
International Journal of Network Security, Vol.17, No.4, PP.471-483, July 2015 471

Fault-tolerant Verifiable Keyword Symmetric
Searchable Encryption in Hybrid Cloud

Jie Wang, Xiao Yu, and Ming Zhao
(Corresponding author: Ming Zhao)

Aviation University of Air Force, 130022, Changchun, Jilin, China

(Email: michaelwangliu@163.com & zhaoming2014@mail.jlu.edu.cn)

(Received Nov. 26, 2014; revised and accepted Feb. 10, & Mar. 16, 2015)

Abstract

As cloud computing is increasingly expanding its applica-
tion scenario, it is vital for cloud storage customers not
to sacrifice the confidentiality of sensitive data while mak-
ing fullest use of operational functionality of cloud secure
systems. Although traditional searchable encryption can
well solve exact keyword search on encrypted data with
retrieving files by search interest, it does not work when
typos or misspelling mistakes occur. Many specific al-
gorithms have been well proposed to solve this difficult
problem. However, most of the schemes mainly focus on
the single cloud to achieve fuzzy keyword search, which
means that fuzzy-keyword index construction must take
possible typos into account and makes existing exact-
keyword index useless. In addition, existing searching
schemes rarely take interaction between the data user
and the cloud to improve system’s usability and user’s
retrieval satisfactory degree into consideration. In this
paper, we propose an improved scheme named as Dis-
tributed Fault-tolerant Keyword Search Supporting Ver-
ifiable Search-ability (DFKSSVS) in hybrid cloud with
the emphasis of interaction circumstances. Through im-
proved dictionary-based keyword construction scheme, we
generate fuzzy keyword set, and build secure index for
efficient fuzzy search. After searching procedures, the
scheme can support verifiability of returned files via proof
returned by cloud as well, and interaction between data
user and private cloud to achieve dynamic ranking of re-
trieval results statistically. Through rigorous security and
thorough analysis, we show that the improved solution
can meet verifiable fuzzy keyword search on cloud en-
crypted data with supporting the exact-keyword index
already generated. Security analysis and extensive exper-
imental results demonstrate the accuracy and efficiency
of our proposed scheme.

Keywords: Cloud storage, fault-tolerant keyword search,
improved-dictionary-based fuzzy set, outsourcing data,
searchable encryption, verifiable keyword search

1 Introduction

Nowadays, the increasing growth of Big Data in IT in-
dustry impels the application expansion of cloud comput-
ing. As a typical application, cloud storage has gained
popularity in many corporations and companies around
the world. However, as the large amount of sensitive
data, such as enterprise basic files, government investi-
gation reports, private health records and so on, is in the
out-of-control domain, data privacy has become the top
concern of whether it is a must to outsource data to the
cloud. Data encryption is an effective solution to keep
its confidentiality, which has yet sacrificed data usability.
Encryption can preserve outsourced data’s confidential-
ity, integrity and accessibility (CIA) of cloud data, and
no one can know the contents of encrypted files without
decryption keys, however, secure cloud system usability
is lowered for non-operation-ability on cipher-text.

The best solution for encrypted data computation
is Fully Homomorphic Encryption (HHE), which allows
users to operate directly on cipher-texts and then produce
results of matching procedures. Gentry et al. [8] made a
breakthrough in theoretical domain, but the scheme of
construction efficiency is far from practical utilization.
Moreover, data users are usually interested in the most
relevant files whose ranking is in the top-k list rather
than all files returned from cloud. From the perspective
of information retrieval, users choose to input some spe-
cific keywords named as ”keyword-based search” to selec-
tively retrieve relevant files. Unfortunately, computable
retrieval operations on encrypted data by keyword search
are limited due to no suitable schemes on cipher-text
search compared with traditional retrieval methods on
plain-text search. Although encrypted keyword can pro-
tect its privacy, how to use plain-text search techniques
on encrypted data turns to be a real problem, which
attracts much more attention of researches on it. Dif-
ferent from the traditional Private Information Retrieval
(PIR) schemes, an alternative, that is searchable encryp-
tion (SE) schemes, has been proposed and researched for
a long time. SE is a key technique for data users to di-

International Journal of Network Security, Vol.17, No.4, PP.471-483, July 2015 472

rectly operate encrypted data, but traditional SE without
secure index is inefficient facing with the large-scale cloud
encrypted data. So, it is important to construct a secure
index for encrypted data files.

