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Abstract

A Cryptographically Generated Address (CGA) is a self-
certifying address that a node generates when it joins
a foreign network. Despite its advantages, generating a
CGA is computationally expensive. This study exam-
ines the security and performance issues related to the
use of the CGA Generation algorithm. It also scrutinizes
the hash extension mechanism, different hash functions
and how multithreading can be used to improve the per-
formance of the CGA Generation algorithm. Based on
the results, this research recommends imposing a minimal
computational security of O(280), the use of the HAVAL
hash function and parallelizing the algorithm in order to
take maximum advantage of multicore architectures of
mobile node.

Keywords: CGA generation algorithm, hash functions,
multithreading, parallel computing

1 Introduction

A Cryptographically Generated Address (CGA) is an
IPv6 address generated by a node using the CGA Genera-
tion algorithm as defined in RFC 3972. The input to this
algorithm is the public key of the node and some auxiliary
parameters. The output of the algorithm is a CGA.

CGAs were introduced in IPv6 as part of stateless ad-
dress auto configuration (SLAAC). This enables nodes to
join a subnet and locally generate an IPv6 address. Al-
though CGAs have several advantages, their main short-
coming is high computational cost. The aim of this paper
is to carry out an in-depth analysis of the security and
performance of the CGA Generation algorithm.

This is important for several reasons. Firstly, Mo-
bile IPv6 (MIPv6) networks usually consist of low-end
nodes that have limited resources (computational, mem-
ory, bandwidth, power, etc.) and therefore cannot be ex-
pected to perform computationally expensive operations.

Secondly, CGAs are increasingly being included in pro-
tocols like Enhanced Route Optimization - ERO (where
they are used to prove ownership of a MN’s home ad-
dress). Proving ownership of an address is important to
protect against attacks such as address stealing, flooding,
session hijacking and redirect attacks [13, 30]. One of the
factors that dominates the cost of CGA-based authentica-
tion protocols is the CGA Generation algorithm [12, 16].
In the case of MIPv6 networks, delays have to be min-
imised to preserve the quality of real-time and interac-
tive applications. In practice, this means operations like
handovers should be completed within a few hundred mil-
liseconds.

2 Related Work

Essentially, a CGA cryptographically binds the public key
of a node to its IPv6 address. The details of the CGA
Generation algorithm are illustrated in Figure 1. The
CGA Parameters data structure that the sending node
shares with the receiving node is shown in Figure 2. The
receiving node verifies a CGA using the CGA Verification
algorithm. This study will only focus on the CGA Gener-
ation algorithm and not the CGA Verification algorithm.

CGAs require the sending and the receiving node to
share a 3-bit integer called sec that indicates the security
level of the CGA against brute force attack. sec can
take values from 0 (lowest security) to 7 (highest security)
and is encoded in the three leftmost bits of the generated
interface identifier (IID).

The main aim of a CGA is to prevent the stealing and
spoofing of existing IPv6 addresses [4]. In other words,
an impersonation attack - given a CGA, an adversary is
able to find another public key that generates the same
CGA. This would require the adversary to break the 2nd

pre-image resistance of hash1 [4]. Because only 59 bits
of hash1 make up the IID, the cost of finding a hash
collision is only O(259). 59 bits are too few to provide
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Figure 1: CGA generation algorithm [4]

Figure 2: CGA parameters data structure [4]
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strong security or any real protection against brute force
attacks. CGAs should provide users with the option to
increase this cost in the face of exponential growth of
computational capacity and memory.

The hash extension mechanism was introduced to solve
this shortcoming. This mechanism modifies the input to
hash2 until the leftmost 16∗sec bits of the hash digest are
zero [4]. This effectively increases the cost of an imperson-
ation attack to O(259+sec∗16). However, this mechanism
has the negative impact of increasing the cost of gener-
ating a CGA to O(2sec∗16) [4]. In fact, several studies
confirm that the largest contributor to the computational
cost of the CGA Generation algorithm is the value of sec.

2.1 Performance Analysis

Table 1 summarizes the results from studies that have un-
dertaken the performance evaluation of the CGA Gener-
ation algorithm. It is obvious to see that the performance
of the CGA generation algorithm degrades substantially
with increasing sec values. It is also important to note
that for sec values greater than 0, the CGA Generation
algorithm is not guaranteed to terminate.

RFC 3972 stipulates that nodes can choose sec value
based on [4]:

• How long they expect to use the address;

• Their computational capacity;

• The perceived probability of being attacked.

