
International Journal of Network Security, Vol.17, No.5, PP.548-557, Sept. 2015 548

Provably-Secure Certificateless Key
Encapsulation Mechanism for e-Healthcare

System

Hui-Xian Shi1 and Rui Guo2

(Corresponding author: Rui Guo)

Department of Mathematics and Information Science, Shaanxi Normal University, Xi’an 710119, China1

China Mobile Group Shaanxi Company Limited Xi’an Brand, Xi’an 710077, China2

(Email: grbupt@gmail.com)

(Received Feb. 10, 2015; revised and accepted Mar. 28 & Apr. 26, 2015)

Abstract

Modern information and communications technology have
facilitated the traditional medical services in the health-
care system, which exchanges the physiological condition
and diagnosis timely and remotely between the patient
and the physician. However, there exist several privacy
concerns as personal health information could be exposed
to unauthorized parties. To ensure the confidentiality of
this sensitive data, it is a promising method to encrypt it
before delivering. Moreover, to generate and distribute a
secure session key is a significant issue in the encryption
algorithm. In this paper, we put forward a novel certifi-
cateless key encapsulation mechanism for the e-healthcare
system, which is proven secure under the computational
Diffie-Hellman assumption in the random oracle model.
Furthermore, we compare our proposal with others in per-
formance. Under the same simulation environment, the
results show that the proposed scheme needs less compu-
tation and communication cost and appropriate to encap-
sulate the session key in the e-healthcare system.

Keywords: Certificateless key encapsulation mechanism,
e-healthcare system, hybrid encryption, IND-CCA secure

1 Introduction

In recent years, information and communications tech-
nology have been employed in the traditional healthcare
system. Some lightweight devices, such as wireless med-
ical sensors, PDA and iPhone, increase the efficiency of
this system and provide high-quality of care without sac-
rificing the patient comfort [17]. In the e-healthcare sys-
tem, the wearable medical sensors are fixed on the pa-
tient to collect his/her physiological signals (e.g., blood
pressure, pulse oximeter and temperature). Then, via a
public wireless channel, these data are transmitted to the
physician’s handheld terminals, and the patient can be

diagnosed timely and remotely.

However, the Health Insurance Portability and Ac-
countability Act (HIPAA) enacted in 1996 [11] demon-
strated that the patient’s physiological conditions are all
the sensitive information, which relate to his/her privacy
and should be protected. If the privacy is eavesdropped
by an unauthorized party, the safety and economic inter-
ests of the patient would be threatened. Thus, during the
transmission in the public channel, it needs a secure en-
cryption scheme to ensure the confidentiality of the trans-
mitted data between the patient and the physician in the
e-healthcare system.

Considering the encryption scheme for e-healthcare
system, for the reason that this system consists of the
lightweight devices with limited memory, small band-
width and low power, it should preserve two outstanding
characteristics with efficiency and confidentiality during
designing an encryption scheme.

There are two models of encryption in cryptography,
asymmetric and symmetric key encryption systems. In
the public key encryption (i.e., asymmetric encryption),
the most of schemes in the literature have limited mes-
sage spaces, which means that a message to be encrypted
is assumed to have a limited length or belong to a spe-
cific group. It is inconvenient and expensive for ensur-
ing the confidentiality of arbitrary messages by using of
a purely public key encryption. As enjoy high efficiency,
symmetric encryption schemes are usually employed to
encrypt large messages, such as DES [4, 16]. Unfortu-
nately, they also suffer from the key distribution prob-
lem. To achieve high efficiency while avoiding the key
distribution problem in the encryption system, the nor-
mal method of performing the public key encryption is to
divide the encryption scheme into two parts: one part uses
the public key techniques to encrypt a one-time symmet-
ric key; the other part takes use of this symmetric key to
encrypt the transmitted message. In such a construction,
the public key part of the algorithm is called the key en-

International Journal of Network Security, Vol.17, No.5, PP.548-557, Sept. 2015 549

capsulation mechanism (KEM) while the symmetric key
part (where the message is actually encrypted) is known
as the data encapsulation mechanism (DEM). According
to this encryption model, KEM can provide an efficient
and secure method to deliver a random key from a sender
to a designated receiver, and DEM enables to increase
efficiency over public key encryption. Combining KEM
and DEM, the resulting scheme is then called a hybrid
encryption scheme which has received much attention in
recent years [1, 9, 10].

In the traditional public key infrastructure (PKI), en-
cryption is achieved through the certificates issued by a
trust certification authority (CA). In [5], Dent presented
a lot of generic constructions of KEM from standard pub-
lic key encryption, however these led to the problem of
certificates management (including distribution, storage,
revocation and verification of certificates), which placed
a large computation cost on the system. To avoid these
weaknesses, Shamir [15] proposed the identity based pub-
lic key cryptography (ID-PKC) by deriving the user’s
public key directly from some public parameters and the
user’s identity, such as email and IP address. In 2008,
Bentahar et al. [3] extended the concept of key encapsu-
lation to the primitives of identity based encryption that
are provably secure in the random oracle model. Never-
theless, there is a trusted third party called the private
key generator (PKG) in ID-PKC whose behavior is in
possession of a master secret key (which is used to de-
rive the private key of any user in this system). Thus,
the private key of all the users in ID-PKC is known to
the PKG. This inherent issue in ID-PKC is called the key
escrow problem [14]. Therefore, these two types of cryp-
tographic primitive above are not suitable for protecting
the entity’s privacy with lightweight mobile devices, such
as in e-healthcare system.

