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Abstract

In this paper, a cryptanalysis of key exchange method
using multilayer perceptron (CKE) has been proposed
in wireless communication of data/information. In this
proposed CKE technique both sender and receiver uses
an identical multilayer perceptrons for synchronization
between them. After achieving the full synchronization
weights vectors of both the parties’ becomes identical and
this identical weight vector is used as a secret session key
for encryption/decryption. Different types of possible at-
tacks during synchronization phase are introduced in this
paper. Among different types of attacks some of them
can be easily prevented by increasing the synaptic depth
L. But few attacks are also there which has a great suc-
cess rate. Parametric tests have been done and results are
compared with some existing classical techniques, which
show comparable results for the proposed technique.

Keywords: Cryptanalysis, encryption, wireless communi-
cation

1 Introduction

Cryptanalysis is the technique through which procedure
of breaking the security can be analysed. Eavesdroppers
can be reside anywhere in the network and always try to
attack on the communication. In recent times wide ranges
of techniques are developed to protect data and informa-
tion from eavesdroppers [4, 6, 7, 8, 9, 10, 11, 14, 15].
These algorithms have their virtue and shortcomings.
For Example in DES, AES algorithms [4] the cipher
block length is nonflexible. In NSKTE [6], NWSKE 7],
AGKNE [8], ANNRPMS [9] and ANNRBLC [10] tech-
nique uses two neural network one for sender and another
for receiver having one hidden layer for producing syn-
chronized weight vector for key generation. Now attacker
can get an idea about sender and receiver’s neural ma-
chine because for each session architecture of neural ma-
chine is static. In NNSKECC algorithm [11] any interme-
diate blocks throughout its cycle taken as the encrypted
block and this number of iterations acts as secret key.

Here if n number of iterations are needed for cycle forma-
tion and if intermediate block is chosen as an encrypted
block after n/2th iteration then exactly same number of
iterations i.e. n/2 are needed for decode the block which
makes easier the attackers life. In this paper CKE tech-
nique has been proposed to analyzed variety of attacks
that can be possible in key generation phase using mul-
tilayer perceptron and also provides some way out from
these attacks.

The organization of this paper is as follows. Section 2
of the paper deals with structure of multilayer perceptron.
Different types of attacks in CKE have been discussed in
Section 3. Complexity analysis of the technique is given in
Section 4. Experimental results are described in Section 5.
Analysis of the results presented in Section 6. Analysis
regarding various aspects of the technique has been pre-
sented in Section 7. Conclusions and future scope are
drawn in Section 8 and that of references at end.

2 Structure of Multilayer Percep-
tron

In multilayer perceptron synchronization scheme secret
session key is not physically get exchanged over public
insecure channel. At end of neural weight synchroniza-
tion strategy of both parties’ generates identical weight
vectors and activated hidden layer outputs for both the
parties become identical. This identical output of hid-
den layer for both parties can be use as one time secret
session key for secured data exchange. A multilayer per-
ceptron synaptic simulated weight based undisclosed key
generation is carried out between recipient and sender.
Figure 1 shows multilayer perceptron based synaptic sim-
ulation system. Sender and receivers multilayer percep-
tron select same single hidden layer among multiple hid-
den layers for a particular session. For that session all
other hidden layers goes in deactivated mode means hid-
den (processing) units of other layers do nothing with the
incoming input. Either synchronized identical weight vec-
tor of sender and receivers’ input layer, activated hidden
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layer and output layer becomes session key or session key
can be form using identical output of hidden units of ac-
tivated hidden layer. The key generation technique and
analysis of the technique using random number of nodes
(neurons) and the corresponding algorithm is discussed in
Subsections 2.1 to 2.5 in details.

Sender and receiver multilayer perceptron in each ses-
sion acts as a single layer network with dynamically cho-
sen one activated hidden layer and K no. of hidden neu-
rons, N no. of input neurons having binary input vector, ,
discrete weights, are generated from input to output, are
lies between -L and +L, where ¢ = 1,--- , K denotes the
ith hidden unit of the perceptron and j = 1,--- , N the
elements of the vector and one output neuron. Output of
the hidden units is calculated by the weighted sum over
the current input values. So, the state of the each hidden
neurons is expressed using Equation (1).