The RFC also stipulates several solutions that can be
used to overcome poor performance of the CGA Genera-
tion algorithm [4]:

• Using small sec values;

• Offloading computationally costly Steps 1-3 to a
more powerful machine; or

• Completing the computationally costly Steps 1-3 of-
fline or in advance.

Existing literature contains a number of studies that
have investigated the factors that impact the performance
of the CGA Generation algorithm. It also contains a num-
ber of possible solutions to improve the performance of
the CGA Generation algorithm. These studies are sum-
marized in Table 2.

2.1.1 Hash Extension Mechanism

Because it is vital that MIPv6 nodes complete address
generation in less than a few hundred milliseconds, one
obvious solution to improve the performance of the hash
extension mechanism is through some form of time based
termination. This was initially proposed in [5] and later
refined in [21] as Time-Based CGA (TB-CGA). In TB-
CGA, sec is not selected by the node. Instead the node
decides the time after which CGA Generation algorithm

must terminate. The best hash2 value found during this
time (i.e. the hash2 value where the most sec∗8 leftmost
bits are zeros) is used to generate the CGA. Essentially,
sec is automatically determined based on the time. A
faster CPU will search for more hash2 values within the
same time meaning TB-CGA will automatically adjust
sec according to the speed of the processor on which it
is run [21]. This is a very advantageous design because it
automatically adjusts based on the resources of the node.

Despite these advantages, the authors feel that users
can be negligent and set an address generation time that is
very small. This can result in the generation of an address
that is detrimental to the security of the whole network.
Also, using sec ∗ 8 instead of sec ∗ 16 was proposed as
a good idea from a performance perspective in [5]. Ref-
erence [21] provides empirical evidence to support this
claim especially in the case of low-end nodes. This ap-
proach also does not change the communication of sec to
the verifying node nor does it change the CGA Verifica-
tion algorithm.

2.1.2 Generation of Key Pair

For improving key generation time, the best solution is to
use alternative cryptosystems. The best example is pro-
vided in [9]. This study reports that CGA Generation
time using RSA-1024 (4.70 s) drops 31 times for ECC-
163 (0.15 s). However, the choice of which public key
cryptosystem is best to use in the CGA Generation al-
gorithm is out of the scope of this paper. One reason
for this is that the choice cannot be made solely on the
performance of the algorithm used to generate the key
pair. The performance of the CGA Signature generation
and CGA Signature verification algorithms must also be
taken into account as is investigated in [27].

2.1.3 Hash Function

The performance of the hash function is of importance
because of the role it plays in the hash extension mech-
anism where Steps 2 - 3 of the algorithm are repeated
in search of a suitable modifier. To this end, [14] re-
places SHA-1 with MD-5 for use in Mobile Ad-Hoc Net-
works (MANETS). This is because of the latter’s simplic-
ity and superior performance. In [23], the CGA Parame-
ters data structure is restructured and then some opera-
tions in SHA-1 and MD-5 are reordered to take advantage
of this new structure. They report an 80% improvement
in performance [23]. However, it must be noted that both
SHA-1 and MD-5 are considered broken. An attack on
the collision resistance property of SHA-1 can be carried
out in O(263) instead of O(280) [19]. The authors are of
the opinion that using weak hash functions to improve
the performance of the CGA Generation algorithm is not
an acceptable approach.
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Table 1: Performance of CGA generation algorithm (RSA-1024)

Sample
Source Setup sec Size Performance Recommendation

[9] Nokia 800 0 10000 4.7 s Use sec = 0 for mobile nodes

[1] Intel Duo 2.67 GHz CPU
0 1000 avg: 93.41 ms

Do not use sec value more than 11 1000 avg: 402 ms
2 5 avg: 1 hr 39 min

[17] AMD64 with OpenSSL
1 − 0.2 s

Use sec = 1
2 − 3.2 hr

[22] − 2 − avg: several hours Users should use sec values of 0 or 1

Table 2: Factors affecting performance of CGA generation algorithm and possible improvements

Source of
computational

cost

Aim of mechanism
(importance to
security)

Proposed solutions Source(s) Disadvantage

Hash extension
mechanism

Increase security level
of CGA against brute
force attack (only 59
bits of hash digest are
used as the interface
identifier)

Users use small sec values (0 or
1)

[4, 5]
Computational
security < O(280)

Steps 1-3 can be done on a
powerful machine beforehand

[3, 4]
Relies on a
centralized model

Time limit based on application
or CPU speed

[21]

