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Abstract

Signcryption is a cryptographic primitive which can of-
fer simultaneously security requirements of confidentiality
and authentication, and is more efficient than the tradi-
tional sign-then-encrypt way. Recently, Liu et al. pro-
posed the first certificateless signcryption scheme in the
standard model. However, their scheme is proved to have
some security weaknesses. In this paper, we propose a cor-
rected version of Liu et al.’s scheme and prove our scheme
is indistinguishable against adaptive chosen ciphertext at-
tacks and is existentially unforgeable against chosen mes-
sage attacks in the standard model. Performance anal-
ysis shows the new scheme has smaller public parameter
size than the previous certificateless signcryption schemes
without using the random oracles.
Keywords: Cryptography, provable security, signcryption

1 Introduction

In traditional public key cryptography, it needs a certifi-
cate issued by the certification authority (CA) to achieve
authentication of the user’s public key. However, the
cost of certificate management is very high. To con-
quer this problem in traditional public key cryptography,
Shamir [18] introduced the Identity-based cryptography.
In identity-based cryptography, the user’s public key is
derived directly from its name, email-address or other
identity information, but it requires a trusted third party
called Key Generation Center (KGC) generate the user’s
private key. Unfortunately, we are confronted with the
key escrow problem in identity-based cryptography, that
is, KGC knows user’s private key so that it can decrypt
any ciphertext and sign any message on behalf of the user.
At 2003, Al-Riyami and Paterson [1] introduced certifi-
cateless public key cryptography, which resolves the inher-
ent key escrow problem in identity-based cryptography,
without requiring certificates as used in traditional public
key cryptography. In certificateless public key cryptogra-

phy, the user’s public key is independently generated by
the user, and the user’s private key is a combination par-
tial private key computed by KGC and some user-chosen
secret value, in such a way that the key escrow problem
can be eliminated without requiring certificates.

Confidentiality and authenticity are two fundamentally
different security requirements and realized through en-
cryption and signature schemes respectively. A natural
solution to offering simultaneously both requirements is
using sign-then-encrypt approach. Signcryption, first in-
troduced by Zheng [26], is a cryptographic primitive that
combines the functionality of public encryption with dig-
ital signature and is more efficient than the traditional
signature-then-encrypt approach. Since then, many sign-
cryption schemes [7, 11, 19, 23] were proposed. The
first certificateless signcryption (CLSC) scheme was intro-
duced by Barbosa and Farshim [3]. Later, some efficient
CLSC schemes were proposed [12, 22, 25]. However, all
of these CLSC schemes are provably secure in the ran-
dom oracle model [5], which can only be considered as a
heuristic argument [6]. It has been shown in [4] that the
security of the scheme may not preserve when the ran-
dom oracle is instantiated with a particular hash function
such as SHA-1. Based on Waters’ identity-based encryp-
tion scheme [20] and its variants [8, 9, 13, 24], Liu et
al. [14] introduced the first CLSC scheme in the stan-
dard model. Unfortunately, in [15, 17], Liu et al.’s CLSC
scheme [14] is proved to be not secure against a type I ad-
versary who can compromise users secret value or replace
user public key, but neither compromise master secret key
nor get access to partial private key. Weng et al. [21]
showed that Liu et al.’s CLSC scheme [14] is also not
secure against the malicious-but-passive KGC attack [2],
where a malicious KGC can control the generation of mas-
ter public/secret key pair, but cannot compromise user’s
secret value nor replace any public key. Though a res-
cued scheme has been proposed by Jin et al. [10], it still
can not resist the attacks in [21]. This is because Jin et
al.’s scheme has the same signcryption algorithm as Liu
et al.’s CLSC scheme [14]. To the best of our knowledge,
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a secure CLSC scheme without random oracles is still an
open problem. In this paper, we propose an improved
Liu et al.’s CLSC scheme which can resist all the attacks
in [15, 17, 21]. In addition, by using Naccache’s meth-
ods [16], our new scheme has a smaller system parameters
size than schemes [10, 14].

The rest paper is organized as follows. We provide
some preliminaries in Section 2. Then, we recall the defi-
nition of certificateless signcryption scheme and its secu-
rity model in Section 3. We propose a corrected version of
Liu et al.’s scheme in Section 4. Its formal security proof
is presented in Section 5. Finally a concluding remark is
given in Section 6.

2 Preliminaries

In this Section, we recall the bilinear pairing and com-
plexity assumptions [14].

2.1 Bilinear Pairing

Let G and GT be two (multiplicative) cyclic groups with
prime order p. A bilinear pairing is a map e : G×G → GT

with the following properties:

1) Bilinear: ∀g1, g2 ∈ G, ∀a, b ∈ Z∗p , we have e
(
ga
1 , gb

2

)
=

e (g1, g2)
ab;

2) Non-degeneracy: There exist g1, g2 ∈ G such that
e (g1, g2) 6= 1GT

, where 1GT
denotes the identity ele-

ment of group GT ;

3) Computability: There exists an efficient algorithm to
compute e (g1, g2) for ∀g1, g2 ∈ G.