To overcome the key escrow problem, certificateless
public key cryptography (CL-PKC) was introduced by
Al-Riyami and Paterson [2]. In the certificateless key en-
capsulation mechanism (CL-KEM), the user’s private key
is split into two parts: one is the partial private key ob-
tained from the key generation center (KGC), the other
one is a user’s selected secret value. Consequently, the
trusted third party KGC cannot access the user’s private
key to reveal his/her privacy any more. Several CL-KEM
protocols have been proposed in the last decade [3, 8, 12].
Huang and Wong [8] proposed the first generic construc-
tion of CL-KEM in the standard model, which was se-
cure against malicious-but-passive KGC attacks. In [3],
Bentahar et al. also took any IBE scheme plus a special
form of public key scheme, such as RSA or ElGamal in
certain groups, and used them to construct a CL-KEM,
which was secure in a strong sense. However, these two
schemes combined a public key based encryption scheme
and an identity based KEM and thus very inefficient. Lip-
pold and Boyd [12] presented a direct construction for a
chosen ciphertext secure (CCA secure) CL-KEM in the
standard model that was more efficient than the generic
constructions.

In this paper, we put forward a certificateless key en-
capsulation mechanism for e-healthcare system, and prove
that it is secure in the random oracle model against
the chosen ciphertext attacks. Furthermore, this scheme
achieves the Girault’s trust Level 3 which ensures the
credibility of the authority [6]. Compared to the related
schemes, through the evaluations and experiments, our
protocol offers a better performance in the computation
and communication cost.

In the next section, we review some computational as-
sumptions, the model and the security definitions of CL-
KEM that will be used throughout the paper. In Sec-
tion 3, we design a new protocol for e-healthcare and an-
alyze the security of it. In Section 4, we compare the
efficiency with related schemes and conclude the paper in
Section 5.

2 Preliminaries

2.1 Complexity Assumptions

Let G be a cyclic additive group with prime order p, and
P be a generator of G.

Definition 1. Discrete Logarithm (DL) problem: Given
(P,Q ∈ G), find an integer x ∈ Z∗p satisfying Q = xP .

The DL assumption is that there is no polynomial
time algorithm that can solve the DL problem with non-
negligible probability.

Definition 2. Computational Diffie-Hellman (CDH)
problem: Given (Q = xP,R = yP) ∈ G2 for any
x, y ∈ Z∗p , compute xyP .

The CDH assumption is that there is no polynomial
time algorithm that can solve the CDH problem with non-
negligible probability.

2.2 Certificateless Key Encapsulation
Mechanism

A CL-KEM for e-healthcare system consists of the fol-
lowing seven probabilistic polynomial time (PPT) al-
gorithms: Setup, User-Key-Generation, Partial-Key-
Extract, Set-Private-Key, Set-Public-Key, Encap and De-
cap.

Setup. On input a security parameter 1k, the medical
server (MS) returns the system parameters params,
the master public/secret key (mpk,msk). Then, MS
publishes params and mpk, and keeps the msk se-
cret.

User-Key-Generation. On input the system param-
eters params, the patient returns a pair of pub-
lic/secret key (pk,sk).

Partial-Key-Extract. On input params, msk, pa-
tient’s identity IDP and his/her public key pk, MS

International Journal of Network Security, Vol.17, No.5, PP.548-557, Sept. 2015 550

executes this algorithm and returns a partial private
key DP to patient via a confidential and authentic
channel, and the corresponding partial public key PP .

Set-Private-Key. On input params, patient’s partial
private key DP and his/her secret key sk, this al-
gorithm returns private key SKP to the patient.

Set-Public-Key. On input params, patient’s partial
public key PP and his/her public key pk, this algo-
rithm returns the patient’s public key PKP .

Encap. Running by a doctor. On input params, the pa-
tient’s identity IDP , and his/her public key PKP ,
this algorithm outputs an encapsulation key pair
(K, c) ∈ (K, C), where c is called the encapsulation
of key K, and K is considered to be distributed uni-
formly in the key space K. (In the hybrid encryption
primitive, the doctor encrypts the privacy data by
using of this K in symmetric encryption scheme.)

Decap. Running this deterministic algorithm by a pa-
tient. On input params, the encapsulation c, and
his/her private key SKP , this algorithm outputs the
corresponding key K, or an invalid encapsulation ⊥.
(Similarly, the patient decrypts the ciphertext above
with this decapsulation K.)

In this system, to achieve the Girault’s trust Level 3,
the User-Key-Generation algorithm must be run prior
to the Partial-Key-Extract algorithm. The patient fixes
his/her secret key sk and public key pk firstly. Then,
MS generates patient’s partial key DP by binding his/her
public key to an identity IDP . According to this way,
although MS can replace patient’s public key pk, there
will exist a pair of working public keys (pk, pk′) for only
one patient. Moreover, two working different public keys
(PKP , PK

′
P) binding one patient’s identity can result

from two partial private keys, and only the MS has ability
to generate these two working partial private keys. Hence,
the MS’s forgery is easily tracked, which means that the
trust level of MS is achieving to the Girault’s trust Level 3
as described in [6].

2.3 Security Model

In certificateless cryptography, there are two types of ad-
versaries AI and AII . Type-I adversary AI acts as a
dishonest user who does not have access to MS’s master
secret key and patient’s partial key, but it enables to com-
promise user’s private key or replace the public key of any
patient with its own choices value. By contrast, Type-II
adversary AII plays the part of a malicious-but-passive
MS who controls the master secret key msk (hence it can
compute patient’s partial secret key). Besides, Type-II
adversary AII is allowed to receive private keys for ar-
bitrary identities but cannot replace any patient’s public
key. The following oracles are the interactive game be-
tween challenger C and adversary A.