Time and probability based
termination condition

[5]

Use cryptographic/graphic
accelerator cards. Significant
reduction in CGA generation
time esp. for higher sec values

[9]

Take advantage of parallelism to
speedup CGA generation
particularly on devices with
multiple cores

[2]

Generation of key
pair

The key pair is used in
the generation and
verification of CGA
Signatures

Delegate to a more powerful key
server to generate key pair

[3, 4, 29]
Relies on a
centralized model

Use public key cryptosystem
with faster key generation time
(e.g. ECC)

[9, 10]

Hash function Generate hash digest
Replace SHA-1 with an
alternative faster hash function
(e.g. MD-5)

[9, 14] MD-5 is broken
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2.2 Security Analysis

On a broader note, the performance of CGA Generation
algorithm cannot be scrutinized without analyzing the se-
curity issues surrounding the use of CGAs (see Table 3).
Using CGAs can still leave a network vulnerable to a few
types of attacks. The attacks possible against the CGA
Generation algorithm are discussed in this section.

2.2.1 Global Time-Memory Trade-Off (TMTO)
Attack

This attack is explained in [17]. [17] also proposes an
improved CGA algorithm called CGA++ to help pre-
vent this attack. CGA++ protects against replay at-
tack but at the cost of an additional signature genera-
tion and signature verification operation. [10] improves
CGA++ by proposing the use of faster ECDSA signa-
tures in their Compact and Secure CGA (CS-CGA). They
also show that CS-CGA Generation algorithm (with ECC
P-256) takes 1.96 s while the original CGA Generation
algorithm (with RSA-3072) takes 2.183 s. Using ECC,
also has the advantage of generating shorter signatures
and smaller CGA Parameters data structures. However,
the CS-CGA Verification algorithm (with ECC P-256) is
0.037 ms slower than the original CGA Verification al-
gorithm (with RSA 3072). Despite the benefit of using
ECC, the CS-CGA Generation algorithm is still computa-
tionally expensive. Moreover, [17] notes that the TMTO
attack is prohibitive in the terms of the amount of storage
required to launch the attack. Impersonating a random
node in a network with 216 nodes would require about 128
TB of storage [17].

2.2.2 Impersonation

The security of a CGA is also affected by the hash func-
tion used. Protection against impersonation requires a
hash function that it is 2nd pre-image resistant. The hash
function must also be very efficient because it is repeat-
edly used in the computationally intensive Steps 2 - 3.
Replacing SHA-1 with a more secure hash function was
investigated in [9]. They found that SHA-1 outperforms
most other commonly accepted hash functions like SHA-
256 and SHA-512 [9]. One more study has also com-
pared the performance of hash functions and found that
SHA-256 performs better than BLAKE, Skein and SHA-
3 (Keccak) [27]. BLAKE and Skein were included in the
study for several reasons. Firstly, BLAKE has a simple
design that is easy to implement and lends itself to excel-
lent performance [15]. Skein is flexible, simple and also
shows excellent performance on both hardware and soft-
ware (including a version called Skein-256 that can be im-
plemented on 8-bit smart cards) [26]. Lastly, SHA-3 was
chosen because it is based on a sponge construction that is
completely different from the Merkle-Damgard construc-
tion used in many commonly used hash functions (like
SHA-1 and MD-5). The sponge construction is an iter-
ative structure that supports variable length output and

in addition to the basic security properties of hash func-
tions, it has been proven to be indifferentiable from the
random oracle [11]. There are a few disadvantages to hash
functions based on the sponge construction. The most no-
table is the large state. This basically makes hash func-
tions like Keccak more suitable for large messages and
not small ones like in the context of the CGA Generation
algorithm. However, we will include Keccak in this study
because of its adoption as SHA-3.

We will not go into detail about the DoS attacks
against the CGA Verification algorithm. The focus of
this paper is the CGA Generation algorithm.

Also, we agree with the use of a timestamp option (in
the CGA Parameters data structure) to protect against
replay attacks.

We will also not go into further details about the pri-
vacy issue surrounding the use of CGAs and the garbage
attack (as outline in Table 3).

3 Design of Enhanced CGA Gen-
eration Algorithm

3.1 Hash Extension Mechanism

The hash extension mechanism was proposed by [5] as a
solution for applications where the hash digest was limited
to less than 128 bits. Hash values longer than or equal to
128 bits are considered secure against brute force attacks
for any reasonable future while a minimum of 80 bits are
acceptable for the immediate future [5]. This is partic-
ularly important in scenarios where the adversary has a
much more powerful computer while the victims node is
a low-end mobile or embedded computer.