2.2 Decisional Bilinear Diffie-Hellman
Assumption

Given a group G of prime order p with generator g,
a bilinear pairing e: G × G −→ GT and elements
ga, gb, gc ∈ G, e(g, g)z ∈ GT where a, b, c, z are selected
randomly from Z∗p . Let β ∈ 0, 1 be a random binary
coin. If β = 1, it outputs the tuple (g, A = ga, B =
gb, C = gc, Z = e(g, g)abc). If β = 0, it outputs the
tuple (g,A = ga, B = gb, C = gc, Z = e(g, g)z). The de-
cisional Bilinear Diffie-Hellman (DBDH) assumption is
that no t-time algorithm B has at least ε advantage in
determining the value of β, where the advantage is de-
fined as | Pr[1 ←− B(g, ga, gb, gc, e(g, g)abc)] − Pr[1 ←−
B(g, ga, gb, gc, e(g, g)z)].

2.3 Computational Diffie-Hellman As-
sumption

Given (g, ga, gb) where a, b are selected randomly from
Z∗p . The computational Diffie-Hellman (CDH) assump-
tion is that no t-time algorithm B has at least ε advan-
tage in computing gab, where the advantage is defined as
Pr[B(g, ga, gb) = gab].

3 Formal Model of Certificateless
Signcryption

3.1 Definition of Certificateless Signcryp-
tion

A CLSC scheme consists of the following six algorithms:

Setup(k). On input a security parameter k, this setup
algorithm generates a master public/secret key pair
(mpk, msk).

PartialPrivateKeyGen. On input msk, mpk, and a
user identity ID, it generates the user’s partial Pri-
vate key pskID.

UserKeyGen. On input mpk and pskID, it generates
the public/private key pair (pkID, skID).

User-Key-Generate. On input params and a user
identity ID, it returns a randomly chosen secret value
xID and a corresponding public key pkID for the user.

Private-Key-Extract. On input params, a user’s par-
tial private key pskID and secret value xID, it returns
the user’s full private key skID.

Signcrypt. On input params, a message M , a sender’s
private key skS , identity IDS and public key pkS ,
and a receivers identity IDR and public key pkR, it
returns a ciphertext δ or an error symbol ⊥.

Unsigncrypt. On input a ciphertext δ, the receiver’s
private key skR, and the sender’s public key pkS ,
it outputs a plaintext M or an error symbol ⊥.

For consistency, these algorithms must satisfy that
if δ = Signcrypt(params,M, skS , IDR, pkR), then M
should be a part of Unsigncrypt(params, δ, skR, pkS).

3.2 Security Models

An adversary A is allowed to access to the following ora-
cles.

Public-Key-Broadcast-Oracle. On input of any iden-
tity ID, challenger returns corresponding public key.
If such a key does not yet exist, challenger computes
the corresponding public key pkID and returns pkID

to A.

Partial-Private-Key-Oracle. On input of any identity
ID, challenger computes the corresponding partial
private key pskID for this identity and returns pskID

to A.

Public-Key-Replacement-Oracle. On input of an
identity ID and a new valid public key value pk′ID,
challenger replaces the current public key with pk′ID.
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Private-Key-Extract-Oracle. On input of an identity
ID whose public key was not replaced, challenger
computes the private key skID for this identity and
returns skID to A.

Signcrypt. On input of a sender’s identity IDS , a re-
ceiver’s identity IDR and a message M , challenger
responds by running the Signcrypt algorithm on the
message M , the sender’s private key skS and the re-
ceiver’s public key pkR. It is possible for the chal-
lenger not to be aware of the sender’s secret value
when the associated public key has been replaced.
In this case, we require A to provide the sender’s
secret key.

Unsigncrypt. On input of a ciphertext δ, a sender’s
identity IDS and a receiver’s identity IDR, chal-
lenger returns the result of running the Unsign-
crypt algorithm on the ciphertext δ, the receiver’s
private key skR and the sender’s public key pkS . It is
possible for the challenger not aware of the receiver’s
secret value when the associated public key has been
replaced. In this case, A is required to provide the
receiver’s secret key.

Definition 1. A CLSC scheme is said to have the indis-
tinguishability against adaptive chosen ciphertext attacks
property (IND-CLSC-CCA), if no polynomially bounded
adversaries A(AI and AII) have non-negligible advantage
of winning the following game.

Initialization. If the adversary is AI , challenger runs
algorithm Setup to generate the master key msk and
the master public key mpk, and then gives mpk to AI

and keeps msk secret. If the adversary is AII , adver-
sary AII runs algorithm Setup to generate the mas-
ter secret key msk and the master public key mpk.
AII then gives mpk and msk to challenger.

Phase 1. In this phase, A adaptively performs a polyno-
mially bounded number of oracle queries. Actually,
AII does not need to issue partial private key queries,
since it can compute them from the master key by it-
self.

Challenge. At the end of Phase 1, the adversary outputs
two distinct identities IDS∗ , IDR∗ and two equal
length messages {M0,M1}. The challenger chooses a
bit γ randomly and signcrypts Mγ under the IDS∗ ’s
private key and the IDR∗ ’s public key to produce δ∗.
The challenger returns δ∗ to the adversary.

