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Abstract

Botnet threat has increased enormously with adoption of
newer technologies like root kit, anti-antivirus modules
etc. by the hackers. Emergence of botnets having dis-
tributed C & C structure that mimic P2P technologically,
has made its detection and dismantling extremely diffi-
cult. However, numeric flow feature values of P2P botnet
C & C traffic can be used to generate fuzzy rule-set which
can then be used to develop an efficient fuzzy based clas-
sification model. We generated fuzzy rule based models
using Fuzzy Unordered Rule Induction Algorithm (FU-
RIA) from C & C traffic collected from Nugache, Zeus and
Waledac botnets. We also provide a comparative analysis
of fuzzy based classification models with that of classifica-
tion models obtained from C4.5 Decision Tree algorithm
of Quinlan. Experimental results shows that using fuzzy
based classification models, it is possible to achieve very
promising result in predicting suspicious P2P botnet flows
in the network and hence can be used for proactive detec-
tion of P2P botnets.

Keywords: Botnet, classification model, fuzzy unordered
rule induction algorithm, P2P

1 Introduction

A botnet is a coordinated group of compromised ma-
chines controlled via Command & Control (C&C) com-
munication channels that are connected to some C & C
servers/peers and managed by botmasters/botherders. It
can be used in performing various malicious activities like
sending spam mails, distributed denial-of-service (DDoS)
attacks, phishing attacks and click frauds [16]. Detection
of such framework is never easy because of wide distri-
bution of its bots and C & C servers that spread across
thousands of individual networks around the globe. Thus,
number of bots in a given network might be very less.
Moreover, botnet C & C traffic is usually low in volume

and is usually hidden in existing application traffic [18].
Complexities have further increased with shifting from its
traditional Internet Relay Chat (IRC) protocol for C & C
operations to more general and commonly used proto-
cols like HTTP, POP3, Peer-to-Peer(P2P) etc. The most
popular method of managing botnet C&Cs in recent past
is the use of IRC, either in standard form or through
use of customized implementations of IRC servers and
clients intended to thwart mitigation efforts [26]. IRC
based botnets uses centralized topological structures for
C & C operations. Botnets with centralized C & C suf-
fer from single-point-of-failure problem i.e. if C & C is
detected and taken down the botnet cripples. However,
IRC botnets with their source codes widely available and
their setup and maintenance simple and relatively easy,
are still the most popular among bot-herders. The newer
and more resilient variants of botnet have emulated Peer-
to-Peer technologically for C & C operations. A P2P
botnet uses distributed C & C architecture that avoids
single-point-of-failure problem. Also, newer P2P botnets
are using advanced techniques like Rootkits, Fast-flux etc.
to avoid detection. However, there also exists a newer and
stealthy variant of centralized C & C architecture that
uses HTTP for C & C operations. C & C traffic of HTTP
botnets hide behind normal web traffic to pass through
firewalls and other detection tools used by security per-
sonnel.

A pure peer-to-peer botnet is a decentralized architec-
ture allowing bot-master to use any peer at random to dis-
tribute commands to other peer-bots in the P2P network.
Some of the well-known P2P botnets are Nugache [26],
Trojan.Peacomm or Storm [26] and Waledac [25]. Nu-
gache is the pure-P2P bot artifact that does not de-
pend on any central server including DNS. It handles
C & C through encrypted P2P Channel using a variable
bit length RSA key exchange, which is used to seed sym-
metric Rijndael-256 session keys for each peer connection.
A new Nugache peer joins the network through an already
known active servant peer in the network and each Nu-
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gache peer may maintain a list of up to 100 servant peers
for future use in rejoining the network. Nugache peers
maintain an in-degree of connections that totals no more
than ten clients at any time. The out-degree varies, but
it is typically less than half of the ten-client limit. The
result is a typical peer with at most about 13-15 connec-
tion active at any given time. Storm uses Overnet pro-
tocol initially to join the P2P network and then to keep
track of the state of the network with other overnet peers.
For initial peer seeding, the storm binary carries a text
file containing IP addresses of approximately 300 static
peers. However, the core of Storm C & C is handled via
TCP using pull C & C technology directed at servers, i.e.
server do not push commands down to the clients; rather,
clients pull data from server. Storm uses a Hash mech-
anism for encrypting data requests to peers and servers.
Instead of overnet, Waledac uses HTTP communication
and a fast-flux based DNS network exclusively. In order
to make initial contact with the botnet, each Waledac bi-
nary carries a list of IP addresses to use as a bootstrap
list. Additional resiliency is provided in Waledac bina-
ries through a hardcoded URL to access the botnet in the
event a bot is unable to find an active node in the boot-
strap list. The domain used for the URL is part of the fast
flux network created by the botnet. Waledac botnet con-
sists of three hierarchical layers of servers TSL servers,
Upper tier servers (UTS) and Head End C&C. At the
bottom are Repeater nodes and Spammer nodes. Those
infected hosts having private IP addresses are spammer
nodes. Repeaters are used primarily to move requests
and replies between spammers and the head-end C & C
server. Repeater nodes form the Repeater layer which is
connected using P2P network. Each peer bot in the re-
peaters layer contains a node table having a maximum
capacity of 500 to 1000 entries (depending on the ver-
sion of binary). Waledac assigns each IP in the node
table a timestamp, in order to keep this list as fresh as
possible, by replacing the older entries with newer ones.
P2P Zeus [2] is the decentralized version of the popu-
lar credential- stealing trojan Zeus. Earlier centralized
version is mainly known for stealing banking credentials,
where as P2P Zeus is also used for stealing Skype and
MSN database files, Bitcoin wallets etc. With the adop-
tion of P2P for communication, Zeus network has become
more resilient against take down efforts. P2P Zeus uses
RSA-2048 to sign sensitive messages originating from the
bot-masters such as updates and proxy announcements.
Peerlist poisoning is made difficult due to per-bot IP fil-
ter which only allows a single IP per / 20 subnet. P2P
Zeus also includes an automatic blacklisting mechanism,
which blacklists IPs that contact a bot too frequently in
a specified time window. This mechanism further com-
plicates efficient crawling and poisoning of the network.
The C & C communications in a P2P Zeus network can
be categorized into two parts:

1) Bots exchange binary and configuration updates with
each other. P2P Zeus bots check the responsiveness

of their neighbors every 30 minutes. Each neighbor
is contacted in turn, and given 5 opportunities to re-
ply. If a neighbor does not reply within 5 retries, it is
deemed unresponsive, and is discarded from the peer
list. During this verification round, every neighbor is
asked for its current binary and configuration file ver-
sion numbers. If a neighbor has an update available,
the probing bot spawns a new thread to download
the update.

2) Bots exchange list of proxy bots, which are desig-
nated bots where stolen data can be dropped and
command can be retrieved. Additionally, bots ex-
change neighbor lists (Peer lists) with each other to
maintain a coherent network.