We think that the design of the enhanced CGA Gen-
eration algorithm should:

• Impose a minimal computational security. Users can
be negligent and set an address generation time that
is very small. This can be detrimental to the secu-
rity of the whole network. There should be a min-
imal security level that a node must provide, i.e.
O(2minimal). A reasonable value is 80 bits given the
computational capacity of modern nodes. In future,
this can be increased for nodes with greater compu-
tational capacity.

• Allow the value of sec to be guided by the three
factors mentioned in RFC 3972:

1) the duration a node is expected to use an ad-
dress, i.e. Texpected lifetime. Nodes frequently
move from one subnet to another. It is a waste
of resources to generate a CGA with high com-
putational security when the user has no inten-
tion of staying in the subnet for any reasonable
duration.
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Table 3: Limitations of CGAs from a security perspective

Name of
attack

Algorithm
/ Data

Details of attack
Mitigation or counter
mechanisms

Denial of
Service
(DoS)
against CGA
Verification
process

CGA
Verification
Algorithm

An adversary can reply to each
DAD check performed by a node on
a tentative CGA telling the node
that the address is already in use.
Effectively this prevents the node
from joining the subnet.

• Sign DAD & NA messages [4];

• Verify each DAD response [1];

• Use DAD extension [22].

CGA
Parameters
data
structure

Adversary captures/sniffs, replays
or changes the sender’ CGA
parameters so the verification
process fails.

Use a Timestamp Option when CGA
is used in protocols other than
SeND [22].

Global
Time-
Memory
Trade-off
(TMTO)
Attack

CGA
Generation
Algorithm

The adversary creates a large
database of IIDs from its own key
pair and then searches for matches
for many addresses.

• Attack can be assumed to be
almost impractical because of
massive storage requirements.

• Include subnet prefix in input to
hash2. This forces adversary to
create a separate database for
each subnet prefix [3].

• CGA++ (also sign input to
hash1; expensive and does not
solve problem with local-link
addresses).

This prevents TMTO attack from
being applied globally [10, 17, 22].

Garbage
Attack

CGA

The adversary uses random data as
public-key.

• Limited practicality since node
does not have corresponding
private key.

• Include an authentication
mechanism in CGA or use CGA
in a protocol that demands
authentication [17].

Impersonate
an existing
CGA

CGA
Generation
Algorithm

Find another key pair that
produces the same CGA.

• Break 2nd pre-image resistance
of SHA-1(hash1).

• Cost of attack: O(259+sec∗16).

Replace SHA-1 with SHA-256 (see
RFC 4982) [10, 27].

Violation of
Privacy

CGA
A node that continues to use a
valid CGA (in a subnet) for a long
period of time can be tracked.

Set a lifetime for a CGA
address [22]:

mTG ≤ Tl ≤ TA/n

where TG is time to generate a new
CGA, Tl is the lifetime of a CGA,
TA is time to attack a CGA, m and
n are integers.

An adversary can track a node
using its public key.

• Difficult attack to carry out
because nodes are usually
tracked using their IP address.

• Generate a new key pair when
joining a new network.
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2) the perceived probability of an attack , i.e.
Pattack. This can be set to a high value when a
user is joining an untrusted/public network or
low when joining a secure/protected network.

3) the computational capacity of a node, i.e.
CPUcapacity.

Values that can be selected by the user for each of
these three factors are shown in Table 4. In this way,
the final value of sec remains between 0 and 7 and
can be securely encoded in the three leftmost bits of
the CGA.

• support a maximum computational security of more
than 128 bits. This is to ensure that CGAs are ap-
plicable well until 2030.

• granularity of 8 (as in TB-CGA) instead of 16 (as in
RFC 3972). The option of removing the granularity
altogether is very attractive because then the hash2

value with the most zero leftmost bits found in a
given time can be used. However, this strategy is
not possible because only three bits are available to
securely transmit sec.

If all of the above mentioned design changes are
adopted, then the overall computational security of the
CGA can be calculated as in Equation (1):

ComputationalSecurity

= O(2(Texpected lifetime+Pattack+CPUcapacity)∗8+80).

(1)

The authors recognize that the above design de-
pends on how accurately a user chooses values for
Texpected lifetime, Pattack and CPUcapacity. However, the
range of computational security (from O(280) to O(2136))
is optimal.

