
keys eskw1, eskw01, ..., eskw0`−h−1 , eskw0`−l . Push all
these node secret keys onto the stack by the reverse
order. The new top of the stack is eskw0`−l that is
〈i+ 1〉 = w0`−l. In both cases, it erase the leaf node
key esk〈i〉 and return the new stack.

Encryptuu(i, pk,M). In period i, to encrypt a message
M ∈ GT , the sender parses 〈i〉 as i1i2...i`. Then, it
computes CT ← Enc(pk, 〈i〉,M).

Decryptuu(i,DecK,EncSKi, pk, CT ). To decrypt ci-
phertext CT , it regenerates sk〈i〉←Dec′DecK(esk〈i〉).
Then, it computes M ← Dec(sk〈i〉, 〈 i 〉, CT ).

4.2 Simulation Theorems

In this section, we give the proof on how to reduce the se-
curity of SN-CPA for BTE scheme and SE scheme against
chosen ciphertext attack to forward security and update
security for a uufsPKE scheme. We only consider the
strongest security, that is, chosen ciphertext security. We
will prove our general transformation’s forward security

and update security against an adaptive chosen cipher-
text attack in the following two theorems.

Theorem 1. Suppose E1 is a SN-CPA(resp.SN-CCA) se-
cure BTE and E2 is a symmetric encryption scheme with
chosen ciphertext security. Then the uufsPKE scheme Π
described above is IND-fs-CPA(resp.IND-fs-CCA2) secur-
tiy.

Proof. Suppose there is an adversary A has non-negligible
advantage in attacking forward security of the above
scheme. That is, AdvfscA,Π>ε, ε is a negligible parame-
ter. We build an algorithm B that breaks BTE scheme
E1 with advantage AdvfscA,Π/N(k) where N(k) is polyno-
mial in the security parameter k. Algorithm B uses A to
interact with a BTE challenger as follows:

Initialization. Firstly, A outputs the challenge time pe-
riod i∗ and the corresponding to the node label 〈i∗〉 of
the binary tree. Secondly, B runs Gen′(k)→ DecK.
It outputs (i∗, DecK).

Setup. The BTE challenger runs Gen(k, `)→ (skε, PK)
and gives to B. And then B forwards (PK,DecK)
to A.

Phase 1. A adaptively issues the following queries.

• update(i) queries: B runs algorithm Der(.,.)
and updates the handle counter to i← i+ 1 at
the same time.

• breakin(i′) queries: At any time i′, B firstly
checks if i′ ≤ N − 1. If this is true and i′ ≤ i∗,
then B outputs a random bit and halts. Other-
wise, if i′ > i∗, B runs Enc′DecK(skε) to obtain
eskε and forwards to the BTE challenger. Us-
ing eskε. The BTE challenger recursively apply
algorithm Der(.,.) to obtain node keys and fi-
nally EncSK〈i′〉. Then it responds with the cor-
responding private-key EncSKi′ for the current
time period i′.

• decryption(j, CT ) queries: At any time j, A
picks a ciphertext CT and sends to B. If
i∗ ≤ j, B decrypt the ciphertext by himself.
Otherwise,B makes a call to Dec′DecK(esk〈j〉)
and forwards to the BTE challenger for
Dec(PK, j, sk〈j〉, CT ) using the corresponding
private-key. Then returns the result to A.

Challenge Phase. A outputs two equal length messages
M0,M1. If i ≤ i∗, B forwards M0,M1 to the BTE
challenger. It runs Enc(PK, 〈i∗〉,Mb) to obtain CT ∗

for a random b ∈ {0, 1} and gives A the challenge
ciphertext CT ∗. Otherwise, B outputs a random bit
and halts.

Phase 2. A continues to issue queries as Phase 1 where
decryption queries for (j, CT ) with j 6= i∗.

Guess Phase. Finally, A outputs its guess b′ ∈ {0, 1}
for b. B forwards b′ to the BTE challenger and wins
the game if b = b′.
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This completes the description of algorithm B. Let
Advcpa−bteB,Π be B’s advantage in winning the BTE game

cpa-bte. Let AdvfscA,Π be A’s advantage in winning the fsc
game of uufsPKE scheme. It is straightforward to see that
when i∗ = i the copy of A running within B has exactly
the same view as in a real fsc game. Since B guesses i∗ = i
with probability 1/N , we have that A correctly predicts

the bit b with advantage AdvfscA,Π/N(k).