Setup. The challenger C runs this algorithm to generate
the public parameters params and the master pub-
lic/private key pair (mpk,msk).

Partial-Key-Extract-Oracle. Upon receiving an iden-
tity ID, this oracle computes the corresponding par-
tial public/private key pair (PID, DID) and sends this
tuple to A.

Private-Key-Request-Oracle. Upon receiving an
identity ID, if the ID’s public key has not been
replaced, C responds it with the private key SKID.
Otherwise, C does not provide the corresponding
private key to A.

Public-Key-Request-Oracle. Upon receiving an iden-
tity ID, C responds it with the public key PKID.

Replace-Public-Key-Oracle. A can repeatedly re-
place the public key PKID with any value PK ′ID of
its own choice. The current value of the user’s public
key is used by C in any computations or to response
to A’s queries.

Decapsulation-Oracle. Upon receiving an identity ID
and an encapsulation c, if there is no query on ID,
return ⊥. Otherwise, return K ←Decap(ID,SKID,c)
as a decapsulation of c.

We now specify two games for Type-I and Type-II security
described as follows.

Game-I: Let CI be a challenger to Type-I adversary AI
and 1k be a security parameter.

1) CI computes (mpk,msk)←Setup(1k), and runs
AI on input 1k and mpk.

2) AI can query Partial-Key-Extract-Oracle,
Private-Key-Request-Oracle, Public-Key-
Request-Oracle, Replace-Public-Key-Oracle and
Decapsulation-Oracle. Then, AI submits a
target identity ID∗ ∈ {0, 1}∗.

3) CI runs (K1, c
∗) ←Encap(mpk, PKID∗ , ID∗)

and randomly selects (K0 ← K). Then, CI flips
a coin b, and returns (Kb, c

∗) to AI .
4) AI continues to issue queries as in Step (2). Fi-

nally, it outputs a bit b′.

AI wins this game if b′ = b. Note that AI is not
allowed to query Partial-Key-Extract-Oracle on ID∗

and Decapsulation-Oracle on (ID∗, c∗). We define
the advantage of AI in Game-I to be Adv(AI) =
|Pr(b′ = b)− 1

2 |.

Game-II: Let CII be a challenger to Type-II adversary
AII and 1k be a security parameter.

1) CII runs AII on input 1k and returns
(mpk,msk)←Setup(1k) as an answer.

International Journal of Network Security, Vol.17, No.5, PP.548-557, Sept. 2015 551

2) AII can query Private-Key-Request-Oracle,
Public-Key-Request-Oracle and Decapsulation-
Oracle. Then AII submits a target identity
ID∗ ∈ {0, 1}∗. Note that Partial-Key-Extract-
Oracle is not allowed by AII because of the
knowledge of msk.

3) CII runs (K1, c
∗) ←Encap(mpk, PKID∗ , ID∗)

and randomly selects (K0 ← K). Then, CII
flips a coin b, and returns (Kb, c

∗) to AII .
4) AII continues to issue queries as in Step (2).

Finally, it outputs a bit b′.

AII wins this game if b′ = b. Note that AII is not
allowed to query Private-Key-Request-Oracle on ID∗

and Decapsulation-Oracle on (ID∗, c∗). We define the
advantage of AII in Game-II to be Adv(AII) =
|Pr(b′ = b)− 1

2 |.

Definition 3. A CL-KEM Π is secure against chosen
ciphertext attack (IND-CCA secure) if neither polynomial
bounded adversary A of Type-I nor Type-II has a non-
negligible advantage against the challenger in the Game-
I and Game-II.

A breaks an IND-CCA secure CL-KEM Π with
(qH , qpar, qpri, qpub, qD, ε) if and only if the advan-
tage of A that makes qH times to the random or-
acle H(·), qpar times Partial-Key-Extract-Oracle, qpri
times Private-Key-Request-Oracle, qpub times Public-
Key-Request-Oracle and qD times Decapsulation-Oracle
queries is greater than ε. The scheme Π is said to be
(qH , qpar, qpri, qpub, qD, ε)-IND-CCA secure if there is no
adversary A that breaks IND-CCA secure scheme Π with
(qH , qpar, qpri, qpub, qD, ε).

3 Our CL-KEM

In this section, we put forward a novel CL-KEM with-
out bilinear pairing to encapsulate a one-time symmetric
key between the patient and doctor. The notations used
throughout this protocol are listed in Table 1.

Table 1: Notions of this scheme

IDP the identity of Patient
Hi(·) the collision-resistant hash function (i=1,2)

p the large prime number
G the cyclic additive group
P the generator of G
x the master secret key
X the master public key
PP the Patient’s partial public key
DP the Patient’s partial private key
PKP the Patient’s public key
SKP the Patient’s private key
‖ the connection operation

3.1 Construction

The proposed CL-KEM as shown in Figure 1 consists of
the following seven PPT algorithms.

Setup. Let G be a cyclic group of prime order p with
an arbitrary generator P ∈ G. The MS selects x ∈
Z∗p randomly and computes X = xP as the master
public key. Then, it chooses two collision resistant
hash functions H1 : {0, 1}l0 × G∗ × G∗ → Z∗p and

H2 : {0, 1}l0×G∗5 → {0, 1}∗. The system parameters
are params = (p,G, P,X,H1, H2), and the master
secret key is msk = x.