Apart from P2P botnets, a new trend in the evolution
of botnets is the rise of botnets that spread through so-
cial networking sites. One of the largest social networking
botnet is KOOBFACE [27], and its infection starts with a
spam sent through Facebook, Twitter, MySpace, or other
social networking sites containing a catchy message with
a link to a video. Each bot in the Koobface botnet con-
nects to any one of roughly a hundred compromised hosts
acting as C & C master servers that disseminate spam in-
structions. The Koobface C&C is a fully-connected graph
where each master server is aware of every other master
server.

In this paper, we propose a fuzzy rule-set through ap-
plication of Fuzzy Unordered Rule Induction Algorithm
(FURIA) [12] on flow attribute values of P2P botnet com-
mand & control traffic. A flow is defined by <source IP,
destination IP, protocol, source port, destination port>.
Fuzzy logic often leads to creation of small rule, where
each rule is an embodiment of meaningful information.
Moreover, we believe that there is an inherent fuzziness
in security issues and an approximate fuzzy rule set can be
generated for detection of security threats. In our earlier
work, we proposed a rule induction algorithm [5] using in-
direct method of rule generation from C4.5 algorithm [21]
of Quinlan. Inference using conventional rules proposed in
paper [5] depends on crisp boundaries that lead to abrupt
transition between the two classes. However, a more gen-
eral rule where its support for a class decreases from full
(inside the core of the rule) to zero (near the boundary) in
a gradual rather than an abrupt way is more appropriate.
Therefore, a set of fuzzy rules that have soft boundaries
definitely has merit.

Our approach is a proactive novel approach for detect-
ing likely P2P botnet C & C traffic flows through iden-
tification of significant flow-level features of P2P botnet
C & C traffic. Flow level features are basically aggrega-
tion of packet-level features in that flow. Thus, our ap-
proach can handle encrypted traffic and is also free from
privacy issues. The core of our detection approach re-
lies on identification of likely botnet C & C traffic flows
through development of efficient machine learning based
models and then correlating the marked botnet flows to
identify the group of flows that belong to the same bot-
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net. Hypotheses that forms our detection approach are
stated as follows:

1) A bot is a program and therefore has a limited set of
commands and every command issued by a bot in its
normal C & C operations is followed by a response
from either a server in its hierarchy in the botnet
or from some other bot in its peer group. In other
word, C & C interactions in P2P botnets must follow
a strict command-response pattern and the manner
in which a bot responds to a specific set of commands
are also more-or-less uniform.

2) A P2P bot needs to keep itself updated about other
bots that are still active in its network and therefore
needs to keep communicating with them.

3) In normal C & C operations, a P2P bot establishes
numerous small sessions. More specifically, they keep
changing communicating ports for normal C & C in-
teraction or until they lunch attack. Therefore, the
number of packets in each of the bot generated flow
during normal C & C operation is usually small.

4) We also observe that most of the packets in bot gen-
erated flows are small in size i.e. the size of the largest
packet in most of the bot generated flows is less than
the MTU. This is to keep privacy and to avoid de-
tection by not influencing normal internet services.

5) Among the few packets transferred in a bot gener-
ated flow,the largest sized packets are transferred at
a specific proportion (usually < 1), whereas, the nor-
mal P2P traffic carries most of the packets to the size
of MTU.

6) Finally, we observed that each bot generates mutu-
ally similar communicating flows to its peers in the
same P2P botnet.

Rest of the paper is organized as follows: Section 2 pro-
vides a brief overview of related works. In Section 3, we
provide a brief overview of botnet detection problem using
network flows and the proposed architectural overview. In
Section 4 we discuss our approach for dataset preparation
and description of features selected for classification. In
Section 5, we briefly describe the fuzzy rule generation
algorithms used for botnet C & C traffic classification. In
Section 6, we provide a detail analysis of results obtained
from our classification models. In Section 7, we elaborate
on future works and also the conclusion.

2 Related Works

Botnet threats have been continuously growing with
adoption of newer technologies and propagation tech-
niques by the bot-masters. Much resiliency has been
achieved by recent botnets through migration from purely
centralized C & C architecture to a partly or wholly de-
centralized architecture. New botnets have emerged on

other digital devices like mobile phones or Smartphones.
Mobile devices could send SMS and MMS to connect to
their C & C proxy servers. Emergence of Online Social
Network (OSNs) botnets is another recent development.
A recently published survey paper [18] has vividly cov-
ered mobile botnets (e.g. iKee.B an iPhone bot) and
OSNs botnets (e.g. KOOBFACE). Compared to enor-
mity of threats posed by recent botnets, the detection
and mitigation approaches developed till date is simply
inadequate. Most of the botnet detection approaches are
based on the anomalies being observed in network traffic,
unusual system behavior etc. Botnet detection based on
anomalies may not be useful always for several reasons.
First, anomalies may not be always prominent to indicate
a botnet attack. Second, it requires continuous monitor-
ing of the network. Third, traffic belonging to botnets
using HTTP protocol hides under the cover of normal
web traffic and thus gets passed through everywhere.

There is a long time gap between initial infection with
bot codes and its final deployment for active participation
in botnets activity. This pre-attack period involves many
stages such as, the process of rallying, i.e. the procedure
adopted by a botnet for self-identification of newly created
bots so that it can initiate contact with Command & Con-
trol (C & C) server, and the process of securing the newly
created bot client. Measures taken to make a bot client se-
cure normally involves deployment of anti-antivirus tools
and Rootkit [20] or similar tools in order to hide itself
from applications already installed by security agencies.
In a newly created bot client, the hacker also employs
tools to retrieve details of the computer (e.g. processor
speed, memory, network speed etc.) and to search for lo-
cation of any leftover tools by an earlier infection [24]. It
is imperative to study botnet behavior during these early
phases of exploitation in order to neutralize a bot possibly
before its active participation in malicious activities. We
may term such detection approaches as proactive. Many
good reactive techniques [10, 11] have been suggested so
far for botnet detection. Reactive techniques are about
anomaly being observed in compromised machines mainly
due to its use in cyber attacks or its exploitations over a
long period of time. However, the aforementioned time
gap is a good pointer for annihilation of bots before it
causes any damage.

Lin et al. [14] proposed an automatic classification of
obfuscated bot binaries by using system call sequences.
The framework tested on 2256 binaries, achieves a 94%
true positive rate and 93% true negative rate. A bot de-
tection mechanism on a single host, proposed by Soniya
et al. [3] initially identifies suspicious traffic by filtering
out normal traffic from traffic generated on a host. For
filtering out normal traffic, normal profiles of users are cre-
ated. Suspicious traffic is then subjected to detail analysis
based on observations made from characterization of bot
traffic. A game bot detection framework through analy-
sis of temporal characteristics of online game traffic has
been proposed by Lu et al. [17]. The proposed approach
is based on modelling of gaming behaviors of game bots
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using Hidden Markov Models (HMM). The proposed ap-
proach can detect game bots accurately with only a small
number of training traces.