3.2 Hash Function

Hash functions are usually not considered to be a per-
formance bottleneck specially on desktops. However, on
embedded systems (with slower bandwidth), the perfor-
mance of the hash function can have a more substantial
impact (esp. when the hash function is executed in a loop
as in Steps 2 - 3).

SHA-1 is used in the original CGA Generation algo-
rithm because of its efficiency. Any hash function that
replaces SHA-1 must have superior or comparable perfor-
mance.

SHA-3 and Skein have been around for a few years,
so this study will include them for comparison purposes.
This study will also include the new improved version of
BLAKE called BLAKE2 which is reported to have compa-
rable performance to MD5 on 64-bit platforms. BLAKE2
comes in two versions. BLAKE2b is optimized for 64-
bit architectures and BLAKE2s is optimized for 8-bit or
32-bit architectures [7].

This study will also examine two other hash functions
that are not broken and produce hash digests of at least
128 bits. The first hash function is HAVAL. This hash
function is based on the Davies-Meyer construction and is
not susceptible to attacks that aim to exploit the Merkle-
Damgard construction. The downside to this function is
that an efficient algorithm, with a complexity of O(259),
has been demonstrated for constructing collisions for the
3-pass version of HAVAL [8]. As such, only the 4-pass
and 5-pass versions of HAVAL, for which no weaknesses
have been found, are considered secure. Also, HAVAL is
reported to be faster than MD5. The last hash function
included in this study is MD6 [24]. The current MD6 ver-
sion is resistant to the buffer overflow error and has been
proven to be resistant to differential cryptanalysis. Its de-
sign takes full advantage of opportunities for parallelism
in multicore architectures. It is also considered to be a
relatively simple and efficient hash function [6].

3.3 Timestamp

This is included as an Extension Field in the CGA Param-
eters data structure to protect against replay attacks. Fig-
ure 3 shows the Enhanced CGA Parameters data struc-
ture.

3.4 Include Subnet Prefix in Input to
hash2

This is included to protect against the Global Time-
Memory Trade-off (TMTO) attack.

3.5 Parallelism

One method of reducing the cost of the CGA Generation
algorithm is to take advantage of the multicore architec-
ture of most recent mobile nodes. Almost all platforms
are becoming multicore, as manufacturers have realised
that improving performance by increasing raw clock rates
is reaching its physical limit and mutlicore chip design is
the best approach to adopt. For example, the Qualcomm
Snapdragon 808 (arrived at end of 2014) has six cores (a
dual core Cortex A57 and four Cortex A53) [28].

Multicore systems have the most impact on perfor-
mance when the main processing of an algorithm is split
into multiple threads. In other words, when the algorithm
is parallelized. However, it should be remembered, that
the maximum speedup in performance is limited by Am-
dahl’s law. Essentially, this law states that the speedup
obtained from multiple processors is limited by the exe-
cution time of the sequential part of a program [25].

At first glance, the CGA Generation algorithm looks
like a sequential set of instructions. But there are two ob-
vious ways in which the computationally expensive parts
of the algorithm can be parallelized. It is important to re-
member that the way an algorithm is parallelized has an
impact on its performance. Two methods are illustrated
in Figure 4 and Figure 5. In these examples, the main
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Table 4: Values for three factors that determine overall value of sec

Texpected lifetime Pattack CPUcapacity value

Small Negligible Low 0
Medium Low Average 1

Large Medium Fast 2
- High - 3

Figure 3: Enhanced CGA parameters data structure [5]

process spawns two additional threads (i.e. t = 2). More
threads can be spawned if additional cores are available
(e.g. four threads t = 4 when four cores are available).

Theoretically, assuming:

• Ti is the time taken by Step i that is executed by a
thread in parallel;

• TS is the total time taken by all the sequential steps;
and

• c is the number of cores.

Each method can be analyzed in the following ways.

Method 1. Each thread starts with a different random
modifier:

TCGA ≈ min

(∑m1

1

∑3
i=1 Ti, ...,

∑mt

1

∑3
i=1 Ti

)
+TS

(2)

Here, m1 is the number of modifiers searched by thread
1, m2 is the number of modifiers searched by thread 2
and so on until mt (i.e. number of modifiers searched
by thread t).

Method 2. t threads equally share the number of
modifiers to be searched, i.e. mTotal:

TCGA ≈ mTotal

t

(∑3
i=2 Ti

)
+ TS (3)

This study implements and reports results from both
these methods.