User-Key-Generation. Patient picks y ∈ Z∗p uniformly
at random and computes Y = yP , and he/she re-
turns (sk, pk) = (y, Y).

Partial-Key-Extract. MS picks α ∈ Z∗p at random and
computes rP = αP and zP = α + xH1(IDP ‖ rP ‖
pk), where IDP is the patient’s identity. Then MS
returns (PP , DP) = (rP , zP) as a pair of patient’s
partial key.

Set-Private-Key. Set SKP = (sk,DP) = (y, zP), it re-
turns SKP as the patient’s private key.

Set-Public-Key. Let PKP = (pk, PP) = (Y, rP), it re-
turns PKP as the patient’s public key.

Encap. Doctor picks u ∈ Z∗p randomly and computes the
ciphertext:

c = uP,

c1 = u(Y + rP +XH1(IDP ‖ rP ‖ pk)),

c2 = uY,

and the corresponding session key is

K = H2(IDP ‖ PKP ‖ c ‖ c1 ‖ c2).

Then the doctor delivers the encapsulation {c} to
patient.

Decap. To decapsulate c, the patient reconstructs the
session key as

K = H2(IDP ‖ PKP ‖ c ‖ (y + zP)c ‖ yc).

Then in the hybrid scheme, a symmetric encryption
scheme is taken to protect the privacy under this K.

The above Decap algorithm is consistent if c is a valid
encapsulation, then it is easy to verify that,

(y + zP)c = yuP + (α+ xH1(IDP ‖ rP ‖ pk))uP

= u(yP + rP +XH1(IDP ‖ rP ‖ pk))

= c1,

and

yc = yuP = uY = c2.

International Journal of Network Security, Vol.17, No.5, PP.548-557, Sept. 2015 552

Figure 1: Our CL-KEM for e-healthcare system

3.2 Security Analysis

In this subsection, we prove that the CL-KEM presented
in the previous is secure in the random oracle model.

Theorem 1. Provided that H1 and H2 are two collision
resistant hash functions. This CL-KEM is IND-CCA se-
cure in the random oracle model assuming that there is no
polynomial time algorithm that can solve the CDH prob-
lem with non-negligible probability.

This theorem following from two lemmas will show that
our CL-KEM is secure against the Type-I and Type-II ad-
versaries whose behaviors are as described in the Game-I
and Game-II.

Lemma 1. This CL-KEM is (qH , qpar, qpri, qpub, qD, ε)-
IND-CCA secure against the Type-I adversary A in the
random oracle model, then there exists an algorithm B
that solves the CDH problem with the following advantage

ε′ >
1

qH2

(
2ε

e(qprv + 1)
− qDqH1

2l0p2
− qD

2l0p5
).

Proof. Assuming there exists a Type-I adversary AI im-
itating an “outside” adversary, who replaces the public
key of arbitrary identities but cannot corrupt the master
secret key.

Suppose that there is another PPT algorithm B can
solve the CDH problem in the instance of (p, P, aP, xP)
with probability at least ε′ by interacting with AI . To

solve this problem, B needs to simulate a challenger to
run each algorithm of Game-I for AI as follows:

Setup. Algorithm B sets the master public key X = xP ,
where x ∈ Z∗p is the master secret key that is un-
known to B. Then B gives AI the params =
{p,G, P,X,H1, H2} as system parameters. AI per-
forms a series of polynomially bounded number of
queries according to the following oracles:

H1 Queries. B maintains a list of tuples 〈(ID, rID, Y), v〉
in H1-List L1. On receiving a query (ID, rID, Y) to
H1:

1) If 〈(ID, rID, Y), v〉 already appears on the list
L1, B responds v as an answer.

2) Otherwise, pick v ∈ Z∗p randomly, add
〈(ID, rID, Y), v〉 to L1 and return v as an an-
swer.

H2 Queries. B maintains a list of tuples 〈(ID, T), R〉 in
H2-List L2, where T ∈ G∗5. On receiving a query
(ID, T) to H2:

1) If 〈(ID, T), R〉 exists in the list L2, B responds
R as an answer.

2) Otherwise, choose R ∈ {0, 1}∗ uniformly at ran-
dom, add 〈(ID, T), R〉 to L2 and return R as an
answer.

International Journal of Network Security, Vol.17, No.5, PP.548-557, Sept. 2015 553

Phase 1. AI can issue a number of the following oracle
queries.

Partial-Key-Extract-Oracle. B maintains a Par-
tialKeyList of tuples 〈ID, (rID, zID)〉. On receiving
a query ID, B responds as follows:

1) If 〈ID, (rID, zID)〉 exists in PartialKeyList, re-
turn (rID, zID) as an answer.

2) Otherwise, pick zID, v ∈ Z∗p at random, and
compute rID = zIDP − vX. Add (ID, rID, v)
to L1 and 〈ID, (rID, zID)〉 to PartialKeyList,
return (rID, zID) as an answer.

Public-Key-Request-Oracle. B maintains a Pub-
licKeyList of tuples 〈ID, (rID, Y), coin〉. On receiv-
ing a query ID, B responds as follows:

1) If 〈ID, (rID, Y), coin〉 exists in PublicKeyList,
return PKID = (rID, Y) as an answer.

2) Otherwise, choose coin ∈ {0, 1} at random so
that Pr[coin = 0] = δ (δ will be defined later).