Basheer et al. [1] proposed BotDigger, which utilizes
fuzzy logic to derive logical rules based on defined bot-
net characteristics. The system uses fuzzy rule base
to identify suspicious hosts within the set of monitored
hosts after filtering out unlikely flows. The conserved
flows are correlated with each other, looking for group
of flows that may be part of same botnet. The fuzzy
rule base is generated using few attributes that charac-
terize IRC and HTTP based botnet activities. Kuochen
et al. [28] uses fuzzy pattern recognition techniques to
propose a novel behavior-based botnet detection system
based on frequently observed bots TCP and DNS behav-
iors. The proposed system attempts to identify malicious
domain names and IP addresses using maximum member-
ship principle. The system achieved false positive rate of 0
- 3.08%, leaving room for further improvement. However,
the proposed algorithm can detect inactive bots, which
can be used to identify vulnerable hosts. Roshna et al. [23]
proposed a botnet detection technique using Adaptive
Neuro Fuzzy Inference System (ANFIS), which is a kind of
neural network that incorporates the techniques of fuzzy
inference system. However, there is scope for improve-
ment in results claimed in this research work. Another
fuzzy based intrusion detection system [9] has been pro-
posed to detect anomalous network traffic by comparing
with a behavioral model of normal network activity. A
fuzzy rule based detection model is better suited for adap-
tive anomaly based intrusion detection when compared
with static models due to changes in network traffic pat-
terns over time.

3 Problem Description and Archi-
tectural Overview

Data captured from various applications in the internet
involving different data types, such as files, e-mails, web
contents, real-time audio/video data streams etc., are het-
erogeneous in terms of volume, time etc. Flows involving
such data streams are in many cases unidirectional. Types
of data transfer that needs to be reliable such as transfer
of files, e-mails, Web contents etc. use Transmission Con-
trol Protocol (TCP) as transport layer protocol, whereas
for transfer of real-time audio/video data streams, which
is time-sensitive, the User Datagram Protocol (UDP) is
typically used. Most P2P applications use UDP protocol
for communication. Unlike normal web traffic, packets
captured from botnets are largely uniform in terms of
volume, time etc.

Network flows are extracted from packets captured
from network traffic for both normal as well as botnet
C & C traffic. Network flow level features used for classi-
fication are actually aggregate of packet-level features ex-
tracted from packet header. We derive twin advantages
from our approach. First, we completely avoid packets

payload analysis that involves a high amount of privacy
issues. Second, our approach can handle encrypted traf-
fic. Figure 1 shows architectural overview of our proposed
Fuzzy rule based detection framework. It has two major
components, first one is a module for extraction of flows
from raw packets, and the second one generate fuzzy rules
for classification.

4 Dataset Preparation and Fea-
ture Selection

We describe below the dataset preparation and feature
selection procedure of our experiment.

4.1 Dataset Preparation

Botnet datasets used in this work were collected from
the following sources: The Nugache botnet C & C traffic
was obtained from Department of Computer Science, The
University of Texas at Dallas. This is the same botnet
traffic sample used in the botnet related research works
of [19]. Similarly, Zeus and Waledac traffic traces were
obtained from Department of Computer Science, Univer-
sity of Georgia. These are the botnet traces used in the
botnet related research works of [22]. We acquired the be-
nign data randomly from different machines in our cam-
pus network using Wireshark [13]. Our campus network is
protected using network level firewall. Though this device
has its own limitations, it is believed that the device can
prevent malicious attacks entering the protected unit by
setting different network zone and the rules that control
the access in and out flow [16]. Moreover, we collected
data from known benign applications only. Therefore, we
assume that the data collected is benign.

We prepared three datasets having 20,000 flows each,
one each for flow extracted for Nugache, Zeus and
Waledac traces. Datasets are prepared in such a way,
that each has 15000 flows of botnet C & C traffic and
5000 flows of benign traffic. Our benign traffic samples
include varied traffic such as HTTP, FTP, SMTP etc. We
also include traffic captured from legitimate P2P applica-
tion in our benign dataset. Datasets are then labelled
accordingly. While preparing the datasets, we discarded
flows that are unlikely to contribute significantly in the
process of classification viz.

1) Flows having single packet;

2) Flows that involves local area network broadcast ac-
tivities.

Reasons for discarding these flows are as follows:

1) Flows carrying single packet does not carry any
meaningful statistical information, and the propor-
tion of largest sized packet attribute values in our
dataset would become 1.
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Figure 1: Architecture of the proposed Fuzzy rule based detection framework

2) The bot infected hosts may involve in local broad-
casts activities. However, our objective is to consider
host-to-host directed interaction in the network and
broadcast traffic is never part of bot C & C interac-
tion. Therefore, we tag such traffic as unwanted for
our classification model. After removing unwanted
flows, we scaled the datasets to the range of 0 to 1.

In our architectural framework shown in Figure 1, the
first component has a module to extract flows from raw
data. Then the attributes in the flows are scaled and use-
less flows are deleted. The final task of this component is
to label the retained flows. The second component takes
as input the dataset containing refined flows prepared by
the first component and generates fuzzy rules for classi-
fication. We perform botnet C & C traffic classification
using 10-fold cross validation. In general, in n-fold cross
validation, the training set is first divide into n subsets of
equal size. Sequentially one subset is tested using classi-
fier trained on remaining n-1 subsets. Finally, when all
subsets are tested, n results from folds are averaged to
produce a single estimation.

4.2 Feature Selection

Detail analysis of behavioral characteristic of botnet
C & C traffic flow was conducted after which, useful fea-
tures for classification were extracted from packet head-
ers. Following are the botnet flow and behavior charac-
teristic features used in this work:

1) Total packets transferred (TPT): Number of packets
transferred (or packet count) in a flow. It is a flow
direction dependent attribute i.e. the numeric value
of the attribute may be different for command and
response flows within the same pair of peer bots.

2) Largest sized packet (LSP): Size of the packet carry-
ing maximum bytes in a flow. It is also flow direction
dependent attribute.

3) Total bytes transferred with largest sized packets
(TBLSP): It is the multiplication of total number of
largest sized packets (LSP) and the size of the largest
packet.

4) Total bytes transferred (TBT): It is the summation
of bytes transferred with all the packets in a flow. It
is also flow direction dependent attribute.

5) Proportion of largest sized packet (PLSP): It is the
ratio of largest sized packet transferred in a flow. It
is also flow direction dependent attribute.

6) Variance of inter-arrival time (VIT): Variance calcu-
lated for inter-arrival time of packets within a flow.
It is also flow direction dependent attribute.

7) Average packet length (APL): Average calculated for
packet sizes of packets within a flow. It is also flow
direction dependent attribute.