Theorem 2. Suppose E1 is a SN-CPA(resp. SN-CCA)
secure BTE and E2 is a symmetric encryption scheme
against chosen ciphertext attack. Then the uufsPKE
scheme Π above is IND-uu-CPA(resp.IND-uu-CCA2) se-
curity.

Proof. Suppose A wins uuc game with non-negligible ad-
vantage in the above scheme. That is, AdvuucA,Π>ε where ε
is a negligible parameter. Then we show how to construct
an algorithm B that breaks SE scheme E2. Algorithm B
starts by breaking the SE scheme E2. Using A, B interacts
with a SE challenger as follows:

Setup. To launch the game, B runs Gen(k, `) →
(skε, PK). It sends skε to the SE chal-
lenger and obtains the initial encrypted node key
eskε. Using eskε, B recursively runs algorithm
Der(.,.) and generates all the encrypted keys
{EncSK0, EncSK1, ..., EncSKN}. And then, B
sends the set of all the encrypted keys to A.

Phase 1. A adaptively issues the following two queries:

• update(i) queries. B updates the handle counter
to i← i+ 1.

• decryption(j, CT ) queries. At any time j, A
picks a ciphertext CT and sends to B. B re-
quest the secret key of time period j for the SE
challenger. It runs algorithm Dec’(EncSKj)
and outputs the secret key sk〈j〉. B computes
Dec(sk〈j〉, CT ) = M and sends the result to A.

Challenge Phase. A chooses two equal length messages
M0,M1 and sends to B. It runs Enc(PK, 〈i∗〉,Mb)
to obtain CT ∗ for a random b ∈ {0, 1} and gives A
the challenge ciphertext CT ∗.
Phase 2. A continues to issue queries as Phase 1
where decryption queries for (j, CT ) with j 6= i∗.

Guess Phase. Finally, A outputs its guess b′ ∈ {0, 1}
for b. B forwards b′ to the SE challenger and wins
the game if b = b′.

5 A Concrete Forward-Secure
Public-Key Encryption Scheme
with Untrusted Update in Stan-
dard Model

In this section, we give a concrete construction of BTE
scheme and SE scheme, respectively. Combined with both
schemes, we present a uufsPKE scheme. We prove its se-
curity in standard model. Finally, we compare our scheme
with the previous.

5.1 Boilding Blocks: BTE and SE

Firstly, we propose a new binary tree encryption scheme
E1 with SN-CPA based on dual system encryption and
prove its security. For simplicity, we do not consider
chosen-ciphertext security of binary tree encryption which
can be added by simply using CHK transformation [9].
In the description below, we imagine binary tree of
height ` where the root (at depth 0) has label ε.When
a node at depth ≤ ` has label w, its children are la-
beled with w0 and w1.Besides,〈i〉 stands for the `-bit rep-
resentation of integer i. The leaves of the reed corre-
spond to successive time periods, stage i being associated
with the leaf labeled by 〈i〉.The BTE scheme denote by
E1 = (Gen,Der,Enc,Dec) that works as follows.

Gen(k, `) is an algorithm that, given a security parameter
k and the maximum tree depth `.

1) Choose bilinear map groups (G,GT ) of order
N = p1p2p3 where pi is the order of the sub-
group Gi in G, with pi > 2k for each i ∈
{1, 2, 3}.

2) Let w = w1...wl be an l-bits string representing
a node of binary tree and wi ∈ {0, 1} for all i ∈
{1, ..., l}. Define a function H : {0, 1}≤` → G1

as H(w) = h0

∏l
j=1 h

wj

j .

3) Outputs the public key pk = (g1, g3, V =
e(g1, g1)α, h0, h1, ..., h`, H) and a root secret key
skε = α for independent and uniformly random
α ∈ ZN , (h0, h1, ..., h`) ∈ G`+1

1 , g1 ∈ G1 and g3

is a generator of G3.