3) If coin = 0, do the following:

a. If 〈ID, (rID, zID)〉 exists in Par-
tialKeyList, pick y ∈ Z∗p at random and
compute Y = yP . Then, add 〈ID, (y, zID)〉
to PrivateKeyList (which will be de-
fined later) and 〈ID, (rID, Y), coin〉 to
PublicKeyList respectively, return
PKID = (rID, Y) as an answer.

b. Otherwise, run the Partial-Key-Extract-
Oracle to get partial keys (rID, zID) about
ID. Pick y ∈ Z∗p at random and compute
Y = yP . Then, add 〈ID, (rID, zID)〉 to
PrivateKeyList and 〈ID, (rID, Y), coin〉
to PublicKeyList respectively, return
PKID = (rID, Y) as an answer.

4) Otherwise (if coin = 1), pick α, y ∈ Z∗p
at random and compute rID = αP , Y =
yP , add 〈ID, (y, ∗), α〉 to PrivateKeyList
(where * denotes the arbitrary value), and
〈ID, (rID, Y), coin〉 to PublicKeyList, return
PKID = (rID, Y) as an answer.

Private-Key-Request-Oracle. B maintains a Pri-
vateKeyList of tuples 〈ID, (y, zID), α〉. On receiving
a query ID, B responds as follows:

1) Perform Public-Key-Request-Oracle on ID to
get a tuple 〈ID, (rID, Y), coin〉 from PublicK-
eyList.

2) If coin = 0, search a tuple 〈ID, (y, zID), α〉 in
PrivateKeyList and return SKID = (y, zID)
as an answer.

3) Otherwise, return “Abort” and terminate this
algorithm.

Replace-Public-Key-Oracle. AI may replace any
public key with a new value of its choice and B
records all the changes.

Decapsulation-Oracle. On receiving a query
〈ID, PKID, c〉, where PKID = (rID, Y). B re-
sponds as follows:

1) Search a tuple 〈ID, (rID, Y), coin〉 in PublicK-
eyList.

2) If such a tuple exists and coin = 0.

a. Search PrivateKeyList for a tuple
〈ID, (y, zID)〉.

b. Compute K = H2(ID ‖ PKID ‖ c ‖ (y +
zID)c ‖ yc).

3) Else, if such a tuple exists and coin = 1.

a. Perform H1 queries to get a tuple
〈ID, (rID, Y), v〉.

b. If there exists 〈(ID, T), R〉 ∈ L2 such that
R = H2(ID ‖ T), return R as the session
key and “Reject” otherwise.

4) Else, if such a tuple does not exist (which means
that the public key of a target user is replaced
by AI), run the same algorithm in (3).

Challenge Phase. Once AI decides that Phase 1 is
over, it outputs a challenge identity ID∗. On receiv-
ing a challenge query ID∗, B responds as follows:

1) Run Public-Key-Request-Oracle on ID∗ to get a
tuple 〈ID∗, (rID∗ , Y ∗), coin〉 in PublicKeyList.

2) If coin = 0, return “Abort” and terminate.

3) Otherwise, do the following:

a. Search a tuple 〈ID∗, (y∗, ∗), α〉 in Pri-
vateKeyList. (In this case, we know that
rID∗ = α∗P , Y ∗ = y∗P).

b. Set c∗ = aP , c∗1 = a(Y ∗+rID∗ +XH1(ID∗ ‖
rID∗ ‖ Y ∗)) and c∗2 = aY ∗. Note that B
does not know “a”.

c. Compute Γ = arID∗ and v∗ = H1(ID∗ ‖
rID∗ ‖ Y ∗).

d. Pick K0 ∈R K, where K is the key space.

e. Compute K1 = H2(ID∗ ‖ (rID∗ , Y ∗) ‖ c∗ ‖
c∗1 ‖ c∗2).

4) Choose a bit β ∈R {0, 1} and return (c∗,Kβ) to
AI .

Phase 2. AI repeats the queries in Phase 1. However,
there is no Partial-Key-Extract-Oracle or Private-
Key-Request-Oracle query on ID∗ is allowed. Also,
no Decapsulation-Oracle query should be made on
the encapsulation c∗ for ID∗.

Guess. AI outputs a guess β′ for β, and wins the game
if β′ = β. Then, B will be able to solve the CDH
problem by computing (c∗ · zID∗ − Γ)/v∗.

International Journal of Network Security, Vol.17, No.5, PP.548-557, Sept. 2015 554

Analysis. We denote the event that ID∗ has been
queried to H1 as AskH∗1 . Also, by AskH∗2 , we de-
note the event that 〈(ID∗, T ∗), R∗〉 has been queried
to H2. Provided that the event AskH∗2 happens,
B will solve the CDH problem by picking a tuple
〈(ID∗, T ∗), R∗〉 in L2 and computing (c∗ ·zID∗−Γ)/v∗

with probability at least 1/qH2 . Hence, we have
ε′ ≥ (1/qH2

)Pr[AskH∗2].