1

N
1

hi = —=wiz; = —= ) w;;T;;.

= S,

(1)
Output of the ith hidden unit is defined in Equa-

tion (2).
o; = sgn(hy;). (2)

But in case of h; = 0 then o; = —1 to produce a
binary output. Hence o; = 41, if the weighted sum over
its inputs is positive, or else it is inactive, o; = —1. The
total output of a perceptron is the product of the hidden
units expressed in Equation (3).

(3)

The learning mechanism proceeds as follows ([8, 9]):

_ 17K
T = Hizlai.

1) If the output bits are different, 7A # 7B, nothing is
changed.

2) If TA = 7B = 7, only the weights of the hidden units

with U]?/B = 74/B will be will be updated.

3) The weight vector of this hidden unit is adjusted us-
ing any of the following learning rules:
Anti-Hebbian:

W,:‘/B = W,:‘/B — TA/Bka(akTA/B)(TATB). (4)
Hebbian:
W]:‘/B = W,?/B + TA/Ba?kQ(O'kTA/B)(TATB).

Random walk:

W,?/B = W,?/B + ka(UkTA/B)(TATB).

During Step (2), if there is at least one common hidden
unit with ¢k = 7 in the two networks, then there are 3
possibilities that characterize the behavior of the hidden
nodes:
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1) An attractive move: if hidden units at similar &k po-
B _ LA/B

sitions have equal output bits, 0;3 =0}
2) A repulsive move: if hidden units at similar k posi-
tions have unequal output bits, 0’,‘:1 #* Jf.

3) No move: when o' = of # 74/5 the distance be-

tween hidden units can be defined by their mutual
overlap,

A, B
Wi, Wy

Pk = )
B, B
Wi Wiy Wi Wi

where 0 < pk < 1, with pk = 0 at the start of learning
and pk = 1 when synchronization occurs with the two
hidden units having a common weight vector.

2.1 Multilayer Perceptron Simulation Al-
gorithm

Input: Random weights, input vectors for both multi-
layer perceptrons.

Output: Secret key through synchronization of input
and output neurons as vectors.

Method:

Step 1. Initialization of random weight values of
synaptic links between input layer and ran-
domly selected activated hidden layer.

(5)

Step 2. Repeat Steps 3 to 6 until the full synchro-
nization is achieved, using Hebbian-learning
rules.

Wi 5 € {—L, —L + 1, s ,+L}

w;”j =g(w; ; + a?iJTQ(O'iT)H(TATB)).

Step 3. Generate random input vector X. Inputs
are generated by a third party or one of the
communicating parties.

Step 4. Compute the values of the activated hidden
neurons of activated hidden layer using Equa-
tion (6).

1 1 &
hi = —F—W;T; = —F— Wi T4 5. 6
\/N \/N; 3] ( )

Step 5. Compute the value of the output neuron us-
ing
T = Hfil ag;.

Compare the output values of both multilayer percep-
tron by exchanging the system outputs.
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Figure 1: A multilayer perceptron with 3 hidden layers

if Output (A) # Output (B), Go to Step 3

else if Output (A) = Output (B) then one of the
suitable learning rule is applied

only the hidden units are trained which have an output
bit identical to the common output.

Update the weights only if the final output values of the
perceptron are equivalent. When synchronization is fi-
nally achieved, the synaptic weights are identical for both
the system.

2.2 Multilayer Perceptron Learning Rule

At the beginning of the synchronization process mul-
tilayer perceptron of A and B start with uncorrelated
weight vectors. For each time step K, public input vec-
tors are generated randomly and the corresponding out-
put bits A/B are calculated. Afterwards A and B com-
municate their output bits to each other. If they disagree,
A # B, the weights are not changed. Otherwise learning
rules suitable for synchronization is applied. In the case
of the Hebbian learning rule [12] both neural networks
learn from each other.

wifj = g(wi; + xi,jTe(O'iT)e(TATB)).