Phase 2. The adversary continues to probe the chal-
lenger with the same type of queries that it made in
Phase 1. To capture insider security, the adversaries
are assumed to have access to the private key of the
sender IDS∗ of a signcrypted message.

Response. The adversary returns a bit γ′. We say that
the adversary wins the game if γ′ = γand the adver-
sary fulfills the following conditions:

1) AI , AII cannot extract the private key for IDR∗

at any point.
2) AI cannot extract the private key for any iden-

tity if the corresponding public key has already
been replaced.

3) AI cannot extract the partial private key of
IDR∗ if AI replaced the public key pkR∗ before
the challenge phase.

4) In Phase 2, AI cannot make an unsigncryp-
tion query on the challenge ciphertext δ∗ under
IDS∗ and IDR∗ unless the public key pkS∗ of
the sender or that of the receiver pkR∗ used to
signcrypt Mγ has been replaced after the chal-
lenge was issued.

5) In Phase 2, AII cannot make an unsigncryp-
tion query for the challenge ciphertext δ∗ under
IDS∗ and IDR∗ and public key pkR∗ that were
used to signcrypt Mγ .

A’s advantage is defined as AdvIND−CL−CCA
A =

|2Pr [γ′ = γ]− 1|.
Definition 2. A CLSC scheme is said to be secure
against an existential forgery for adaptive chosen message
attacks (EUF-CLSC-CMA), if no polynomially bounded
adversaries (AI and AII) have non-negligible advantage
of winning the following game.

Initialization. It is the same as above.

Queries. A may adaptively issue a polynomially bounded
number of queries to B as above Phase 1. To deal
with the insider security, assuming the adversary can
gain access to the private key of the receiver of a sign-
crypted message.

Output. Eventually, A outputs a new triple
(δ∗, IDS∗ , IDR∗), which is not produced by the
signcryption query. The adversary wins if the result
of unsigncrypt (δ∗, IDS∗ , pkS∗ , skR∗) is not the
symbol ⊥ and the queries are subject to the following
constraints:

1) AI , AII cannot extract the private key for IDS∗

at any point.
2) AI cannot extract the private key for any iden-

tity if the corresponding public key has already
been replaced.

3) AI cannot extract the partial private key of
IDS∗ .

We define A’s success probability in the game above to
be SuccEUF−CLSC−CMA

A = Pr[Awins].

4 Improved Scheme

Let G and GT be groups of prime order p and g be a
generator of G, and let e: G × G → GT be a bilin-
ear pairing. φ: < → GT is a bijection while φ−1 is its
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inverse mapping, < is a subset of {0, 1}m+n with p ele-
ments. Identity ID will be represented as n dimensional
vectors dID = (dID,1, · · · , dID,n) where each dID,i is an
`-bit integer, and n′ = n · ` is the length of an identity in
binary string representation. H ′: {0, 1}∗ → {0, 1}n′ , H:
{0, 1}∗ → {0, 1}m are two collision-resistant hash func-
tions.

Setup. The KGC selects randomly values α, u′, v′ in Z∗p
and two random vectors U = (ui)n, V = (vj)m and
then computes g1 = gα, and selects randomly g2 ∈ G.
The master public key mpk and the master secret key
msk are respective (g1, g2, u

′, v′,U,V) and gα
2 .

PartialPrivateKeyGen. The KGC picks a ran-
dom value r ∈ Z∗p and computes partial
private key pskID = (pskID,1, pskID,2) =(

gα
2 (u′

i=n∏

i=1

u
dID,i

i )r, gr

)
. The sender and the

receiver’s partial private keys are

pskS = (pskS,1, pskS,2) =

(
gα
2 · (u′

i=n∏

i=1

u
dS,i

i )r, gr

)

pskR = (pskR,1, pskR,2) =

(
gα
2 · (u′

i=n∏

i=1

u
dR,i

i )r, gr

)

UserkeyGen. Pick a secret value xID ∈ Z∗p , and gen-
erate public key pkID = {pkID,1, pkID,2, pkID,3} =
{gxID , gxID

1 , gxID
2 }. Then it randomly picks r′ from

Z∗p and computes private key skID as

(skID,1, skID,2)

=

(
psk

x2
ID

1 · (u′
i=n∏

i=1

u
dID,i

i )r′ , psk
x2

ID
2 · gr′

)

=

(
g

αx2
ID

2 · (u′
i=n∏

i=1

u
dID,i

i )t, gt

)

where t = rx2
ID + r′.

Signcrypt. To send a message M ∈ {0, 1}m to an iden-
tity IDR with public key pkR, first check whether
the public key pkR is correctly formed, by check-
ing e(pkR,1, g1) = e(g, pkR,2) and e(pkR,1, g2) =
e(g, pkR,3). If not, output ⊥ and abort the algo-
rithm. Otherwise,the sender first selects a random
value s ∈ Z∗p and R ∈ {0, 1}n such that M ‖R ∈ <,
and compute:(Let w be a n-bit string and wi be the
i-th bit w).