Der(pk, w, skw) is an algorithm that deduce the secret
keys skw0, skw1 where w0, w1 are two children of w.
Execute the following steps.

1) Let w = w1...wl. Parse skw =
(k0, k1, sl, ..., s`) = (gα1 · H(w1...wl)

r · gu3 , gr1 ·
gv03 , hrl ·g

v1
3 , ..., hr` ·g

v`
3 ), u, v0, v1, ..., v` ∈ Zp3 , r ∈

ZN .

2) For j ∈ {0, 1}, output skwj = (k0 · sjl ·
H(w1...wlj)

r′j · gu′3 , k1 · g
r′j
1 · g

v′0
3 , sl+1 · h

r′j
l+1 ·

g
v′1
3 , ..., s` ·h

r′j
` ·g

v′`
3 ) = (gα1 ·H(w1...wlj)

rj ·gũ3 , g
rj
1 ·

gṽ03 , h
rj
l ·g

ṽ1
3 , ..., h

rj
` ·g

ṽ`
3 ) where u′, v′0, v

′
1, ..., v

′
` ∈
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Zp3 , r
′
j ∈ ZN and rj = r′j + r, ũ = u + u′, ṽ0 =

v0 + v′0, ..., ṽ` = v` + v′`.

Enc(〈i〉, pk,M) does the following:

1) Let 〈i〉 = i1...i` ∈ {0, 1}`, select random s ∈ ZN .

2) Compute and output the ciphertext CT =
(i,M · V s, gs1, H(i1...i`)

s).

Dec(w, skw, CT ) does the following:

1) et 〈i〉 = i1...i` ∈ {0, 1}`, parse sk〈i〉 as (k0, k1)
and parse CT as (i, C0, C1, C2).

2) Output the message M =
C0 · e(k1, C2)

e(k0, C1)
.

Correctness. Assuming the ciphertext is well-formed,
we have

C0 · e(k1, C2)

e(k0, C1)
=

M · V s · e(gr1 · g
v0
3 , H(i1...i`)

s)

e(gα1 ·H(w1...wl)r · gu3 , gs1)

= M.

Secondly, we give a construction of SE scheme
E2 = (Gen′,Enc′,Dec′) applying to build uufsPKE
scheme. The encryption algorithm Enc′skss(m) =

(c1, c2, ..., cκ,m ·
∏
j∈[κ] c

µj

j ) for independent and uni-
formly random cj ∈ G. The decryption algorithm
Dec′skss(c1, c2, ..., cκ, c0) firstly parses the ciphertext
c as (c1, c2, ..., cκ, c0). And compute the message

m =
c0∏

j∈[κ] c
µj

j

.

5.2 A Concrete uufsPKE Scheme

Our concrete uufsPKE scheme consists of the following
algorithms where periods are indexed from 0 to T -1 with
T = 2`.

KeyGenuu(k,N).

1) Run Gen(k, `) → (skε, pk) where pk =
(g1, g3, V = e(g1, g1)α, h0, h1, ..., h`, H) and
skε = α.

2) Generate G(r) → DecK, denoted by DecK =
(d1, d2, ..., dt) where di ∈ ZN .

3) Compute the initial encrypted root key eskε =
Enc′DecK(skε) = (c1, c2, ..., ct, skε

∏
i∈[t] c

di
i ).

4) The initial encrypted secret key EncSK0 =
(esk0` , {esk1, esk01, esk001, ..., esk0`−11}) using
eskε recursively apply algorithm Der.

Updateuu(EncSKi, i+ 1).

1) Parse 〈i〉 = i1...i` ∈ {0, 1}` and EncSKi =
(esk〈i〉, {eski1...il}l∈{1,...,`}s.t.il=0). And delete
esk〈i〉.