4 Implementation of Enhanced
CGA Generation Algorithm

4.1 Hash Function and Hash Extension
Mechanism

The enhanced CGA Generation algorithm is implemented
in C. The Meamo 5 SDK is used and the code cross-
compiled for ARM architecture. Also, every effort is
made to use the same library or implementation (e.g.
of hash function) in order to ensure that performance
indicates difference in design rather than difference in
implementation [20]. The SAPHIR library (for SHA-2,
SHA-3, Skein, HAVAL) and reference C implementations
are used (e.g. blake2 code 20140114.zip from [7] and
md6 c code-2009-04-15.zip from [24]). The clock cy-
cles are recorded for the following operations on an actual
mobile architecture (i.e. a Nokia 900):

1) Calculate hash2;

2) CGA Generation algorithm.

It should be noted that the Nokia 900 has TI OMAP
3430 chipset with a 600 MHz Cortex-A8 CPU. It also has
a PowerVR SGX530 GPU.

4.2 Parallelism

To implement parallelism, POSIX threads (or Pthreads)
are used. Pthreads have a much lower overhead (at least
6 times faster) compared to fork(). Apart from basic
multithreading, mutexes and condition variables are used
to implement Methods 1 and 2 [18].
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Figure 4: Method 1

Figure 5: Method 2
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The CGA Generation algorithm (implemented using
Methods 1 and 2) is run on an Intel Core i7-3537U CPU
@ 2.00 GHz (cache size: 4096 KB). This architecture has
two cores with each core clocked at 2.0GHz. With hyper-
threading, the two cores are capable of handling up to four
parallel threads. In other words, the architecture acts as
if it has four cores. This provides reasonable estimation
since as of 2014 most Android smartphones are quad-cores
processors. It is also important to note that only when
pthread setaffinity np() is used to allocate a thread
to run on a specific core, the utilization of the core reach
100%. The Gnome/GNU Linux system monitor is used
to observe CPU utilization.

5 Results

5.1 Different sec Values

Table 5 shows the average number of clock cycles (10 runs)
taken to generate a CGA for different levels of security.
It is clear that the enhanced CGA Generation algorithm
with a minimal computational security of O(280) takes at
least 180 ms on a N900. More modern mobile nodes will
show better performance.

5.2 Different Hash Functions

Figure 6 shows the average number of clock cycles (30
runs) taken to compute hash2 using different hash func-
tions. As is obvious from the figure, the 4-pass HAVAL
and the 5-pass HAVAL should be considered as excel-
lent substitutes to SHA-3 because of their significantly
superior performance. HAVAL-4 also provides the clos-
est performance to SHA-256 out of all the hash functions
compared in this work.

It is also important to remember that for hash func-
tions, the level 1 cache size (for instructions) is one of the
most important parameters affecting performance [20]. So
in order to see improved results, manufactures should in-
crease the level 1 cache size of mobile nodes. The N900
used to obtain the data in Figure 6 has configurable in-
struction and data caches of 16KiB - 32KiB.

5.3 Parallelism

Figure 7 compares the average number of clock cycles (100
runs) taken by the CGA Generation algorithm at O(280).
There are a few obvious points that can be noted from
Figure 7.

• Spawning even one extra thread improves perfor-
mance by about 20% (regardless of which method
is used to parallelize the algorithm).

• In Method 1, the performance improves drastically
(39%) when 2 threads (instead of 1 thread) are
spawned by the main process. However, this im-
provement in performance slows down significantly
as the number of threads increases to 3 or more.

• Likewise, for Method 2, the performance improves
drastically (40%) when 2 threads (instead of 1
thread) are spawned by the main process. This
improvement in performance slows down until four
threads are spawned. After four threads, the perfor-
mance actually gets worse.

• The best performance is obtained from Method 2
with four threads. Essentially, this means that the
best performance is generally obtained by keeping
the number of threads spawned equal to the number
of cores (and they are 100% CPU-bound).

6 Conclusion

This paper reports a detailed investigation of the CCA
Generation algorithm from a security and performance
perspective. It proposes fixing a minimal computational
security of O(280) for the generation of a CGA and finds
that this takes 180 ms on a typical mobile node like the
N900. Over time (and increasingly powerful machines)
this mimimal computational security should be increased.
This paper also finds that HAVAL-4 and HAVAL-5 are
the best alternatives to SHA-2 and SHA-3 from a perfor-
mance viewpoint. With regards to taking advantage of
multicore architectures, we find that Method 2 (for par-
allelising the CGA Generation algorithm) provides the
maximum speedup when the number of threads spawned
by the main thread equals the number of cores.
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