δ1 = φ (M ‖R ) · e(pkR,2, pkR,3)s,

δ2 = gs,

δ3 = (u′
i=n∏

i=1

u
dR,i

i )s,

δ4 = skS,2,

δ5 = skS,1 · F (w)s

where w = H (δ1, δ2, δ3, δ4, R, pkS , pkR) ∈ {0, 1}m

and F (w) = v′
m∏

j=1

v
wj

j .

Unsigncrypt. Upon receiving a ciphertext C =
(δ1, δ2, δ3, δ4, δ5), first compute

φ−1 (δ1 · e (δ3, skR,2) /e (δ2, skR,1)) → M ‖R
and then check whether the public key pkS is cor-
rectly formed, by checking e(pkS,1, g1) = e(g, pkS,2)
and e(pkS,1, g2) = e(g, pkS,3). If not, output ⊥ and
abort the algorithm. Otherwise, Accept the message
M if

e (δ5, g) = e (pkS,2, pkS,3) e(u′
i=n∏

i=1

u
dS,i

i , δ4)e(F (w) , δ2),

where w = H (δ1, δ2, δ3, δ4, R, pkS , pkR) ∈ {0, 1}m.

It is easy to see the proposed scheme is consistent. In the
next Section, we will give a formal security proof.

5 Analysis of the Improved
Scheme

5.1 Security Analysis

We now prove that the above proposed scheme is secure
in the standard model. Our proof very much falls along
the lines of the security proof in Liu et al.’s scheme [14].

Theorem 1. The new CLSC scheme is indistinguishable
against adaptive chosen ciphertext attacks (IND - CLSC
- CCA) in the standard model under the decisional BDH
intractability assumption.

This theorem follows Lemmas 1 and 2.

Lemma 1. The new CLSC scheme is indistinguishable
against the Type I attacker in the standard model if the
decisional BDH assumption holds.

Proof. Assume there exists a type I adversary AI against
our scheme. We construct a PPT simulator B that makes
use of AI to solve the DBDH problem with probability
at least ε′ and in time at most t′. B is given a DBDH
problem instance (g, A = ga, B = gb, C = gc, Z) and
replies the queries of AI as follows.

Setup. Let lv = 2(qpp + qp + qs + qu) and lw = 2qu. B
randomly chooses the following elements:

1) Two integers kv(0≤kv≤2` · n), kw(0≤kw≤m).
We assume that 2`(n + 1)lv < p, (m + 1)lw < p
for the given values of n and m.

2) An integer x′(x′ ∈ Zlv ) and a vector
−→
X =

(xi)n(xi ∈ Zlv ).

3) An integer z′(z′ ∈ Zlw) and a vector
−→
Z =

(zj)m(zj ∈ Zlw).
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4) Two integers y′, t′ ∈ Zp and three vectors−→
Y = (yi)n(yi ∈ Zp),

−→
T = (tj)m(tj ∈ Zp),−→w = (wj)m(wj ∈ Z2).

Identity ID will be represented as n dimensional vec-
tors dID = (dID,1, . . . , dID,n) where each dID,i is an
`-bit integer, and n′ = n·` is the length of an identity
ID in binary string representation. For convenience,
we define as follows:

F (dID) = x′ − lvkv +
i=n∑

i=1

xidID,i,

J(dID) = y′ +
i=n∑

i=1

yidID,i,

K(w) = z′ − lwkw +
j=m∑

j=1

zjwj ,

L(w) = t′ +
j=m∑

j=1

wjtj .

Then the challenger constructs a set of public param-
eters as follows:

g1 = ga,

g2 = gb,

u′ = gx′−lvkv
2 gy′ ,

v′ = gz′−lwkw
2 gt′ ,

ui = gxi
2 gyi ,

vj = g
zj

2 gtj .

Note that the master secret key will be ga
2 = gab and

the following equation holds:

u′
i=n∏

i=1

u
dID,i

i = g
F (dID)
2 gJ(dID),

v′
j=m∏

j=1

v
wj

j = g
K(w)
2 gL(w).

Phase 1. In the query phase, B answers the queries of
AI as follows:

Public-Key-Broadcast-Oracle. Upon receiving a
query for a public key of an identity ID,
if (ID, pkID) exists in PublicKeyList, B re-
turns pkID as the answer. Otherwise, B runs
the algorithm UserKeyGen to generate pub-
lic key pkID = {pkID,1, pkID,2, pkID,3} =
{gxID , gxID

1 , gxID
2 }. B adds (ID, xID) to Se-

cretValueList and adds (ID, pkID) to PublicK-
eyList, then returns the public key pkID as the
answer.