If B does not abort in the Game-I, the simula-
tions of Partial-Key-Extract-Oracle, Public-Key-Request-
Oracle, Private-Key-Request-Oracle and the target en-
capsulation is identically distributed in our construction.
Also, B’s responses to all hash queries are uniformly and
independently distributed as in the real attack, and all re-
sponses to AI can pass the validity test unless B aborts.
Thus, we find that when a public key PKID has not
been replaced or produced under coin = 1, the sim-
ulation is perfect as B knowing the corresponding pri-
vate key SKID. Otherwise, a simulation error may oc-
cur in Decapsulation-Oracle, and let DecErr denote this
event. Suppose that ID, PKID = (rID, Y) and c have
been issued as a valid decapsulation query. Even if K
is a valid session key, there is a possibility that K can
be produced without querying 〈(ID, T), R〉 to H2. Let
Valid be an event that K is a valid session key, AskH1

and AskH2 be events that (ID, rID, Y) has been queried
to H1 and (ID, T) to H2 respectively. Since DecErr
is an event that Valid|¬AskH2 happens during the en-
tire simulation and qD Decapsulation-Oracle queries are
operated, we have Pr[DecErr]=qDPr[Valid|¬AskH2],
where Pr[Valid|¬AskH2] ≤ Pr[Valid∧AskH1|¬AskH2]
+ Pr[Valid∧¬AskH1|¬AskH2] ≤ Pr[AskH1|¬AskH2]
+ Pr[Valid|¬AskH1 ∧ ¬AskH2] ≤ (qH1

/(2l0p2)) +
(1/(2l0p5)).

Let the event (AskH∗2∨DecErr)|¬Abort be denoted
by E, where Abort is an event that B aborts during
the simulation. The probability ¬Abort that happens
is given by δqprv (1 − δ) which is maximized at δ = 1 −
1/(qprv+1). Hence, we have Pr[¬Abort]≤ 1/(e(qprv+1))
, where e denotes the base of the natural logarithm.

If E does not happen, it is clear that AI does not
gain any advantage greater than 1/2 to guess β due to
the randomness of the output of the random oracle H2.
Namely, we have Pr[β′ = β | ¬E] ≤ 1/2.

By definition of ε, we have ε < |Pr[β′ = β] −
(1/2)|=|Pr[β′ = β|¬E]Pr[¬E] + Pr[β′ = β|E]Pr[E] −
(1/2)| ≤ |(1/2)Pr[¬E] + Pr[E] − (1/2)|= |(1/2)(1 −
Pr[E]) + Pr[E] − (1/2)|=(1/2)Pr[E] ≤ (Pr[AskH∗2] +
Pr[DecErr])/(2Pr[¬Abort]) ≤ (e(qprv + 1)/2)(qH2ε

′ +
(qDqH1/(2

l0p2))+(qD/(2
l0p5))). Consequently, we obtain

ε′ >
1

qH2

(
2ε

e(qprv + 1)
− qDqH1

2l0p2
− qD

2l0p5
).

The following lemma shows that our CLE scheme is
secure against the Type-II adversary.

Lemma 2. This CL-KEM is (qH , qpar, qpri, qpub, qD, ε)-
IND-CCA secure against the Type-II adversary A in the
random oracle model, then there exists an algorithm B
that solves the CDH problem with the following advantage

ε′ >
1

qH2

(
2ε

e(qprv + 1)
− qDqH1

2l0p2
− qD

2l0p5
).

Proof. Assuming there exists an algorithm AII who im-
personates an “insider” adversary. Suppose that there is
another PPT algorithm B can solve the CDH problem in
the instance of (p, P, aP, bP) with probability at least ε′

by interacting withAII . To solve this problem, B needs to
simulate a challenger to run each algorithm of Game-II
for AII as follows:

Setup. Algorithm B picks the master secret key x ∈ Z∗p
randomly and computes X = xP . Then B gives the
system parameters params = {p,G, P,X,H1, H2} to
AII , where H1 and H2 are random oracles. Adver-
sary AII queries these two random oracles at any
time during its attack. B responds as follows:

H1 Queries. B maintains a list of tuples 〈(ID, rID, Y), v〉
in H1-List L1. On receiving a query (ID, rID, Y) to
H1:

1) If 〈(ID, rID, Y), v〉 already appears on the list
L1, responds v as an answer.

2) Otherwise, pick v ∈ Z∗p randomly, add
〈(ID, rID, Y), v〉 to L1 and return v as an an-
swer.

H2 Queries. B maintains a list of tuples 〈(ID, T), R〉 in
H2-List L2, where T ∈ G∗5. On receiving a query
(ID, T) to H2:

1) If 〈(ID, T), R〉 exists in the list L2, return R as
an answer.

2) Otherwise, choose R ∈ {0, 1}∗ uniformly at ran-
dom, add 〈(ID, T), R〉 to L2 and return R as an
answer.

Phase 1. AII issues the following oracle queries.

Public-Key-Request-Oracle. B maintains a Pub-
licKeyList of tuples 〈ID, (rID, Y), coin〉. On receiv-
ing a query ID, B responds as follows:

1) If 〈ID, (rID, Y), coin〉 exists in PublicKeyList,
return PKID = (rID, Y) as an answer.

2) Otherwise, pick coin ∈ {0, 1} at random so that
Pr[coin = 0] = δ (δ is the same as it in the proof
of Lemma 1).

3) If coin = 0, choose y, α ∈ Z∗p at random and
compute Y = yP , rID = αP and zID = α +
xH1(ID‖rID‖Y). Then, add 〈ID, (y, zID), α〉 to
PrivateKeyList and 〈ID, (rID, Y), coin〉 to Pub-
licKeyList respectively, return PKID = (rID, Y)
as an answer.

International Journal of Network Security, Vol.17, No.5, PP.548-557, Sept. 2015 555

4) Otherwise (if coin = 1), pick α, y ∈
Z∗p at random and compute rID = αaP ,
Y = yP and zID = α + bxH1(ID‖rID‖Y).
Then, add 〈ID, (y, ∗), α〉 to PrivateKeyList
(where * denotes the arbitrary value), and
〈ID, (rID, Y), coin〉 to PublicKeyList, return
PKID = (rID, Y) as an answer.