8) Variance of packet length (VPL): Variance calculated
for sizes of packets within a flow. It is also flow di-
rection dependent attribute.

9) Response packet difference (RPD): Difference in
number of packets between two responding flows.
The numeric value of this attribute is common for
responding flows between a pair of hosts. For unidi-
rectional flow (i.e. flow without a responding flow)
we put a high numeric value for this attribute. For
example, in our experiment we put 999, because the
maximum difference is of three digits in our dataset.

10) Response time difference (RTD): Difference in time of
last packet received for two responding flows between
a pair of hosts. The numeric value of this attribute is
also common for responding flows. For unidirectional
flow (i.e. flow without a responding flow) we put a
high numeric value for this attribute. For example, in
our experiment we put 99999, because the maximum
difference calculated in second is of five digits in our
dataset.
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5 Overview of FURIA

FURIA [12] is similar to well-known conventional rule
learner RIPPER [7] with its distinctive features of gen-
erating fuzzy rules and of generating unordered rule sets
instead of rule lists. By unordered, it means a set of
rules for each class in a one-vs-rest scheme. In FURIA,
fuzzy rules are obtained using fuzzy intervals derived with
trapezoidal membership function. It uses four parameters
stated as IF = (Φs,L, Φc,L, Φc,U , Φs,U ) to represent fuzzy
intervals. The trapezoidal membership function for fuzzy
sets (or fuzzy intervals) is given by:

IF (v)
df
=


1 Φc,L ≤ v ≤ Φc,U

v−Φs,L

Φc,L−Φs,L Φs,L < v < Φc,L

Φs,U−v
Φs,U−Φc,U Φc,U < v < Φs,U

0 else

 (1)

Φc,L and Φc,U are, respectively, lower and upper bound of
the core (elements with membership 1) of the fuzzy set;
likewise, Φs,L and Φs,U are, respectively, the lower and
upper bound of the support(elements with membership
> 0). Thus, Φs,L and Φs,U are the fuzzy extensions of
original RIPPER intervals [Φc,L, Φc,U ] that are consid-
ered as core. Rules are fuzzified in a greedy way through
fuzzification of every antecedent in a rule or in other
word, through replacement of sharp boundaries of a rule
with soft boundaries. Fuzzification of each antecedent is
done by testing all relevant values {xi|x = (x1 · · ·xk) ∈
DT

i , xi < Φc,L
i } as candidates for Φs,L

i and for all values

{xi|x = (x1 . . . xk) ∈ DT
i , xi > Φc,U

i } as candidates for

Φs,U
i . Here, relevant data for each antecedent (Ai ∈ Ii)

is the one considered by ignoring all those instances
that are excluded by any other antecedent (Aj ∈ IFj ),

j 6= i: Di
T = {x = (x1 . . . xk) ∈ DT |IFj (xj) > 0 for all

j 6= i} ⊆ DT .
FURIA being a fuzzy rule generating algorithm is char-

acterized by its core and its support. It is valid inside
the core and invalid outside the support; in-between, the
validity drops in a gradual way. Apart from having this
definite advantage of fuzzy rule generation over other con-
ventional rule generation algorithms such as RIPPER and
C4.5, FURIA generates unordered rule set instead of rule
lists and provides an efficient rule stretching method to
deal with uncovered instances. All these features of the
algorithm make it most suitable for rule generation for
network security threat detection.

6 Results and Analysis

We use WEKA [8] Data Mining environment for fuzzy
rule generation and subsequent classification of botnet
C & C traffic flows of Nugache, Zeus and Waledac bot-
nets. Weka provides a collection of Machine Learning
(ML) algorithms and several visualization tools for data
analysis and predictive modelling. We present results of
our experiments in two parts: First, a brief analysis of

structure of fuzzy rules generated for all bot flows is pre-
sented. Next we provide analysis of results using various
performance metrics.

6.1 Analysis of Rule Sets

Unlike sharp boundaries generated by RIPPER, C4.5 etc.
a fuzzy rule is characterized by soft boundaries. Each
fuzzy rule consists of two parts: its “core”and its “sup-
port”. For example, one of the rules generated from C & C
traffic of Nugache botnet is:

(TBLSP in [-inf, -inf, 0.000006, 0.000006]) and (RPD
in [-inf, -inf, 0.001, 0.002]) and (LSP in [0.0055, 0.0062,
inf, inf]) ⇒ Class=bot (CF = 1.0).

The antecedents of the rule can be interpreted as:
(1)TBLSP in [-inf, -inf, 0.000006, 0.000006]: it is valid for
TBLSP ≤ 0.000006 and invalid for TBLSP > 0.000006,
(2) RPD in [-inf, -inf, 0.001, 0.002]: it is completely valid
for RPD ≤ 0.001, invalid for RPD > 0.002 and partially
valid in-between,(3) LSP in [0.0055, 0.0062, inf, inf]: it
is completely valid for LSP ≥ 0.0062, invalid for LSP <
0.0055 and partially valid in-between. Now, performing
logical AND operation for completely valid and partially
valid cases of Part (1), (2) and (3) on the LHS of our above
rule, we get the ‘Coverage’of the rule in our dataset. Com-
pletely valid parts associated with antecedents of the rule
are its ‘core’, whereas partially valid part forms the ‘sup-
port’. The Certainty factor of the rule is 1. List of fuzzy
rules generated that predict bot flows for Nugache, Zeus
and Waledac are shown in Tables 1, 2 and 3 respectively.

In Table 4, we provide structural attribute values for
comparative analysis of the structure of fuzzy rule sets
generated for the three botnets. The attributes consid-
ered for comparison are: number of fuzzy rules generated
(NFR), average number of antecedents in the rules gener-
ated for each botnet (ANAR), number of rules that pre-
dicts a bot flow (NRB), percentage of coverage of cases
(PCC) and the number of rules with certainty factor 1.0
(NRCF).

From the structural attribute values, we find that least
complex rules are generated for Waledac C & C traffic
flows and the most complex rule set is generated for highly
stealthy Zeus botnet. This can be observed from the num-
ber of fuzzy rules generated (NFR) and the average num-
ber of antecedents in the rules generated for each botnet
(ANAR) attributes of the three botnet C & C traffic sam-
ples. Among the other attributes, Nugache rule set has
52% rules predicting bot flows followed by 42.5% for Zeus
and 42.1% for Waledac. Similarly, percentage of rules
with certainty factor 1.0 is 72% for Nugache, 47% for
Waledac and 38.75% for Zeus. All these statistics along
with the percentage of coverage of cases by the rule sets
indicates that all the three botnet traces produced very
efficient rule set.