2) If i` = 0, EncSKi+1 = (eski1·i`−1
, {eski1·il−1

}l∈{1,...,`−1}s.t.il=0), that is, EncSKi+1 in-
cludes the remaining node keys. Otherwise,
let l′ ∈ {0, 1}` be the largest index such
that il′ = 0. Let w′ = i1...il′−11 ∈
{0, 1}l′ . Recursively run Der for the node
key eskw′ to generate node keys eskw′1,
eskw′01, · · · , eskw′0`−l′−11 and eskw′0`−l′−11 =
esk〈i+1〉. Delete eskw′ and return EncSKi+1

= (esk〈i+1〉, {eski1...il−11}l∈{1,...,l′−1}s.t.il=0,
{eskw′1, eskw′01, · · · , eskw′0`−l′−11}).

Encryptuu(i, pk,M). For i ∈ [1, N ], to encrypt the mes-
sage M , does the following.

1) Parse 〈i〉 as i1...i` ∈ {0, 1}`.
2) Run Enc(〈i〉, pk,M) and return the ciphertext

CT = (i,M · e(g1, g1)αs, gs1, H(i1...i`)
s).

Decryptuu(i, EncSKi, pk, CT ). Given a ciphertext CT =
(i, C0, C1, C2) and a encrypted secret key EncSKi =
(esk〈i〉, {eski1...il}l∈{1,...,`}s.t.il=0) for the current pe-
riod i.

1) Parse esk〈i〉 as (esk0
〈i〉, esk

1
〈i〉).

2) Compute sk〈i〉 = (
esk0
〈i〉∏

i∈[t] c
di
i

,
esk1
〈i〉∏

i∈[t] c
di
i

) by ap-

plying decryption algorithm Dec′.

3) Run the algorithm Dec(sk〈i〉, 〈i〉, CT ) to obtain
the message M .

5.3 Security Proof

In the following, we devote to prove SN-CPA for the
above BTE scheme E1 under three static assumptions in
the standard model. Our security proof will use semi-
functional ciphertext and semi-functional node keys which
defined as follows. All the ciphertexts and node keys de-
fined by the following are normal, where by normal we
mean that they have no G2 parts. On the other hand, a
semi-functional key or ciphertext has G2 parts.

• semi-functional ciphertexts is generated from a nor-
mal ciphertext CT = (C ′0, C

′
1, C

′
2) and some g2 ∈

Gp2 , by choosing random x, zc
$←− ZN and setting

CT semi = (C ′0, C
′
1 · g

x·zc
2 , C ′2 · gx2 ).

• semi-functional node key are generated from a nor-
mal node key sk′w = (k′0, k

′
1, s
′
l, ..., s

′
`) by choosing

random y, zw
$←− ZN , and setting sksemi1w = (k′0 ·

gy·zw2 , k′1 · g
y
2 , s
′
l · g

y
2 , ..., s

′
` · g

y
2 ).

We now prove the semantic security of this BTE
against selective-node chosen plaintext attacks(SN-CPA).
In order to prove security we need a hybrid argument us-
ing a sequence of games. For each i, we denote by Si
the probability that the challenger returns 1 at the end of
Gamei. We also define Advi = |Pr[Si − 1/2]| for each i.
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• Game: It is the real security game as described in
Section 2.3.

• Game′: It is exactly the same as Game except that
in the challenge phase, the ciphertext responds with
the semi-functional ciphertext instead of normal ci-
phertext. Besides, at the begging of the game, the

challenger chooses an index i∗
R←− {0, 1, ..., T − 1}.

At the challenge phase, the challenger halts and out-
puts a random bit if the challenge ciphertext is en-
crypted for a period i such that i 6= i∗. Because
the choice of i∗ is independent of A’s view, we have
Pr[S1] ≤ Pr[S0]/T . Note that we denote Path∗ the
path from the root to the leaf associated with i∗.

• Gamek In this game, for k ∈ [1, T−1], the ciphertext
given to the attacker is semi-functional. For the first
k keys, if the corresponding node wk ∈ Path∗, then
returns semi-functional node key. Otherwise, the rest
of the keys are normal.

• GameT is the same as GameT−1 but the semi-
functional challenge ciphertext is replaced by a a
semi-functional encryption of a random message in-
stead of Mb.

Theorem 3. If Assumption1,2 and 3 hold, then our BTE
scheme E1 is a SN-CPA.