Private-Key-Request-Oracle. B maintains a Pri-
vateKeyList of tuples 〈ID, (y, zID), α〉. On receiving
a query ID, B responds as follows:

1) Perform Public-Key-Request-Oracle on ID to
get a tuple 〈ID, (rID, Y), coin〉 from PublicK-
eyList.

2) If coin = 0, search PrivateKeyList for a tuple
〈ID, (y, zID), α〉 and return SKID = (y, zID) as
an answer.

3) Otherwise, return “Abort” and terminate.

Decapsulation-Oracle. On receiving a query 〈ID,
PKID, c〉, where PKID = (rID, Y). B responds as
follows:

1) Search a tuple 〈ID, (rID, Y), coin〉 in PublicK-
eyList. If such a tuple exists and coin = 0,
search a tuple 〈ID, (y, zID)〉 in PrivateKeyList
(Note that 〈ID, (rID, Y), coin〉 must exist in
PublicKeyList. While coin = 0, the tu-
ple 〈ID, (y, zID), α〉 exists in PrivateKeyList).
Then, set SKID = (y, zID) and run the algo-
rithm of Decap. Finally, return the results of
the Decap.

2) Otherwise (if coin = 1), run H1 queries to
access a tuple 〈(ID, rID, Y), v〉. If there exists
〈(ID, T), R〉 ∈ L2 such that R = H2(ID‖T), re-
turn R as the session key and “Reject” other-
wise.

Challenge Phase. Once AII decides that Phase 1 is
over, it outputs a challenge identity ID∗. On receiv-
ing a challenge query ID∗, B responds as follows:

1) Taking ID∗ as input, B runs Public-
Key-Request-Oracle and gets a tuple
〈ID∗, (rID∗ , Y ∗), coin〉 from PublicKeyList.

2) If coin = 0, return “Abort” and terminate.

3) Otherwise, do the following:

a. Search for a tuple 〈ID∗, (y∗, zID∗), α∗〉 from
PrivateKeyList (In this case, we know
that rID∗ = α∗aP , Y ∗ = y∗P).

b. Set c∗ = aP , c∗1 = a(Y ∗+rID∗ +XH1(ID∗ ‖
rID∗ ‖ Y ∗)) and c∗2 = aY ∗. Also, note that
B does not know “a”. Then compute v∗ =
H1(ID∗ ‖ rID∗ ‖ Y ∗).

c. Pick K0 ∈R K, where K is the key space.

d. Compute K1 = H2(ID∗ ‖ (rID∗ , Y ∗) ‖ c∗ ‖
c∗1 ‖ c∗2).

4) Choose a bit β ∈R {0, 1} and return (c∗,Kβ) to
AII .

Phase 2. AII repeats the same methods as in Phase 1.
Moreover, no private key extraction on ID∗ is allowed
and no Decapsulation-Oracle query should be made
on the encapsulation c∗ for ID∗.

Guess. AII outputs a guess β′ for β, and wins the game
if β′ = β. Then, B enables to solve the CDH problem
by computing (c∗ · zID∗ − rID∗)/(x · v∗).

Analysis. Similar to Analysis in the proof of Lemma 1.

Consequently, we obtain

ε′ >
1

qH2

(
2ε

e(qprv + 1)
− qDqH1

2l0p2
− qD

2l0p5
).

In conclusion, based on these two lemmas, we complete
the proof of Theorem 1.

4 Comparisons

In this section, we compare our CL-KEM with previ-
ous protocols [7, 10, 12] on the computation complex-
ity of encapsulation (Enc) and decapsulation (Dec), the
bandwidth of the encapsulation (Bandwidth) and the
running time (Time) of one-round Encap-Decap of each
scheme. Without considering the addition of two points,
hash function and exclusive-OR operations, we denote the
cost of a bilinear pairing by P, the cost of an exponentia-
tion by E , and the cost of a scalar multiplication in the
additive cyclic group by S.

This CL-KEM is tested on a laptop with the Intel Core
i5-2400 at a frequency of 3.10 GHz processor, 3GB mem-
ory and Ubuntu-12.04 operation system, using the pairing
based cryptography (PBC) library (version 0.5.13 [13]).
The implementation takes use of a 160-bit elliptic curve
group based on the supersingular curve y2 = x3 + x over
a 512-bit finite field with embedding degree 2. Then, the
average running time of each operation is obtained and
demonstrated in Table 2.

Table 2: Cryptographic operation time

Pairing Exponentiation Scalar multiplication
3.93 ms 3.35 ms 3.28 ms

As to communication cost, we analyze it in terms of
bandwidth of transmitting encapsulation. Suppose that
the output of one way Hash function is 160-bit, and the
elements of multiplicative group is 1024-bit (e.g., param-
eters in RSA). In our protocol, one encapsulation con-
tains one point, thus the bandwidth of our protocol is
160/8 = 20 bytes. In [7, 10], each encapsulation contains
two exponentiations, thus the bandwidths of [7, 10] are

International Journal of Network Security, Vol.17, No.5, PP.548-557, Sept. 2015 556

(1024 × 2)/8 = 256 bytes respectively. At last, in Lip-
pold et al.’s scheme [12], the encapsulation contains two
exponentiations and one hash value, the bandwidth of it
is (1024 × 2 + 160)/8 = 276 bytes. The detailed results
are listed in Table 3, and the bandwidth of our scheme is
the smallest one.