The learning rules used for synchronizing multilayer per-
ceptron share a common structure. That is why they can
be described by a single Equation (4).

+ A

w; = g(w;; + f(oi,T

1,5 77_3)1,1.7].)

with a function f(o;,7#,77), which can take the values

-1, 0, or +1. In the case of bidirectional interaction it is
given by
f(aiv TA? TB)
o, Hebbian learning
= Blom™O(r*rP){ —o anti-Hebbian learning
1 Random walk learning

The common part 8(a74)0(7478) of f(os, 74, 78) con-
trols, when the weight vector of a hidden unit is adjusted.
Because it is responsible for the occurrence of attractive
and repulsive steps [8].

The equation consists of two parts:

1) 0(or?)0(rA7B): This part is common between the
three learning rules and it is responsible for the at-
tractive and repulsive effect and controls when the
weight vectors of a hidden unit is updated. There-
fore, all three learning rules have similar effect on the
overlap.

2) (0,—0,1): This part differs among the three learn-
ing rules and it is respomsible for the direction of
the weights movement in the space. Therefore, it
changes the distribution of the weights in the case
of Hebbian and anti-Hebbian learning. For the Heb-
bian rule, A’s ad B’s multilayer perceptron learn their
own output and the weights are pushed towards the
boundaries at —L and +L. In contrast, by using the
anti- Hebbian rule, sender’s and receiver’s multilayer
perceptron learn the opposite of their own outputs.
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Consequently, the weights are pulled from the bound-
aries £ L. The random walk rule is the only rule that
does not affect the weight distribution so they stay
uniformly distributed. In fact, at large values of IV,
both Hebbian and anti-Hebbian rules do not affect
the weight distribution. Therefore, the proposed al-
gorithm is restricted to use either random walk learn-
ing rule or Hebian or anti-Hebbian learning rules only
at large values of N. The random walk learning rule
is chosen since it does not affect the weights distri-
bution regardless of the value of N.

2.3 Weight Distribution of Multilayer
Perceptron

In case of the Hebbian rule Equation (5), A’s and B’s mul-
tilayer perceptron learn their own output. Therefore the
direction in which the weight w;; moves is determined
by the product o;z; ;. As the output o; is a function of
all input values, x; ; and o; are correlated random vari-
ables. Thus the probabilities to observe o;x; ; = +1 or
o;x;; = —1 are not equal, but depend on the value of the
corresponding weight w; ; [2, 3, 5, 13].

Sl erf(—— )

NQ; —w},

Ploirij =1) =

According to this equation, o;z;; = sgn(w; ;) occurs
more often than the opposite, o;x; ; = —sgn(w; ;). Con-
sequently, the Hebbian learning rule pushes the weights
towards the boundaries at —L and +L. In order to quan-
tify this effect the stationary probability distribution of
the weights for ¢ — oo is calculated for the transition
probabilities. This leads to [13].

|w] 1+erf[m7*1]

NQ;—(m—1)?

Py =)= 1 []
m=1 NQi—m?

Here the normalization constant Py is given in Equa-
tion (7), the constant should be expressed as

L \wll-i-erf[%]

w=—Lm=1

VINQ;—m?

In the limit N — oo the argument of the error functions
vanishes, so that the weights stay uniformly distributed.
In this case the initial length of the weight vectors is not
changed by the process of synchronization.

— L(L+1)
VQi(t=0)= —3

But, for finite N, the probability distribution itself de-
pends on the order parameter @);. Therefore its expecta-
tion value is given by the solution of the following equa-
tion:
L
Q,’ = Z UJZP(UJZ"J' = U))

w=—L
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2.4 Order Parameters

In order to describe the correlations between two multi-
layer perceptron caused by the synchronization process,
one can look at the probability distribution of the weight
values in each hidden unit. It is given by (2L + 1) vari-
ables.
;,b = P(wfj =aA wfj =)

which are defined as the probability to find a weight with
wz‘-‘}j = a in A’s multilayer perceptron and wfj =bin B’s
multilayer perceptron. In both cases, simulation and it-
erative calculation, the standard order parameters, which
are also used for the analysis of online learning, can be
calculated as functions of Py, [1].