International Journal of Network Security, Vol.17, No.5, PP.522-534, Sept. 2015 528

Table 1: Fuzzy rules for detection of Nugache bot C & C traffic
Serial No Rule

1 ( TBLSP in [-inf, -inf, 0.000006, 0.000006]) and (RPD in [-inf, -inf, 0.001, 0.002]) and (LSP in [0.0055, 0.0062, inf, inf]) ⇒ Class=bot
(CF = 1.0)

2 ( TBLSP in [-inf, -inf, 0.000012, 0.000013]) and (TBT in [0.000034, 0.000036, inf, inf]) and ( TBLSP in [0.000012, 0.000012, inf, inf]) and
(LSP in [-inf, -inf, 0.0118, 0.0119]) and (APL in [-inf, -inf, 0.0072, 0.00828]) ⇒ Class=bot (CF = 1.0)

3 (LSP in [-inf, -inf, 0.0062, 0.0064]) and (VPL in [0, 0, inf, inf]) ⇒ Class=bot (CF = 1.0)
4 (APL in [-inf, -inf, 0.00725, 0.00828]) and (VPL in [0.000001, 0.000032, inf, inf]) and (LSP in [-inf, -inf, 0.0118, 0.0119]) and

(LSP in [0.0115, 0.0118, inf, inf]) ⇒ Class=bot (CF = 1.0)
5 ( TBLSP in [-inf, -inf, 0.000006, 0.000006]) and (TPT in [0.00003, 0.00004, inf, inf]) ⇒ Class=bot (CF = 1.0)
6 (APL in [-inf, -inf, 0.006133, 0.0062]) and (APL in [0.006, 0.006009, inf, inf]) and (VPL in [-inf, -inf, 0, 0.000001]) and

(RTD in [-inf, -inf, 0.03273, 0.03388]) ⇒ Class=bot (CF = 1.0)
7 (APL in [-inf, -inf, 0.006189, 0.0062]) and (APL in [0.006, 0.006006, inf, inf]) and (VPL in [-inf, -inf, 0, 0]) and

( VIT in [0, 0.0343, inf, inf]) and (RTD in [-inf, -inf, 0.06001, 0.06455]) ⇒ Class=bot (CF = 1.0)
8 (PLSP in [-inf, -inf, 0.04, 0.333333]) and (LSP in [0.0275, 0.0354, inf, inf]) and ( TBLSP in [-inf, -inf, 0.000047, 0.000049]) and

(VPL in [-inf, -inf, 0.000033, 0.00004]) ⇒ Class=bot (CF = 0.95)
9 (APL in [-inf, -inf, 0.0075, 0.00828]) and (LSP in [0.0115, 0.0118, inf, inf]) and (LSP in [-inf, -inf, 0.0118, 0.0119]) ⇒ Class=bot (CF = 1.0)
10 (APL in [-inf, -inf, 0.006093, 0.006133]) and (APL in [0.006, 0.006006, inf, inf]) and (VPL in [-inf, -inf, 0.000002, 0.000003]) and

(TPT in [0.00008, 0.00009, inf, inf]) ⇒ Class=bot (CF = 0.99)
11 (PLSP in [-inf, -inf, 0.007937, 0.009524]) and (LSP in [0.0276, 0.0289, inf, inf]) and (VPL in [-inf, -inf, 0.00008, 0.000083]) and

(RPD in [-inf, -inf, 0.154, 0.19]) ⇒ Class=bot (CF = 0.95)
12 (TPT in [0.00009, 0.00025, inf, inf]) and (LSP in [-inf, -inf, 0.006, 0.0065]) and (LSP in [0.0054, 0.0058, inf, inf]) ⇒ Class=bot (CF = 0.92)
13 (PLSP in [-inf, -inf, 0.04, 0.111111]) and (TBT in [-inf, -inf, 0.00034, 0.000344]) and (LSP in [0.0309, 0.0354, inf, inf]) and

(VPL in [-inf, -inf, 0.000352, 0.000363]) ⇒ Class=bot (CF = 0.92)

6.2 Analysis of Classification Results

Final datasets prepared from botnet C & C traffic of the
three bots under consideration are being used to build
classification models using WEKA machine learning tools.
We randomized flow instances in our datasets by passing
it through Randomize filter available with WEKA’s un-
supervised instance filter category. This was necessitated
because our original datasets are imbalanced having less
normal web flows. While constructing classifier, we used
10-fold cross validation so that there is no over-fitting of
our training set.

Results of Classification task by any classification al-
gorithm during testing are usually displayed in a confu-
sion matrix. A confusion matrix holds the count of the
correct and incorrect classification from each class or the
differences between the true and predicted classes for a
set of labelled instances. Table 5 shows the format of a
confusion matrix with TP, TN, FP, FN representing True
Positive, True Negative, False Positive and False Negative
counts respectively.

The row total, CN and CP are the number of truly
negative and positive instances. Similarly, RN and RP
are the number of predicted negative and positive in-
stances, with N being the total number of instances
(N = CN+CP = RN+RP ). Although confusion matrix
incorporates all the performance measures of a classifica-
tion algorithm, more meaningful results can be extracted
from it to represent certain performance criteria. Accu-
racy is the first performance criteria we are using to com-
pare the three classification models on botnet datasets:

Accuracy =
TP + TN

TP + TN + FP + FN
(2)

Figure 2 shows comparison of accuracy achieved with
our fuzzy rule based classification models with that of
decision tree based classification models. Decision trees

can be used to generate crisp rule sets for classification.
In this work we generate the decision tree from Quinlans
famous C4.5 algorithm.

The percentage accuracy value achieved using FURIA
are 99.745%, 99.715%, and 99.105% for Nugache, Waledac
and Zeus flows respectively. Corresponding figures using
C4.5 algorithm are 99.655%, 99.695%, and 98.615%. We
find a distinct increase in correctly classified instances us-
ing fuzzy rule based classification models. We also ob-
serve that fuzzy based classifier is largely successful in
classifying C & C traffic generated by stealthy botnets
like Zeus, though accuracy achieved is lower than that of
Nugache and Waledac. The increase in number of cor-
rectly classified flow instances by FURIA when compared
with C4.5 algorithm is 18, 4 and 98 respectively for Nu-
gache, Waledac and Zeus sample botnet datasets. This
increase is because of fuzzification of classification rules
by FURIA.