Table 3: Comparison of the related schemes

Schemes Enc Dec Bandwidth Time
[10] 4E 2E 256 bytes 20.10 ms
[12] 5E 3P+6E 276 bytes 48.64 ms
[7] 4E 2E 256 bytes 20.10 ms

Ours 4S 2S 20 bytes 19.68 ms

The computation and communication cost in this
scheme is less than others, which shows that our scheme
enables to provide an efficient method to protect the con-
fidential of the session key between patient and doctor in
e-healthcare system.

5 Conclusions

We have proposed an efficient certificateless key encapsu-
lation mechanism for e-healthcare system to protect the
confidentiality of the session key in the hybrid encryption
scheme. In terms of security, we prove that this scheme
is IND-CCA secure in the random oracle model assuming
that CDH problem is intractable. Furthermore, our pro-
tocol promotes the trust hierarchy of the medical server to
the Girault’s trust Level 3. A thorough performance eval-
uation and experiments on PC indicate that the proposal
is advantageous over the related schemes in efficiency.
Thus, all these attributes render this scheme a promising
approach in session key protection to e-healthcare system.

Acknowledgments

This work was supported by National Natural Science
Foundation of China (Grant Nos. 11171200, 11426148)
and Fundamental Research Funds for the Central Univer-
sities (Grant No. GK201402006).

References

[1] M. Abe, R. Gennaro, and K. Kurosawa, “Tag-
kem/dem: A new framework for hybrid encryption,”
Journal of Cryptology, vol. 21, no. 1, pp. 97–130,
2008.

[2] S. S. Al-Riyami and K. G. Paterson, “Certificateless
public key cryptography,” in Advances in Cryptol-
ogy (ASIACRYRT03), pp. 452–473, Taipei, Taiwan,
Nov. 2003.

[3] K. Bentahar, P. Farshim, J. M. Lee, and N. P. Smart,
“Generic constructions of identity-based and certifi-
cateless KEMs,” Journal of Cryptology, vol. 21, no. 1,
pp. 178–199, 2008.

[4] J. Daemen and V. Rijmen, Advanced Encryption
Standard (AES), Technical Report 197, Dec. 2001.

[5] A. Dent, “A designers guide to KEMs,” in Cryptogra-
phy and Coding, pp. 133–151, Cirencester, UK, Dec.
2003.

[6] M. Girault, “Self-certificated public keys,” in Ad-
vances in Cryptology (EUROCRYPTO91), pp. 34–
46, Brighton, UK, Apr. 2010.

[7] D. Hofheinz and E. Kiltz, “Secure hybrid encryption
from weakened key encapsulation,” in Advances in
Cryptology (CRYPTO07), pp. 553–571, California,
USA, Aug. 2007.

[8] Q. Huang and D. S. Wong, “Generic certificateless
key encapsulation mechanism,” in Information Secu-
rity and Privacy, pp. 215–229, Townsville, Australia,
July 2007.

[9] E. Kiltz, “Chosen-ciphertext secure key-
encapsulation based on gap hashed diffie-hellman,”
in Public Key Cryptography (PKC’07), pp. 282–297,
Beijing, China, Apr. 2007.

[10] K. Kurosawa and Y. Desmedt, “A new paradigm
of hybrid encryption scheme,” in Advances in Cryp-
tology (CRYPTO04), pp. 426–442, California, USA,
Aug. 2004.

[11] Congress Public Law, Health Insurance Portability
and Accountability Act of 1996, Technical Report
104, June 1996.

[12] G. Lippold, C. Boyd, and J. M. G. Nieto, “Efficient
certificateless KEM in the standard model,” in Infor-
mation, Security and Cryptology, pp. 34–46, Seoul,
Korea, Dec. 2010.

[13] B. Lynn, The Pairing-based Cryptography Library,
PBC Library, May 2015. (http://crypto.stanford.
edu/pbc/)

[14] J. H. Oh, K. K. Lee, and S. J. Moon, “How to solve
key escrow and identity revocation in identity based
encryption scheme,” in Proceedings of 1st Interna-
tional Conference on Information System Security,
pp. 290–303, Kolkata, India, Dec. 2005.

[15] A. Shamir, “Identity-based cryptosystems and
signature schemes,” in Advances in Cryptology-
CRYPTO84, pp. 47–53, California, USA, Dec. 1985.

[16] W. Tuchman and C. Meyer, Date Encryption Stan-
dard (DES), Technical Report 46, July 1977.

[17] M. K. Watfa, E-healthcare Systems and Wireless
Communications: Current and Future Challenges,
Technical Report 27, Sep. 2012.

Shi Hui-Xian: received the B.S. and Ph.D degrees in
Department of Mathematics and Information Science
from Shaanxi Normal University, Xi’an, China, in 2007
and 2013, respectively. Now she is a post-doctoral in
Department of Computer Science in Shaanxi normal
University. Her present research interests include model

International Journal of Network Security, Vol.17, No.5, PP.548-557, Sept. 2015 557

checking, fuzzy logic and uncertainty reasoning.

Guo Rui: received the BS degree in Math and Ap-
plied Math from Henan University of Science and Tech-
nology, the MS degree in Applied Math from Shaanxi
Normal University. He is currently a candidate for Ph.D
in the Department of State Key Laboratory of Network-
ing and Switch Technology, Beijing University of Posts
and Telecommunications. His present research interests
include cryptography, information security and applied
mathematics.