1 L L
A A A _ 2 pi
Q; = Nwiwi—E E aPa,b

a=—Lb=—L
1 L L
B _ B, B _ 2 i
Q; = Nwiwi = E E b ab
a=—Lb=—L
1 L L
RlAB = waw?: g E ang,b
a=—Lb=—L

Then the level of synchronization is given by the normal-
ized overlap between two corresponding hidden units

pAB — witw? _ R{P
! .
VwlefVeFef  /QRQP

2.5 Hidden Layer as a Secret Session Key

At end of full weight synchronization process, weight vec-
tors between input layer and activated hidden layer of
both multilayer perceptron systems become identical. Ac-
tivated hidden layer’s output of source multilayer percep-
tron is used to construct the secret session key. This ses-
sion key is not get transmitted over public channel be-
cause receiver multilayer perceptron has same identical
activated hidden layer’s output. Compute the values of
the each hidden unit by

N
sgn(d_ wijw; ;)
j=1

ag; =
-1 ifx <0,
sgn(z) = 0 ifz=0, (8)
1 ifz>0.

For example consider 8 hidden units of activated hid-
den layer having absolute value (1,0,0,1,0,1,0,1) be-
comes an 8 bit block. This 10010101 become a secret
session key for a particular session and cascaded XORed
with recursive replacement encrypted text. Now final ses-
sion key based encrypted text is transmitted to the re-
ceiver end. Receiver has the identical session key i.e. the
output of the hidden units of activated hidden layer of
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receiver. This session key used to get the recursive re-
placement encrypted text from the final cipher text. In
the next session both the machines started tuning again
to produce another session key. Identical weight vector
derived from synaptic link between input and activated
hidden layer of both multilayer perceptron can also be-
comes secret session key for a particular session after full
weight synchronization is achieved.

3 Different Types of Attacks on
Multilayer Perceptron

The security of multilayer perceptron based key gener-
ation protocol is based on a contest between attractive
and repulsive forces. Two multilayer perceptrons inter-
acting with each other synchronize much faster than an
attacker network only trained with their inputs and out-
puts. The dissimilarity between the two parties and the
attacker is that the two parties synchronize in a polyno-
mial time of synaptic depth L, while the complexity of
the attacker scales exponentially. However, the process
is stochastic and depends on the random attractive and
repulsive forces. As a result, there is a small probability
that an attacker succeeds to synchronize with one of the
parties. The difficulty an attacker faces with the organi-
zation of multilayer perceptron is the lack of information
about the internal representation of A’s or B’s machine.
Most of attacks depend on estimating the state of the hid-
den units. Following are the different possible attacks on
multilayer perceptron during key generation phase.

3.1 Type-1 Attack

In this typelattack replicate a huge population of multi-
layer perceptrons with the identical arrangement as the
two parties, and teach them with the same inputs. At
each stage about half the replicated networks produces an
output of +1, and half produces an output of —1. Success-
ful multilayer perceptrons whose outputs imitate those of
the two parties raise and multiply, while unsuccessful mul-
tilayer perceptrons gets ruled out. Attack starts with one
network with haphazardly chosen weights. At each step
a population of networks grow according to 3 potential
scenarios:

e A and B have dissimilar outputs 7A # 7B, and
therefore do not change their weights. Then all the
attacker’s networks stay unaffected as well.

e A and B have the equivalent outputs 7A = 7B, and
the sum of attacking networks is lesser than some
predefined limit. In this case there are 4 possible
combinations of the hidden outputs agreeing with
the final output. So, the attacker replaces each net-
work N from the population by 4 variants of itself,
{N1,..., N4} which are the results of updating N
with the standard learning rule but pretending that
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the hidden outputs were equal to each one of these
combinations.

e A and B have the identical outputs 7A = 7B but
the total number of simulated networks is larger than
predefined value. In this case the attacker computes
the outputs of all the networks, deletes the unsuc-
cessful networks whose output is different from 7A,
and updates the weights in the successful networks
by using the standard learning rule with the actual
hidden outputs of the perceptrons.