We also consider the following additional performance
criteria to compare our fuzzy based classification models:

Sensitivity =
TP

TP + FN
(3)

PositivePredictiveV alue(PPV ) =
TP

TP + FP
(4)

FalsePositiveRate =
FP

FP + TN
(5)

Sensitivity (or True Positive Rate) is the proportion of
correctly identified bot flows out of total flows labelled
as bot. Similarly, PPV or Precision is the proportion of
correctly identified bot flows out of total predicted bot
flows. Figure 3 shows graphical comparison of Sensitiv-
ity, PPV and FP rate of our three fuzzy based classifica-
tion models. The graph shows a three dimensional view
of changes in aforesaid three performance metrics values
with respect to the three botnet sample data set in consid-
eration. The results shown in the graph are in the range
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Table 2: Fuzzy rules for detection of Zeus bot C & C traffic
Serial No Rule

1 (VPL in [0.00017, 0.000171, inf, inf]) and (TPT in [-inf, -inf, 0.0006, 0.0007]) and (APL in [-inf, -inf, 0.013633, 0.015883]) and
(LSP in [0.0308, 0.0324, inf, inf]) and (RTD in [-inf, -inf, 0.00252, 0.00253]) and (RTD in [0.00099, 0.0011, inf, inf]) ⇒ Class=bot (CF = 1.0)

2 (VPL in [0.043302, 0.043385, inf, inf]) and (TPT in [-inf, -inf, 0.0006, 0.0007]) and (VPL in [-inf, -inf, 0.049932, 0.052853]) and
(RPD in [-inf, -inf, 0.001, 0.002]) ⇒ Class=bot (CF = 1.0)

3 (VPL in [0.000032, 0.000171, inf, inf]) and (LSP in [-inf, -inf, 0.02, 0.0202]) and (LSP in [0.0199, 0.02, inf, inf]) and
(APL in [-inf, -inf, 0.00925, 0.01595]) ⇒ Class=bot (CF = 1.0)

4 (VPL in [0.000149, 0.00015, inf, inf]) and (LSP in [-inf, -inf, 0.0545, 0.0547]) and (LSP in [0.0523, 0.0529, inf, inf]) and
(RTD in [-inf, -inf, 0.01448, 0.01463]) and (RTD in [0.00082, 0.001, inf, inf]) ⇒ Class=bot (CF = 1.0)

5 (VPL in [0.00006, 0.00015, inf, inf]) and (RPD in [-inf, -inf, 0.006, 0.999]) and (RPD in [0.001, 0.002, inf, inf]) and
(RTD in [0.00497, 0.00805, inf, inf]) and ( TBLSP in [-inf, -inf, 0.000055, 0.000062]) and (APL in [0.012533, 0.0126, inf, inf]) and
(LSP in [-inf, -inf, 0.0335, 0.0365]) and (TBT in [0.00004, 0.000044, inf, inf]) ⇒ Class=bot (CF = 1.0)

6 (VPL in [0.00009, 0.000965, inf, inf]) and (RPD in [-inf, -inf, 0.001, 0.002]) and (RTD in [0.00105, 0.00122, inf, inf]) and
(RTD in [-inf, -inf, 0.00218, 0.00219]) ⇒ Class=bot (CF = 1.0)

7 (VPL in [0.000656, 0.000942, inf, inf]) and (RPD in [-inf, -inf, 0.006, 0.043]) and (RTD in [0.00069, 0.00122, inf, inf]) and
(LSP in [0.0523, 0.0529, inf, inf]) and (LSP in [-inf, -inf, 0.0546, 0.0547]) and (VPL in [-inf, -inf, 0.003206, 0.003209]) and
(RTD in [-inf, -inf, 0.07234, 0.0724]) ⇒ Class=bot (CF = 1.0)

8 (RPD in [-inf, -inf, 0.012, 0.017]) and ( TBLSP in [0.000012, 0.000018, inf, inf]) and (LSP in [-inf, -inf, 0.0062, 0.0066]) and
(RTD in [-inf, -inf, 0.01018, 0.01052]) and (RTD in [0.00068, 0.00122, inf, inf]) ⇒ Class=bot (CF = 1.0)

9 (VPL in [0.000091, 0.00015, inf, inf]) and (RPD in [-inf, -inf, 0.012, 0.043]) and (RTD in [0.00001, 0.00122, inf, inf]) and
(APL in [0.018127, 0.018409, inf, inf]) and (PLSP in [-inf, -inf, 0.142857, 0.166667]) and (VPL in [-inf, -inf, 0.002537, 0.002894]) and
(RTD in [-inf, -inf, 0.06149, 0.06156]) ⇒ Class=bot (CF = 1.0)

10 (VPL in [0.000976, 0.001038, inf, inf]) and (RPD in [-inf, -inf, 0.005, 0.006]) and (RTD in [0.00078, 0.00091, inf, inf]) and
(RTD in [-inf, -inf, 0.00332, 0.00818]) and ( TBLSP in [-inf, -inf, 0.000034, 0.000036]) ⇒ Class=bot (CF = 1.0)

11 (VPL in [0.039564, 0.041469, inf, inf]) and (RTD in [0.00061, 0.00097, inf, inf]) and (RTD in [-inf, -inf, 0.03579, 0.04022]) and
( TBLSP in [-inf, -inf, 0.000442, 0.000454]) and (TPT in [0.0002, 0.0003, inf, inf]) ⇒ Class=bot (CF = 1.0)

12 (VPL in [0.001119, 0.001122, inf, inf]) and (RTD in [0.00045, 0.001, inf, inf]) and (RPD in [-inf, -inf, 0.006, 0.999]) and
(LSP in [0.0768, 0.0772, inf, inf]) and (LSP in [-inf, -inf, 0.0811, 0.0814]) ⇒ Class=bot (CF = 1.0)

13 (VPL in [0.000079, 0.000091, inf, inf]) and (RTD in [0.0493, 0.04944, inf, inf]) and (LSP in [0.0527, 0.0529, inf, inf]) and
(LSP in [-inf, -inf, 0.055, 0.0552]) and (APL in [0.017975, 0.0182, inf, inf]) ⇒ Class=bot (CF = 0.99)

14 (VPL in [0.025873, 0.03012, inf, inf]) and (APL in [0.091857, 0.093214, inf, inf]) and ( TBLSP in [-inf, -inf, 0.000757, 0.000908]) and
(RTD in [0.00045, 0.00255, inf, inf]) and (RTD in [-inf, -inf, 0.0676, 0.06776]) ⇒ Class=bot (CF = 1.0)

15 (VPL in [0.002699, 0.002756, inf, inf]) and (LSP in [-inf, -inf, 0.0531, 0.0532]) and (LSP in [0.0527, 0.0529, inf, inf]) ⇒ Class=bot (CF = 1.0)
16 (VPL in [0.000065, 0.000091, inf, inf]) and (LSP in [-inf, -inf, 0.0335, 0.0343]) and (TBT in [0.000116, 0.000117, inf, inf]) and

(APL in [0.016038, 0.01607, inf, inf]) and ( TBLSP in [-inf, -inf, 0.000086, 0.000105]) ⇒ Class=bot (CF = 1.0)
17 (VPL in [0.001417, 0.001493, inf, inf]) and ( TBLSP in [-inf, -inf, 0.000055, 0.000055]) and (LSP in [0.0522, 0.053, inf, inf]) and

(RPD in [0.002, 0.003, inf, inf]) ⇒ Class=bot (CF = 1.0)
18 (VPL in [0.001059, 0.001108, inf, inf]) and ( TBLSP in [-inf, -inf, 0.000034, 0.000034]) and (TBT in [0.00005, 0.000051, inf, inf]) and