Partial-Private-Key-Extract-Oracle. Upon re-
ceiving a query for a partial private key of

an identity ID, B first searches PartialPri-
vateKeyList for a tuple (ID, pskID). If it ex-
ists, B returns (ID, pskID) as the answer. Oth-
erwise, B can construct a partial private key
by assuming F (dID) 6= 0 mod p. B randomly
chooses r ∈ Zp and computes a partial private
key:

pskID = (pskID,1, pskID,2)

= (g−J(dID)/F (dID)
1 (u′

i=n∏

i=1

u
dID,i

i )r, g
−1/F (dID)
1 gr).

pskID is a valid partial private key for the iden-
tity ID shown as follows.

pskID,1 = g
−J(dID)/F (dID)
1 (u′

i=n∏

i=1

u
dID,i

i )r

= ga
2 (gF (dID)

2 gJ(dID))r−a/F (dID)

= ga
2 (u′

i=n∏

i=1

u
dID,i

i )r′ ,

pskID,2 = g
−1/F (dID)
1 gr = gr−a/F (dID) = gr′

where r′ = r−a/F (dID). From −p < F (dID) <
p, we conclude that F (dID) = 0 mod p im-
plies F (dID) = 0 mod lv, so F (dID) 6= 0 mod lv
suffices to have F (dID) 6= 0 mod p. B adds
(ID, pskID) to its PartialPrivateKeyList and
returns the partial private key pskID as the
query output. If, on the other hand, F (dID) =
0 mod p, B aborts and randomly chooses its
guess β′ of β.

Private-Key-Extract-Oracle. Upon receiving a
query for a private key of an identity ID, if the
PrivateKeyList contains (ID, skID), B returns
skID. Otherwise, B can construct a private key
by assuming F (dID) 6= 0 mod p. B searches
SecretValueList to find out xID. If it does
not exist, B runs the algorithm UserKeyGen
to generate secret-public key pair (xID, pkID),
and adds (ID, xID) to SecretValueList and adds
(ID, pkID) to PublicKeyList, then B chooses
r ∈ Zp randomly and computes

skID,1 = (gx2
ID

1 )−J(dID)/F (dID)(u′
i=n∏

i=1

u
dID,i

i )r

= g
ax2

ID
2 (gF (dID)

2 gJ(dID))r−ax2
ID/F (dID)

= g
ax2

ID
2 (u′

i=n∏

i=1

u
dID,i

i )t,

skID,2 = (gx2
ID

1 )−1/F (dID)gr

= gr−ax2
ID/F (dID) = gt,

where t = r−ax2
ID/F (dID). B adds (ID, skID)

to PrivateKeyList and returns the private key
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skID. If, on the other hand, F (dID) = 0 mod p,
B aborts and randomly chooses its guess β′ of
β.

Public-Key-Replacement-Oracle. Upon receiv-
ing a query for replacing the current public key
pkID of an identity ID with a new and valid
public key pk′ID, B finds out pkID in its Pub-
licKeyList, and replaces it with the new public
key pk′ID. If pkID does not exist, B directly sets
pkID = pk′ID, while the adversary delivers x′ID

to B. Then B adds (ID, xID) to SecretValueList
and adds (ID, pkID) to PublicKeyList. B sets
sta = 1 for the identity ID.

Signcrypt-Oracle. Upon receiving a query for a
message M and identities IDS and IDR, if
F (dS) 6= 0 mod p, B obtains the public key
pkR of IDR and the private key skS of IDS by
running Public-Key-Broadcast-Oracle and
Private-Key-Extract-Oracle, then runs the
Signcrypt algorithm to create a ciphertext δ
and sends it toAI . If F (dS) = 0 mod p B aborts
and randomly chooses its guess β′ of β.

Unsigncrypt-Oracle. Upon receiving a unsign-
cryption query on a ciphertext δ = (δ1, δ2, δ3,
δ4, δ5), and identities IDS and IDR, B com-
putes the unsigncryption as follows:

1) If sta = 0 for IDR, B obtains the pri-
vate key skR of IDR by running Private-
Key-Extract-Oracle (assume F (dR) 6=
0 mod lv), then runs the Unsigncrypt al-
gorithm to recover the message M . B exe-
cutes the verification part of the Unsign-
crypt algorithm. If the verification does
not succeed, B returns a failure symbol ⊥.
Otherwise, returns M to AI .

2) If sta = 1 for IDR, or F (dR) = 0 mod lv,
B will try to decrypt the ciphertext δ.
Assume K(w) 6= 0 mod lw, where w =
H (δ1, δ2, δ3, δ4, R, pkS , pkR). B retrieves
the secret value xR s.t. pkR, and computes
gs
2 = (δ5/(skS,1δ

L(w)
2 ))1/K(w) and M‖R =

Φ−1(δ1/e(g1, g
s
2)

x2
R). B executes the verifi-

cation part of the Unsigncrypt algorithm.
If the verification does not succeed, B re-
turns a failure symbol ⊥. Otherwise, re-
turns M to AI . If L(w) = 0 mod lw, B
aborts and randomly chooses its guess β′

of β.

Challenge. At the end of the first stage, AI outputs
two equal length messages M0,M1 together with two
identities IDS and IDR on which it wishes to be chal-
lenged. If F (dR∗) 6= 0 mod lv, B aborts. Otherwise,
chooses a random bit γ from {0, 1} and constructs
a ciphertext of Mγ as follows. Let pkS∗ , pkR∗ be
IDS∗ , IDR∗ ’s public keys, respectively. B retrieves

the secret values xS∗ , xR∗ , tS∗ ∈ Zp and R ∈ {0, 1}n

such that Mγ ‖R ∈ <, then computes as follows:

δ∗1 = φ (Mγ ‖R ) · Zx2
R∗ ,

δ∗2 = C,

δ∗3 = CJ(dR∗ ),

δ∗4 = (gx2
S∗

1 )−1/F (dS∗ )gtS∗ ,

w∗ = H (δ∗1 , δ∗2 , δ∗3 , δ∗4 , R, pkS∗ , pkR∗) .