3.2 Type-2 Attack

In Type-2 attack the attacker imitates one of the par-
ties, but if attacker output disagrees with the imitated
party’s output 7c # TA, attacker certainly knows that ei-
ther one or all three of his hidden units are mistaken.
In order to get 7¢ = TA attacker negates the sign of
one of attacker’s hidden units. As o = sgn(h) the unit
most likely to be wrong is the one with the minimal |/,
therefore that is the unit which is negate. This policy
results a immense enhancement in the attacker’s achieve-
ment. It can be seen that the success rate is quite high
for all L values presented, but it drops exponentially as
L increases. On the other hand parties’ synchronization
time increases like L?, and therefore it can be conclude
that in the boundary of large L values the proposed tech-
nique is secure against Type-2 attack. Each input can
be viewed as K random hyperplanes (X, -, Xg) cor-
responding to K hidden units. Each X; is a hyperplane
filz1,- ,20) = Z;VZZ z;5%2; = 0 in the N-dimensional
discrete space U = {—L,---, L}". The weights of a net-
work could be also viewed as K points Wy, .-, Wk in
U, W; = {w;1,- - ,w;}, while the i-th hidden output is
just the side of the half-space (with respect to X;) which
contains W;. Consider an attacking network E that is
close enough to the unknown network A but has a differ-
ent output for a given input. In fact they have either 1 or
3 different hidden outputs. The second case is less likely
to occur so we assume that only one hidden output of
the network F is different from the corresponding hidden
output of A. Consequently, only one pair (WA, WE) is
separated by the known input hyperplane X;. Of course,
we are interested in detecting its index 4. If the points
WE and WA are separated by X; then the distance be-
tween them is greater than the distance from WF to the
hyperplane X;. W and W/ are close to each other, so
the distance from WF to X; has to be small. On the other
hand, if WF and W are in the same half-space with re-
spect to X; then they are more likely to be far away from
the random input X; (even though we know that they are
close to each other). We thus guess that the index of the
incorrect hidden output is the i for which W¥ is closest
to the corresponding hyperplane X;, where we compute
the distance by p(WF, X;) = |f;(WF)|. Formally, the
attacker constructs a single neural network E with the
same structure as A and B, and randomly initializes its
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weights. At each step attacker’s trains F with the same
input as the two parties, and updates its weights with the
following rules:

e If A and B have different outputs 7A # 7B, then the
attacker doesn’t update F.

e If A and B have the same outputs TA = 7B and
7E = 7A, then the attacker updates E by the usual
learning rule.

e If A and B have the same outputs 7A = 7B and
TE # 7A, then the attacker finds ig € {1,--- , K}
that minimizes | E;VZO w5x1]| The attacker negates
Tf and updates F assuming the new hidden bits and
output 7A.

3.3 Type-3 Attack

In this Type-3 attack a huge collection of M attackers
work together. The Type-2 attacker’s likelihood to sup-
position correctly A’s interior representation is some func-
tion Pcorrect(S) of its overlap 8 with A, starting from
Pcorrect(f = 0) = 0.25. Assume there are group of M
independent Type-2 attackers, each having overlap £ with
A. They will split into 4 groups, one for each possible in-
ternal representation. Since Pcorrect > 0.25 for all 3 > 0,
the number of attackers having the correct internal repre-
sentation, M. Pcorrect will be bigger than the number of
attackers in the other 3 groups, for all 8 > 0. Therefore,
the internal representation resulted from the majority dis-
cussion of M independent Type-2 attackers would always
be the correct one! From this argument we conclude that
the attack should use M > 2k — 1 attackers, which would
simultaneously develop an overlap with the parties, trying
to remain as independent as possible.