(TPT in [0.0003, 0.0004, inf, inf]) ⇒ Class=bot (CF = 1.0)
19 (VPL in [0.029541, 0.03012, inf, inf]) and (APL in [0.111343, 0.112722, inf, inf]) and ( VIT in [-inf, -inf, 0.0123, 0.0149]) and

( TBLSP in [-inf, -inf, 0.001211, 0.001363]) ⇒ Class=bot (CF = 0.99)
20 (RTD in [-inf, -inf, 0.00686, 0.02146]) and (RTD in [0.00066, 0.00073, inf, inf]) and (APL in [-inf, -inf, 0.00644, 0.006467]) and

(LSP in [0.0074, 0.0098, inf, inf]) and (LSP in [-inf, -inf, 0.0098, 0.0122]) ⇒ Class=bot (CF = 0.99)
21 (VPL in [0.001957, 0.003153, inf, inf]) and (APL in [0.142629, 0.143664, inf, inf]) and (PLSP in [-inf, -inf, 0.536036, 0.676471]) ⇒ Class=bot

(CF = 0.98)
22 (VPL in [0.040972, 0.041469, inf, inf]) and (RPD in [-inf, -inf, 0.005, 0.006]) and (RTD in [0.00047, 0.00058, inf, inf]) and

(TBT in [0.000649, 0.000653, inf, inf]) ⇒ Class=bot (CF = 0.98)
23 (VPL in [0.01728, 0.022948, inf, inf]) and (RPD in [-inf, -inf, 0.006, 0.007]) and (RTD in [0.00795, 0.01713, inf, inf]) and

(APL in [0.111506, 0.112722, inf, inf]) and ( VIT in [-inf, -inf, 0.0123, 0.0139]) ⇒ Class=bot (CF = 0.98)
24 (LSP in [-inf, -inf, 0.0062, 0.0065]) and ( TBLSP in [0.000013, 0.000018, inf, inf]) and (RTD in [-inf, -inf, 0.06825, 0.07552]) and

(LSP in [0.006, 0.0062, inf, inf]) ⇒ Class=bot (CF = 0.98)
25 (VPL in [0.000088, 0.000116, inf, inf]) and (RPD in [-inf, -inf, 0.006, 0.008]) and (RPD in [0.003, 0.004, inf, inf]) and

(VPL in [-inf, -inf, 0.000162, 0.000162]) ⇒ Class=bot (CF = 0.99)
26 (VPL in [0.00071, 0.000712, inf, inf]) and (LSP in [-inf, -inf, 0.0268, 0.0845]) and (TBT in [0.000036, 0.000037, inf, inf]) and

(PLSP in [-inf, -inf, 0.4, 0.428571]) ⇒ Class=bot (CF = 0.93)
27 (VPL in [0.001417, 0.001905, inf, inf]) and (LSP in [-inf, -inf, 0.0548, 0.0549]) and (LSP in [0.0531, 0.0532, inf, inf]) and

(APL in [-inf, -inf, 0.017625, 0.02075]) and (RPD in [0.001, 0.002, inf, inf]) ⇒ Class=bot (CF = 1.0)
28 (LSP in [-inf, -inf, 0.006, 0.0062]) and ( TBLSP in [0.000016, 0.000018, inf, inf]) and (RTD in [-inf, -inf, 0.02393, 0.02514]) and

(VIT in [0.0157, 0.0199, inf, inf]) ⇒ Class=bot (CF = 0.99)
29 (VPL in [0.026365, 0.028376, inf, inf]) and (RPD in [-inf, -inf, 0.004, 0.012]) and (LSP in [-inf, -inf, 0.1494, 0.1496]) and

(LSP in [0.1468, 0.1472, inf, inf]) ⇒ Class=bot (CF = 1.0)
30 (LSP in [-inf, -inf, 0.0062, 0.0065]) and ( TBLSP in [0.000018, 0.000019, inf, inf]) and (RPD in [-inf, -inf, 0.001, 0.006]) and

(RTD in [-inf, -inf, 0.06889, 0.07552]) ⇒ Class=bot (CF = 0.99)
31 (RTD in [-inf, -inf, 0.05404, 0.06343]) and (APL in [0.009754, 0.012425, inf, inf]) and ( TBLSP in [-inf, -inf, 0.000033, 0.000037]) and

(TBT in [0.000112, 0.000116, inf, inf]) and ( VIT in [0.0161, 0.0163, inf, inf]) ⇒ Class=bot (CF = 1.0)
32 (VPL in [0.000093, 0.000539, inf, inf]) and ( TBLSP in [-inf, -inf, 0.000027, 0.000027]) and (LSP in [0.0254, 0.0255, inf, inf]) and

(TBT in [-inf, -inf, 0.000056, 0.000057]) ⇒ Class=bot (CF = 0.89)
33 (VPL in [0.000744, 0.000913, inf, inf]) and (PLSP in [-inf, -inf, 0.03125, 0.035714]) and (LSP in [-inf, -inf, 0.055, 0.0686]) ⇒ Class=bot

(CF = 1.0)
34 (RPD in [-inf, -inf, 0.001, 0.002]) and (VPL in [0.023281, 0.02549, inf, inf]) and (LSP in [-inf, -inf, 0.121, 0.1221]) ⇒ Class=bot (CF = 0.96)
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Table 3: Fuzzy rules for detection of Waledac bot C & C traffic
Serial No Rule

1 (APL in [-inf, -inf, 0.007491, 0.0075]) and (VPL in [0, 0.000001, inf, inf]) and (LSP in [-inf, -inf, 0.0062, 0.0064]) ⇒ Class=bot
(CF = 1.0)

2 (LSP in [-inf, -inf, 0.0096, 0.0098]) and (LSP in [0.0094, 0.0096, inf, inf]) and (TPT in [0.0002, 0.0003, inf, inf]) ⇒ Class=bot
(CF = 1.0)

3 (LSP in [-inf, -inf, 0.0062, 0.0065]) and ( TBLSP in [0.000013, 0.000016, inf, inf]) and (RPD in [-inf, -inf, 0.002, 0.999]) and
(LSP in [0.006, 0.0062, inf, inf]) ⇒ Class=bot (CF = 0.99)

4 (APL in [-inf, -inf, 0.005533, 0.006]) and (RTD in [0.01125, 0.01838, inf, inf]) and (TPT in [0.0002, 0.0003, inf, inf]) and
(RPD in [-inf, -inf, 0, 0.001]) ⇒ Class=bot (CF = 1.0)

5 (APL in [-inf, -inf, 0.005533, 0.0059]) and (RTD in [0.00001, 0.00795, inf, inf]) and (RPD in [0, 0.001, inf, inf]) and
( TBLSP in [-inf, -inf, 0.000011, 0.000012]) ⇒ Class=bot (CF = 0.98)