If K(w∗) 6= 0 mod p, B aborts. Otherwise, C sets

δ∗5 = (gx2
S∗

1 )−J(dS∗ )/F (dS∗ )(u′
i=n∏

i=1

u
dS∗,i

i )tS∗CL(w∗). B

returns the ciphertext δ∗=(δ∗1 , δ∗2 , δ∗3 , δ∗4 , δ∗5) to the
adversary.

Phase 2. AI continues to perform the same type of
queries made in Phase 1. But in this phase, AI can
not make any Unsigncrypt query on the challenge
ciphertext δ∗ for IDS∗ , IDR∗ .

Guess. Finally, AI outputs a guess γ′ of γ. If γ′ = γ
then B outputs 1 indicating Z = e(g, g)abc, and else
outputs 0 indicating Z is a random element of GT .

Remark 1. Liu et al. showed their scheme is secure if the
user’s public key is with the correctly form e(g1, g2)xID i.e
the AI can replace public key only by choosing a different
secret value x′ID. However, in [15, 17], Liu et al.’s scheme
is showed that a Type I adversary AI can cheat the sender
and decrypt the ciphertext by replacing receiver’s public
key with e(g, g)x′R . The weakness in [14] is that receiver’s
public key pkR is just a group element e(g1, g2)xR , and it
can not check whether the public key pkR is correctly
formed during signcryption stage. In order to defend
against attacks [15, 17], we revise UserkeyGen so that
the receiver’s public key pkR can be checked whether it is
correctly formed during signcryption stage. We omit the
analysis of the success probability and the time complex-
ity, which are similar to that of Liu et al. [14].

Lemma 2. The new CLSC scheme is indistinguishable
against the Type II attacker in the standard model if the
decisional BDH assumption holds.

Proof. Assume there exists a type II adversary AII

against our scheme. We construct a PPT simulator B
that makes use of AII to solve the DBDH problem with
probability at least ε′ and in time at most t′. B is given
aDBDH problem instance (g,A = ga, B = gb, C = gc, Z)
and replies the queries of AII as follows.

Setup. Let lv = 2(qp + qs + qu) and lw = 2qu. The
Type II adversary AII chooses a random integer α ∈
Zp as the master secret key and computes g1 = Aα.
The other public parameters are identical to those of
Theorem 1. Then AII sends all public parameters
and the master secret key α to B.
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Phase 1. AII can compute partial private key of any
identity by itself and carry out the following queries.

Public-Key-Broadcast-Oracle. Upon receiving a
query for a public key of an identity ID, if
(ID, pkID) exists in PublicKeyList, B returns
pkID as the answer. Otherwise, B runs the al-
gorithm User-Key-Gen to generate public key
pkID = (gxID , AαxID , BxID ), B adds (ID, xID)
to SecretValueList and adds (ID, pkID) to Pub-
licKeyList, and returns the public key to AII .

Private-Key-Extract-Oracle. Upon receiving a
query for a private key of an identity ID, if the
PrivateKeyList contains (ID, skID), B returns
skID. Otherwise, B can construct a private key
by assuming F (dID) 6= 0 mod p. B first searches
SecretValueList to find out xID. If it does
not exist, B runs the algorithm UserKeyGen
to generate secret-public key pair (xID, pkID),
and adds (ID, xID) to SecretValueList and adds
(ID, pkID) to PublicKeyList, then B chooses
r ∈ Zp randomly and computes

skID,1 = (Aαx2
ID )−J(dID)/F (dID)(u′

i=n∏

i=1

u
dID,i

i )r

= g
aαx2

ID
2 (gF (dID)

2 gJ(dID))r−aαx2
ID/F (dID)

= g
aαx2

ID
2 (u′

i=n∏

i=1

u
dID,i

i )t,

skID,2 = (Aαx2
ID )−1/F (dID)gr

= gr−aαx2
ID/F (dID) = gt,

where t = r − aαx2
ID/F (dID). B adds

(ID, skID) to the PrivateKeyList and returns
the private key skID. If F (dID) = 0 mod p, B
simply aborts and randomly outputs a guess β′

of β.

Signcrypt-Oracle. For a signcryption query for a
message M and identities IDS and IDR, B an-
swers the signcryption query in the same way as
Lemma 1.

Unsigncrypt-Oracle. Upon receiving a un-
signcryption query on a ciphertext
δ = (δ1, δ2, δ3, δ4, δ5), and a sender’s iden-
tity IDS and a receiver’s identity IDR, B
computes the unsigncryption as follows:

1) If F (dR) 6= 0 mod lv, B searches Pri-
vateKeyList to find out (IDR, skR),then
performs the Unsigncrypt algorithm to re-
cover the message M , and sends it to AII .
If the corresponding entry does not exist, B
obtains the private key skR of IDR by run-
ning Private-Key-Extract-Oracle, then
runs the Unsigncrypt algorithm to re-
cover the message M . B executes the verifi-
cation part of the Unsigncrypt algorithm.