3.4 Type-4 Attack

The Type-4 attack procedure is to start from indepen-
dent Type-2 attackers and let them act disjointedly for
some preliminary number of time steps. Then, the ma-
jority procedure is applied: we count how many attackers
have each of the 4 possible internal representations, and
assign the majority’s internal representation to all the M
attackers. To prevent the similarity between the attack-
ers from developing too quickly, this majority procedure
is applied only on even time steps. However, the attack-
ers make many coherent moves, and unavoidable overlap
is developed between them as well. Therefore we do not
have a group of independent attackers, but of attackers
with an overlap between them. This overlap diminishes
the efficiency of the attack, and it is not always successful
as a majority attack of M independent attackers would
be.

3.5 Type-5 Attack

It is much easier to predict the position of a point in a
bounded multidimensional box after several moves in its
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random walk than to guess its original position. A sim-
ple way to do it is to consider each coordinate separately,
and to associate with each possible value 7 in the inter-
val {—L,---,L} of the probability p;(i) = Pr[X; = il.
Initially Vi, po(i) = ﬁ and after each move p;1(i) =
>_;pt(j), where j are such that if z; = j then x4 = .
Applying this technique to the original scheme we face
the problem that the moves are not known to the at-
tacker does not know which perceptrons are updated in
each round. Fortunately, if we know the distribution of
the probabilities Py, ; = Prlwg, = i] then using dy-
namic programming we can calculate the distribution of
wix) for a given vector zp and thus the probabilities
ur(s) = Prlr, = s]. Using these probabilities we can
calculate the conditional probabilities

Uy

Prim, = 17],
Z(al,m Jap): 1, ci=7,ak=1 Hz Hi (al)
Z(al,--- sap): [, cs=7 Hi /’[’i(ai)

because 7 is publicly known. We can now update the
distribution of the weights: Pi! = Pt - Prlw}, =
j= wt,:rnl = 4] is calculated using Uy. Experiments show
that in most cases, when A and B converge to a common
Wk, the probabilities Pr{wy,, = wi, ~ 1 and thus the
adversary can easily find wy;,, when A and B decide to
stop the protocol.

3.6 Type-6 Attack

To provide a brute force attack, an attacker has to test all
possible keys (all possible values of weights). By K hidden
neurons, K X N input neurons and boundary of weights
L, this gives (2L + 1)K'N possibilities. For example, the
configuration K = 3, L = 3 and N = 100 gives us 3 X
10253 key possibilities, making the attack impossible with
today’s computer power.

3.7 Type-7 Attack

Here the attacker E’s neural network has the same struc-
ture of A’s and B’s. All what F has to do is to start with
random initial weights and to train with the same inputs
transmitted between A and B over the public channel.
Then, the attacker E learns the mutual output bit 74/5
between them and applies the same learning rule by re-
placing 7% with 74/8  i.e.

WE =WE — 74 By0(cEr4/B) (+478).

One of the basic attacks can be provided by an at-
tacker, who owns the same tree parity machine as the
parties A and B. He wants to synchronize his tree parity
machine with these two parties. In each step there are
three situations possible:

e Output (A) # Output (B): None of the parties up-
dates its weights.
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Figure 2: Encryption decryption time against stream size

e Output (A) = Output (B) = Output (E): All the
three parties update weights in their tree parity ma-
chines.

e Output (A) = Output (B) # Output (E): Parties
A and B update their tree parity machines, but the
attacker cannot do that. Because of this situation his

learning is slower than the synchronization of parties
A and B.

It has been proven, that the synchronization of two parties
is faster than learning of an attacker. It can be improved
by increasing of the synaptic depth L of the neural net-
work. That gives this protocol enough security and an
attacker can find out the key only with small probability.
Changing this parameter increases the cost of a successful
attack exponentially, while the effort for the users grows
polynomially. Therefore, breaking the security of neural
key exchange belongs to the complexity class NP.