Proof. The proof proceeds using a sequence of games in-
cluding steps similar to [14]. In order to prove this theo-
rem we need the following lemmas:

Lemma 1. Suppose there exists an algorithm A such that
AdvGameA,E1 − Adv

Game′

A,E1 ≤ ε. Then we can build an algo-
rithm B with advantage ε in breaking Assumption 1.

Proof. Suppose a PPT challenger B that breaks Assump-
tion 1 with the help of a PPT adversary A. B simulates
Game or Game′. Initially, B receives input from the as-
sumption’s challenger, i.e. D1 = (N,G,GT , e, g1, g3) and

a challenge term T which is equal to gz1 and gz1g
ξ
2. Algo-

rithm B works as follows:

Setup Phase. B picks α, x0, x1, ..., x`
$←− ZN and com-

putes V = e(g1, g1)α, h0 = gx0
1 , h1 = gx1

1 , ..., and
h` = gx`

1 . It gives the public parameters pk =
(g1, g3, V = e(g1, g1)α, h0, h1, ..., h`, H) to A where
(N, e, g1, g3) are given by the challenger B. Ini-
tially, A outputs the target node w∗ = w∗1w

∗
2 ...w

∗
l

with l ≤ `. Next, B constructs node keys as fol-
lows. For a node label w = w1w2...wl(l < `), B
chooses u, v0, v1, ..., v` ∈ Zp3 , r

$←− ZN and sets skw =

(gα1 ·
∏l
j=1(g

xj ·wj

1 )r · gu3 , gr1 · g
v0
3 , hrl · g

v1
3 , ..., hr` · g

v`
3 ).

Phase 1. B provides A with all secret keys for sibling of
the nodes on the path from the root to w∗, as well
as for the children of w∗.
Challenge Phase : Once A outputs two equal-
length plaintexts M0,M1 ∈ M on which it wishes
to be challenged. B flips a random coin c ∈ {0, 1},

and generates the challenge ciphertext to be CT ∗ =
(Mc · e(T, g1)α, T,

∏l
j=1 T

xjwj ), which is sent to A.

Analysis. If T = gz1 , then this is a normal ciphertext

which has no G2 component. If T = gz1g
ξ
2, this is a

semi-functional ciphertext with zc = Σlj=1xjwj . If
A succeeds in distinguishing these two games then
our challenger B can use A to break Assumption 1.
Thus if Assumption 1 is holds, these two games are
indistinguishable.

It is straightforward that from Game′ to Game1 is just
a conceptual change since the adversary A’s view is the
same in both games. Thus we have Adv1 = Adv′/T .

Lemma 2. Suppose there exists an algorithm A such that

Adv
Gamek−1

A,E1 − AdvGamekA,E1 ≤ ε. Then we can build an al-
gorithm B with advantage ε in breaking Assumption 2.

Proof. B first receives D2 = (N,G,GT , e, g1, g3, g
z
1g
υ
2 ,

gµ2 g
τ
3 ) and T where T = gγ1 g

κ
3 or T = gγ1 g

ξ
2g
κ
3 . B picks

a random exponents a, b, α ∈ ZN and sets the public pa-
rameters as Lemma 1.

When A requests the ith key for the period i corre-
sponding to node 〈i〉 in the tree. If i < k and 〈i〉 ∈ Path∗,
B creates a semi-functional node key of Type1. It does
this by choosing random exponents y, zw, r ∈ ZN and
setting sksemi1w = (gα1 ·

∏l
j=1(g

xj ·wj

1 )r · (gµ2 g
τ
3 )y·zw , gr1 ·

(gµ2 g
τ
3 )y, hrl · (gµ2 g

τ
3 )y, ..., hr` · (gµ2 g

τ
3 )y). This is a prop-

erly distributed semi-functional node key of Type1 with
G2 component gy2 . For i > k, B generates normal
keys by using random exponents r, y ∈ ZN and setting
skw = (gα1 ·

∏l
j=1(g

xj ·wj

1 )r · gy3 , gr1 · g
y
3 , h

r
l · g

y
3 , ..., h

r
` · g

y
3 ).

To create the kth requested key, B sets zk =
∑l
j=1 xj ·wj ,

chooses a random exponent yw ∈ ZN , and sets sk∗w =
(gα1 · T zk · g

yw
3 , T, hrl · T yw , ..., hr` · T yw).