If the verification does not succeed, B re-
turns a failure symbol ⊥. Otherwise, re-
turns M to AII .

2) If F (dR) = 0 mod lv, B will try to decrypt
the ciphertext δ. Assume K(w) 6= 0 mod
lw, where w = H (δ1, δ2, δ3, δ4, R, pkS , pkR).
B searches PrivateKeyList to obtain IDS ’s
private key skS (to deal with the insider se-
curity, we assume that the adversary has
access to the private key of the sender) and
retrieve the secret value xR s.t. pkR. B
can compute gs

2 = (δ5/(skS,1δ
L(w)
2 ))1/K(w),

M‖R = Φ−1(δ1/e(Aα, gs
2)

x2
R). Then B ex-

ecutes the verification part of the Unsign-
crypt algorithm. If the verification does
not succeed, B returns a failure symbol ⊥.
Otherwise, returns M to AII . If L(w) =
0 mod lw, B aborts and randomly chooses
its guess β′ of β.

Challenge. At the end of the first stage, AII outputs
two equal length messages M0,M1 together with
two identities IDS and IDR on which it wishes
to be challenged. If F (dR∗) 6= 0 mod lv, B aborts.
Otherwise, chooses a random bit γ from {0, 1}
and constructs a ciphertext of Mγ as follows. Let
pkS∗ , pkR∗ be IDS∗ , IDR∗ ’s public keys, respec-
tively. B retrieves the secret values xS∗ , xR∗ and
randomly chooses a bit γ ∈ {0, 1}, tS∗ ∈ Zp and
R ∈ {0, 1}n such that Mγ ‖R ∈ <, then com-
putes as follows: δ∗1 = φ (Mb ‖R ) · Zαx2

R∗ , δ∗2 =

C, δ∗3 = CJ(dR∗ ), δ∗4 = (gx2
S∗

1 )−1/F (dS∗ )gtS∗ , w∗ =
H (δ∗1 , δ∗2 , δ∗3 , δ∗4 , R, pkS∗ , pkR∗) . If K(w∗) 6=
0 mod p, B aborts. Otherwise, C sets

δ∗5 = (gx2
S∗

1 )−J(dS∗ )/F (dS∗ )(u′
i=n∏

i=1

u
dS∗,i

i )tS∗CL(w∗). B

returns the ciphertext δ∗=(δ∗1 , δ∗2 , δ∗3 , δ∗4 , δ∗5) to the
adversary.

Phase 2. AII continues to perform the same type of
queries made in Phase 1. But in this phase, AII can
not make any Unsigncrypt query on the challenge
ciphertext δ∗ for IDS∗ , IDR∗ .

Guess. Finally, AII outputs a guess γ′ of γ. If γ′ = γ
then B outputs 1 indicating Z = e(g, g)abc, and else
outputs 0 indicating Z is a random element of GT .

Remark 2. Weng et al. [21] proved that Liu et al’s
scheme is not indistinguishable against a Type II adver-
sary. That is, given a challenged ciphertext δ∗, AII could
convert the challenged ciphertext δ∗ into a new valid ci-
phertext δ′ in phase 2. When adversary issues an unsign-
cryption query on the ciphertext δ′, the challenger has to
return the underlying message Mγ to AII . With Mγ , ad-
versary AII can certainly know the value γ, and thus wins
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the game. One of the main difference between Liu et al.
and our proof is the signcryption ciphertext that returns
at the stage of Challenge. In our proof, the challenged
ciphertext δ∗ includes a random binary string R which
AII does not know, so the above defect can be avoided.

Theorem 2. The new CLSC scheme is existentially un-
forgeable against chosen message attacks (EUF-CLSC-
CMA) in the standard model under the CDH intractability
assumption.

This theorem follows Lemma 3 and 4.

Lemma 3. The new CLSC scheme is existentially un-
forgeable against the Type I attacker in the standard model
if the CDH assumption holds.

Proof. Assume that there exists a Type I forger AI

against our scheme. In the following, we construct an
algorithm B to solve the CDH problem.

Suppose B is given a random instance of the CDH
problem (ga, gb). Its goal is to output gab. The
simulation process is the same as that described in
Lemma 1. Finally, the adversary AI produces a new
ciphertext δ∗ = (δ∗1 , δ∗2 , δ∗3 , δ∗4 , δ∗5) on message w∗ =
H (δ∗1 , δ∗2 , δ∗3 , δ∗4 , R, pkS , pkR). If F (dS∗) 6= 0 mod p or
K(w∗) 6= 0 mod p, then B aborts. Otherwise, F (dS∗) =
0 mod p and K(w∗) = 0 mod p, B computes

δ∗5
(δ∗4)J(dS∗ )(δ∗2)L(w∗)

=

g
ax2

S∗
2 (u′

i=n∏

i=1

u
dS∗,i

i )tS∗ (δ∗2)L(w∗)(v′
j=m∏

j=1

v
wj

j )s

gJ(dS∗ )tS∗ gL(w∗)r′′

= gax2

2

= gabx2
S∗ .