4 Complexity Analysis

The complexity of the Synchronization technique will be
O(L), which can be computed using following three steps.

Step 1. To generate a MLP guided key of length N needs
O(N) Computational steps. The average synchro-
nization time is almost independent of the size N of
the networks, at least up to N = 1000. Asymptoti-
cally one expects an increase like O(logN).

Step 2. Complexity of the encryption technique is O(L).

Step 2.1. Recursive replacement of bits using prime
nonprime recognition encryption process takes
O(L).

Step 2.2. MLP based encryption technique takes
O(L) amount of time.

Step 3. Complexity of the decryption technique is O(L).

Step 3.1. In MLP based decryption technique, com-
plexity to convert final cipher text into recursive
replacement cipher text T' takes O(L).

Step 3.2. Transformation of recursive replacement
cipher text T into the corresponding stream of
bits S = $pS1528384 - - - S;,_1, which is the source
block takes O(L) as this step also takes constant
amount of time for merging sgs1828384 + - Sp,_1.

5 Experiment Results

In this section the results of implementation of the pro-
posed CKE encryption/decryption technique has been
presented in terms of encryption decryption time, Chi-
Square test, source file size vs. encryption time along
with source file size vs. encrypted file size.

The results are also compared with existing RSA [4]
technique, existing ANNRBLC [10] and NNSKECC [11].

Table 1: Encryption/decryption time vs. file size

Encryption Time {5}
Decryption Time {5}

Source NNEE- NNSKE-

Size | CKE | ECC E;;“m?t";d} CKE | ECC
(brtes) [#] - [#7]
18432 .42 185 18432 §ag 7181
23044 Q.23 1032 23040 227 a4z
35425 | 14 .62 1521 35425 247 1423
36242 | 14.72 1534 36242 1514 1524
50398 | 25.11 2544 59338 24 34 | 2445

Table 1 shows encryption and decryption time with
respect to the source and encrypted size respectively. It
is also observed the alternation of the size on encryption.

In Figure 2 stream size is represented along X axis and
encryption/decryption time is represented along Y-axis.
This graph is not linear, because of different time require-
ment for finding appropriate CKE key. It is observed that
the decryption time is almost linear, because there is no
CKE key generation process during decryption.

Table 2 shows Chi-Square value for different source
stream size after applying different encryption algorithms.
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Figure 3: Chi-Square value against stream size

It is seen that the Chi-Square value of CKE is better com-
pared to the algorithm ANNRBLC [10] and comparable
to the Chi-Square value of the RSA algorithm. Figure 3
shows graphical representation of Table 2.

Table 2: Source size vs. Chi-Square value

Chi- ’ Chi->quare Chi-
51;;11!! Square Chi_’:;ﬂi' e value Square
(btes) value (CKE) {ANNEBLC) value
; (TDES) [1] [5] (B5A) [1]
1500 12285803 | 2B36.2673 24710724 5623.14
2500 2948 2285 §582.7254 564534462 22453894
ET O] 36780432 71252364 1578211 12800355
3250 42352114 7091.1931 294 6128 1509777
350 42429145 | 12731 7331 10572 4673 15284 728

Table 3 shows total number of iteration needed and
number of data being transferred for CKE key generation
process with different numbers of input(N) and activated
hidden(H) neurons and varying synaptic depth(L). Fig-
ure 4 shows the snapshot of CKE key simulation process.