6 (APL in [-inf, -inf, 0.005533, 0.0058]) and (TPT in [0.0002, 0.0003, inf, inf]) and (RPD in [-inf, -inf, 0, 0.002]) ⇒ Class=bot
(CF = 1.0)

7 (APL in [-inf, -inf, 0.005933, 0.00605]) and ( TBLSP in [-inf, -inf, 0.000006, 0.000006]) and (LSP in [0.0055, 0.0058, inf, inf]) ⇒ Class=bot
(CF = 1.0)

8 (APL in [-inf, -inf, 0.005933, 0.005967]) and (RPD in [-inf, -inf, 0.001, 0.002]) and (VPL in [0.000003, 0.000003, inf, inf]) and
( VIT in [-inf, -inf, 0.0156, 0.018262]) ⇒ Class=bot (CF = 0.97)

Table 4: Structural attribute values of fuzzy rule sets

NFR ANAR NRB PCC NRCF
Nugache 25 3.04 13 99.845% 18
Waledac 19 2.89 08 99.8% 09
Zeus 80 4.1 34 99.57% 31

Figure 2: Percentage of accuracy
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Figure 3: FP rate, PPV and sensitivity

of 0 to 1, as the performance measures are within this
range only. Our fuzzy classifier produces the following
results: (1) Sensitivity and PPV are 0.997 for both Nu-
gache, Waledac traces, and 0.991 for Zeus. (2) FP rate is
0.005 for Nugache, 0.006 for Waledac and 0.017 for Zeus.

Table 5: A confusion matrix

Predicted Class
True class -VE +VE
-VE TN FP CN
+VE FN TP CP

RN RP N

Sensitivity, PPV and FP rate are inferior for Zeus sam-
ple dataset compared to that of Nugache and Waledac.
From our analysis of sample datasets we find that Nu-
gache and Waledac C & C flow samples are more dis-
tinguishable from normal traffic samples than the Zeus
C & C flow sample. Following are the steps performed to
do the analysis:

1) From the list of ten features in our feature set we
proceed with two most influential pair of features i.e.
Largest sized packet (LSP) and Proportion of largest
sized packet (PLSP). Influence of a particular feature
on classifiers performance has been judged through a
simple performance-based input ranking methodol-
ogy as has been described in our previous work [4].

2) We then removed the repeated values for this pair of
features in all the datasets. After removal of dupli-
cates we are left with only distinct values for each
instance. The percentage of distinct combination
obtained for Nugache is 0.313%, for Waledac it is

0.307%, for Zeus it is 5.887% and for Normal flow
instances it is 28.3%.

3) We then calculated the percentage of distinct com-
binations having more than 1000 bytes in LSP for
each dataset. We found that none of the packets
in Nugache and Waledac datasets carry a payload
of greater than or equal to 1000 bytes. For Zeus,
the percentage of distinct combinations having more
than 1000 bytes in LSP is 0.733% and for Normal the
value is 7.64%.

From Step 2 we find that Zeus has a significantly higher
percentage of distinct combinations compared to Nugache
and Waledac. Similarly, from Step 3 we find that Zeus
also has a good number of flows with LSP having more
than 1000 bytes. Therefore, it is not difficult to ascertain
that the classification error rate of Zeus is bound to be
more compared to Nugache or Waledac.

The accuracy (the rate of correct classification) mea-
sure of a classifier is often used for comparison of pre-
dictive ability of learning algorithms. However, the accu-
racy measure completely ignores the probability estima-
tions of the classification systems. Probability estimations
generated by most classifiers can be used for ranking in-
stances which gives likelihood estimations of instances and
is therefore more desirable than just a classification. The
AUC (area under the curve) of the ROC (Receiver Op-
erating Characteristic) curve provides an alternative and
better measure for machine learning algorithms by being
invariant to the decision criterion selected, prior probabil-
ities and is easily extendable to include cost/benefit analy-
sis [6, 15]. ROC curve represents plotting of True Positive
Rate against False Positive Rate as the decision thresh-
old is varied, that can be used to compare the classifiers
performance across the entire range of class distributions
and error costs.
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With a varied decision threshold and already obtained
number of points on the ROC curve [FP rate = α, TP rate
= 1 - β], the area under the ROC curve can be calculated
by using the trapezoidal integration as follows:

AUC =
∑
i

{(1− βi.4α+
1

2
[4(1− β).4α]} (6)

where, 4(1−β) = (1−βi)− (1−βi−1), 4α = αi−αi−1.
In case of perfect predictions the AUC is 1 and if AUC

is 0.5 the prediction is random. We provide a compara-
tive analysis of our classification models using AUC val-
ues. Table 6 provides the AUC measures of our fuzzy
based classification models and its corresponding values
for decision tree based classification models. We find
AUC measure for Zeus is significantly better in case of
the fuzzy based classifier compared to the decision tree
model, whereas for Nugache the fuzzy based classifier has
a marginal edge over the one based on decision tree. The
only exception is Waledac, where we have the AUC mea-
sure of decision tree classifier edge past the fuzzy classifier,
though very marginally. Our explanation to this is that
both these classifiers generates almost perfect classifica-
tion models with equally good results for Waledac botnet
C & C traffic sample, which is apparent from Figure 2 and
Figure 3 having accuracy, sensitivity and PPV measures.
AUC measure of a particular classification model is calcu-
lated through generation of a rank list based on probabil-
ity estimations of instances. Thus it is not necessary that
AUC measure of a classifier has to be higher compared to
another classifier just because its other measures like ac-
curacy, sensitivity, PPV etc. are on higher side. In fact, it
implies that the error rate of decision tree based classifier
generated from Waledac C & C traffic sample is slightly
higher compared to fuzzy based classifier even though the
decision tree classifier performs marginally better in terms
of AUC measure. Nevertheless, from analysis of results
we find that AUC measures of FURIA are much more
consistent providing excellent predictions.

Table 6: AUC measures of fuzzy and decision tree based
classification models

FURIA C4.5
Nugache 0.997 0.995
Waledac 0.997 0.998
Zeus 0.994 0.984

7 Conclusions

A fuzzy rule based detection framework for P2P botnets
is presented here. The proposed approach leverages on
flow level features and packet level features of network
traffic to build excellent classification model for P2P bot-
net C & C traffic. The accuracy achieved by our sys-
tem is as good as 99.745%, 99.715%, and 99.105% for

Nugache, Waledac and Zeus botnet samples respectively.
The fuzzy rule based approach is a supervised one and
hence can detect known botnet traces only. P2P botnets
have distributed C & C architecture and therefore com-
plete annihilation of existing botnets is not easy. How-
ever, using our fuzzy rule based classification model, we
can track botnet C & C traffic pro-actively as well as with
high accuracy. In future, our effort will be to build simi-
lar detection model for botnets using other protocols and
communication technologies such as social network based
botnets, mobile botnets etc.
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