Challenge Phase. A sends B two equal-length plain-
texts M0,M1 ∈ M. B chooses a random coin
v ∈ {0, 1}, and generates the ciphertext CT =

(Mc · e(gz1gυ2 , g1)α, gz1g
υ
2 ,
∏l
j=1(gz1g

υ
2 )xjwj ), which is

sent to A.

Analysis. We note that this sets zc = Σlj=1xjwj . If
T = gγ1 g

κ
3 , then this is a normal ciphertext which

has no G2 component. If T = gγ1 g
ξ
2g
κ
3 , this is a

semi-functional ciphertext with zc = Σlj=1xjwj . If
A succeeds in distinguishing these two games then
our challenger B can use A to break Assumption 2.
Thus if Assumption 2 is holds, these two games are
indistinguishable.

Lemma 3. Suppose there exists an algorithm A such that

Adv
GameT−1

A,E1 − AdvGameTA,E1 ≤ ε. Then we can build an
algorithm B with advantage ε in breaking Assumption 3.
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Table 1: Comparison of performance with existing schemes
S(Scheme) Encryption/Decryption Hard Problems Key update

time
Ciphertext
length

Public-key/Secret-
key size

S of [16] O(N · (loglogN)2) Three static
assumptions

O(logN) O(logN) O(logN)

Our Scheme O(1) BDDH O(logN) O(1) O(logN)

Proof. B first receives (N,G,GT , e, g1, g3, g
α
1 g

ξ
2, g

s
1g
µ
2 , g

$
2 )

and T , where T = e(g1, g1)αs or T = e(g1, g1)αw.

B chooses random exponents x0, x1, ..., x`
$←− ZN and

sets the public parameters as V = e(g1, g
α
1 g

ξ
2), h0 =

gx0
1 , h1 = gx1

1 , ..., and h` = gx`
1 . It sends these to

A. When A requests a key for time period i, B gen-
erates a semi-functional. It does this by setting skw =
(gα1 g

ξ
2 ·
∏l
j=1(g

xj ·wj

1 )r ·gu3 , gr1 ·g
v0
3 , hrl ·g

v1
3 , ..., hr` ·g

v`
3 ). After

providing the appropriate secret keys, B responds to the
challenge query from A. Specifically, B chooses a random

bit b and returns CT = (Mb · T, gs1g
µ
2 , (g

s
1g
µ
2 )Σl

j=1xjwj ). If
T = e(g1, g1)αs, then this is a properly distributed semi-
functional ciphertext with message Mb. On the other

hand, if T
$←− GT , then this is a semi-functional cipher-

text with a random message. Therefore, the value of b
is information-theoretically hidden and the probability of
success of any algorithm A in this game is exactly 1/2,

since b
$←− {0, 1}. Thus, B can use the output of A to

break Assumption 3 with non-negligible advantage.

This conclude the proof of Theorem 3.

According to Theorem 1 and Theorem 2, we conclude
our concrete scheme has forward security and update se-
curity.

5.4 Comparison with the Existing
Schemes

Now we compare the efficiency of our method with the
prevail classic uufsPKE [16] in Table 1. Similarly, we as-
sociate time periods N with the leaves only, we have the
same efficiency of key generation phase. From Table 1, our
scheme maintains the efficiency of key update and the size
of public-key, secret-key. Using the techniques of Lewko et
al. [14], the efficiency of our encryption/decrytion scheme
and size of the ciphertext from O(logN) to O(1). There-
fore, considering the security and the performance effi-
ciency, our scheme is much better than previous schemes.

6 Conclusions

In this paper, motivated by the work of Libert [16], we
give formal definition for uufsPKE scheme, as well as a
general framework for constructing uufsPKE from BTE
and SE scheme. We have proved our scheme is IND-uufs-
CCA secure in standard model. Furthermore, we give a
concrete construction of BTE scheme and prove the SN-
CPA security under three static assumptions. Finally,

we presented the first completely uufsPKE scheme that
is forward security and update security against chosen
ciphertext attack without random oracle. Compared with
existing scheme, our scheme performs more faster.
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