Table 3: Data exchanged and number of iterations for
different parameters value

= No.of
No.of iy . Diats
Input A}?;;tﬂ Synaptc Tﬂt:]t-'\ﬂ " | Exchange
x“‘fﬂn }:eume;; Weizht (L) Iterations d
R
3 3 3 P
30 4 4 248 102
23 3 3 241 30
20 1] 3 1350 278
] 15 4 2350 189

6 Analysis of Results

From results obtained it is clear that the technique will
achieve optimal performances. Encryption time and de-
cryption time varies almost linearly with respect to the
block size. For the algorithm presented, Chi-Square value
is very high compared to some existing algorithms. A
user input key has to transmit over the public channel
all the way to the receiver for performing the decryp-
tion procedure. So there is a likelihood of attack at the
time of key exchange. To defeat this insecure secret key
generation technique a neural network based secret key
generation technique has been devised. The security is-
sue of existing algorithm can be improved by using CKE
secret session key generation technique. In this case, the
two partners A and B do not have to share a common
secret but use their indistinguishable weights or output
of activated hidden layer as a secret key needed for en-
cryption. The fundamental conception of CKE based key
exchange protocol focuses mostly on two key attributes
of CKE. Firstly, two nodes coupled over a public chan-
nel will synchronize even though each individual network
exhibits disorganized behavior. Secondly, an outside net-
work, even if identical to the two communicating net-
works, will find it exceptionally difficult to synchronize
with those parties, those parties are communicating over
a public network. An attacker F who knows all the par-
ticulars of the algorithm and records through this channel
finds it thorny to synchronize with the parties, and hence
to calculate the common secret key. Synchronization by
mutual learning (A and B) is much quicker than learning
by listening (E) [12]. For usual cryptographic systems,
we can improve the safety of the protocol by increasing
of the key length. In the case of CKE, we improved it by
increasing the synaptic depth L of the neural networks.
For a brute force attack using K hidden neurons,

K x N input neurons and boundary of weights L, gives
(2L + 1)K N possibilities. For example, the configuration
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Figure 4: CKE Key Simulation Snapshot with N=12, K=10 and L=6

K =3, L =3and N = 100 gives us 3 x 10253 key possibil-
ities, making the attack unfeasible with today’s computer
power. E could start from all of the (2L + 1)3N initial
weight vectors and calculate the ones which are consis-
tent with the input/output sequence. It has been shown,
that all of these initial states move towards the same fi-
nal weight vector, the key is unique. This is not true for
simple perceptron the most unbeaten cryptanalysis has
two supplementary ingredients first; a group of attacker
is used. Second, E makes extra training steps when A
and B are quiet [1, 12, 13]. So increasing synaptic depth
L of the CKE we can make our CKE safe.

7 Security Issue

The main difference between the partners and the at-
tacker in CKE is that A and B are able to influence
each other by communicating their output bits 74 and 75
while F can only listen to these messages. Of course, A
and B use their advantage to select suitable input vectors
for adjusting the weights which finally leads to different
synchronization times for partners and attackers. How-
ever, there are more effects, which show that the two-
way communication between A and B makes attacking
the CKE protocol more difficult than simple learning of
examples. These confirm that the security of CKE key
generation is based on the bidirectional interaction of the
partners. Each partener uses a seperate, but identical
pseudo random number generator. As these devices are
initialized with a secret seed state shared by A and B.
They produce exactly the same sequence of input bits.
Whereas attacker does not know this secret seed state.
By increasing synaptic depth average synchronize time
will be increased by polynomial time. But success proba-
bility of attacker will be drop exponentially Synchoniza-
tion by mutual learning is much faster than learning by
adopting to example generated by other network. Unidi-
rectional learning and bidirectional synchronization. As

FE can’t influence A and B at the time they stop trans-
mit due to synchrnization. Only one weight get changed
where, o; = T'. So, difficult to find weight for attacker to
know the actual weight without knowing internal repre-
sentation it has to guess.

8 Conclusion

This paper presented a novel approach for cryptanalysis
of key exchange using multilayer perceptron. This tech-
nique enhances the security features of the key exchange
algorithm by increasing of the synaptic depth L of the
CKE. Here two partners A and B do not have to ex-
change a common secret key over a public channel but
use their indistinguishable weights or outputs of the acti-
vated hidden layer as a secret key needed for encryption
or decryption. So likelihood of attack proposed technique
is much lesser than the simple key exchange algorithm.
Future scope of this technique is that this CKE model
can be used in wireless communication and also in key
distribution mechanism.
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