B retrieves the secret value xS∗ s.t. pkS∗ and thus can
output gab as the solution to the CDH problem instance.

Remark 3. Liu et al. showed their scheme is secure
against an existential forgery for adaptive chosen mes-
sage attacks (EUF-CLSC-CMA) if the user’s public key
is with the correctly form e(g1, g2)xID i.e the AI can re-
place public key only by choosing a different secret value
x′ID. However, in [15], Liu et al. scheme is showed that
a Type I adversary AI can cheat the receiver and forge a
valid signcrypted text by replacing the sender’s public key
e(g, g)x′S . The weakness in [14] is that the sender’s public
key pkS is just a group element e(g1, g2)xS , and it can
not check whether the public key pkS is correctly formed
during unsigncrypt stage. In order to defend against at-
tacks [15], we revise UserkeyGen so that the receiver
can check whether the sender’s public key pkS is correctly
formed during the unsigncrypt stage. We omit the anal-
ysis of the success probability and the time complexity,
which are similar to that of Liu et al. [14].

Lemma 4. The new CLSC scheme is existentially un-
forgeable against the Type II attacker in the standard
model if the CDH assumption holds.

Proof. Assume that there exists a Type II forger AII

against our scheme forger. In the following,we construct
an algorithm B to solve the CDH problem.

Suppose B is given a random instance of the CDH prob-
lem (ga, gb). Its goal is to output gab. The simulation
process is the same as that described in Lemma 2.

Finally, if B does not abort, the adversary AII returns
a new ciphertex δ∗ = (δ∗1 , δ∗2 , δ∗3 , δ∗4 , δ∗5) on message w∗ =
H (δ∗1 , δ∗2 , δ∗3 , δ∗4 , R, pkS∗ , pkR∗) where w∗ has never been
queried. If F (dS∗) 6= 0 mod p or K(w∗) 6= 0 mod p, then
B aborts. Otherwise, F (dS∗) = 0 mod p and K(w∗) =
0 mod p, B computes

δ∗5
(δ∗4)J(dS∗ )(δ∗2)L(w∗)

=

g
aαx2

S∗
2 (u′

i=n∏

i=1

u
dS∗,i

i )tS∗ (δ∗2)L(w∗)(v′
j=m∏

j=1

v
wj

j )s

gJ(dS∗ )tS∗ gL(w∗)r′′

= gaαx2

2

= gabαx2
S∗ .

Since B has the value xS∗ and the master secret key α,
it can output gab as the solution to the CDH problem
instance.

Remark 4. Weng et al. [21] proved that a Type II ad-
versary can use a ciphertext generated by a sender to
arbitrarily forge signcryption on behalf of this sender. In
our improved scheme, we embed a random binary string
R into the signcryption ciphertex. Since AII does not
know R, he can not successfully launch the same attacks
as in [21].

5.2 Performance Analysis

The existing CLSC schemes without using random oracles
are given in [10, 14]. However, there exists security weak-
ness in these two schemes [10, 14], that is, we can not
check whether the user’s public key is correctly formed
during signcryption and unsigncryption stages. To avoid
the security weakness, we has to add verification equa-
tions which results in our improved scheme has more
computational cost in the signcryption and unsigncryp-
tion stages. Due to adopting Naccache’s methods [16]
in our improved scheme, identity ID with n′ = n · ` bit
length can be reduced to n dimensional vectors dID =
(dID,1, . . . , dID,n) where each dID,i is an `-bit integer. So
the new scheme is with a smaller master public size than
the other existing CLSC schemes [10, 14] The detailed
comparisons of our scheme with these schemes [10, 14] are
summarized in Table 1 where H denotes the Hash func-
tion computation, EGT denotes an exponentiation com-
putation in GT , P denotes a pairing computation, and
| aG | denotes the binary length of a elements in G.
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Table 1: Comparisons among different CLSC schemes

Schemes Public parameter size Operations Ciphertext size Security
[10] |(m + n · l + 4)G| 2H + 1EGT

+ 5P |4G|+ |1GT | No
[14] |(m + n · l + 4)G| 2H + 1EGT

+ 5P |4G|+ |1GT | No
Our Scheme |(m + n + 4)G| 2H + 1EGT

+ 15P |4G|+ |1GT | Yes

From Table 1, we know our scheme has more computa-
tional cost in the signcryption and unsigncryption stages,
but it can provide the provable security and has the same
ciphertext size as schemes [10, 14] and has smaller public
parameter size than schemes [10, 14].

6 Conclusions

Liu et al. [14] proposed the first CLSC scheme in the
standard model. However, their scheme has some secu-
rity weaknesses [15, 17, 21]. In this paper, we propose a
corrected version of Liu et al’s scheme and prove the new
scheme is secure against Type I and Type II (a malicious-
but-passive KGC) adversaries in the standard model. Our
new scheme not only provides the provable security but
also has smaller public parameter size than the previous
schemes [10, 14].
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