Searchable encryption is an important and fundamen-
tal solution to solve the problems of encrypted data uti-
lization, as well as integration of data confidentiality and
usability. In general, searchable encryption can be divided
into two subcategories, that is, Public Key Searchable En-
cryption (PKSE), and Symmetric Searchable Encryption
(SSE). PKSE can support much more flexible search op-
erations and complicated search applications, but more
computationally huge overhead is produced because of
many pairing-operations compared with SSE. In contrast,
SSE depends on its computational efficiency and opera-
tional convenience to make it to be a research hot spot.
No matter PKSE or SSE, keyword search is associated
with index of files. By integrating trapdoors (encrypted
form of searched keyword) with secure index (encrypted
form of file index), effective keyword search can be fin-
ished while retrieval contents and search results are blind
to cloud servers.

Furthermore, fuzzy keyword seems to be a hot topic
in the plain-text information retrieval field, because re-
trievers may have typos by accident or statistical mis-
spelling mistakes during retrieval procedures. As an ap-
plicable expansion, fuzzy keyword search on encrypted
data has been researched actively. Li et al. [11] for the
first time proposed wildcard-based keyword search over
encrypted scheme, which is proven its weakness of insecu-
rity by Zheng et al. in HPCC 2013 conference [20]. Wang
et al. [18] suggested a solution using trie-tree for index
construction, which has large space-cost of building index
and infeasible updating of index tree. Chuah et al. [6]
presented a scheme which has secure index by using bed-
tree with low efficiency. Liu et al. [12] proposed a solution
named as ”dictionary-based fuzzy keyword search on en-
crypted data” with small index, but its fuzzy keyword
set is not all-around, which means loss of many possible
exact keywords to match with. Recently, Zhou et al. [21]
proposed a different scheme to make fuzzy keyword set by
utilizing k-gram. Wang et al. [16] aimed at multi-keyword
fuzzy search on encrypted data by locality sensitive hashes
and Bloom filters to support multi-keyword search with
low search complexity. However, all the schemes face with
retrieval efficiency problem and defective construction of
fuzzy-keyword index which has made exact-keyword in-
dex already constructed useless.

Another issue to which needs to pay much attention
is verifiability of returned encrypted data from the pub-
lic cloud. This was first mentioned by Chai et al. [5],
who proposed a new searchable encryption scheme called
VSSE. Due to the fact that it is unknown that the public
cloud may save computation or download bandwidth for
its selfishness, the returned encrypted data may be only
a fraction of all retrieval outcome. So, verifiable search-
ability as well as protection of data confidentiality is a
real applicable scenario during fuzzy search on cloud en-

crypted data. Wang et al. [19] has found the combination
of fuzzy keyword search and verifiable keyword search on
encrypted data and proposed a new scheme named VF-
SSE, which means that data user can verify the correct-
ness and completeness of returned files after the fuzzy
search has already completed corresponding with a query
containing a keyword of little typos. However, Buildin-
dex phase in his scheme is conducted by data owner us-
ing wildcard-based scheme, which means that data owner
may abandon the exact-keyword index constructed before
and generate a specialized fuzzy-keyword index for fuzzy
searching, thus it is inevitable for data owner to waste
much more computation and storage resources. Another
issue in his scheme is that ranking of keyword-retrieval
has not been well tackled, and his work is mainly on the
public cloud setting without applying in the hybrid cloud
circumstances.

Based on thorough analysis on existing fuzzy keyword
search schemes, we propose a novel scheme totally dif-
ferent from previous work. In this paper, we mainly
concentrate on verifiable fault-tolerant keyword search on
the cloud encrypted data and suggest a solution, which
is called Distributed Fault-tolerant Keyword Search Sup-
porting Verifiable Search-ability (DFKSSVS), to build se-
cure exact-keyword index supporting verifiability in the
public cloud, as well as generate fuzzy keyword trapdoors
for matching in the private cloud. Due to Li’s scheme
weakness of insecurity, we abandon the scheme of directly
using wildcard-based method to construct secure index,
but we adopt traditional exact-keyword searching scheme.
Our scheme will reduce index generation and storage com-
plexity and guarantee highly efficient retrieval, and it can
make fullest use of computation and storage resources in
the private cloud. Our contributions of this paper can be
summarized as follows:

1) We propose a novel DFKSSVS scheme in the hy-
brid cloud. We define the system and threat model,
which means to be ”semi-honest-but-curious” in the
public cloud, and ”honest-but-curious” in the private
cloud. Preliminaries have been denoted to depict
DFKSSVS scheme in detail.

2) In the public cloud, we use the exact-keyword index,
which is already built for exact keyword search, or
build exact-keyword index for searching for its first
time. To reach verifiable search-ability, we use trie-
tree based on symbol set, where a multi-way tree is
constructed for storing a certain keyword trapdoor
which can be recovered from the root node to the
leaf node. Updating of index can be easily done on
the tree structure according to trapdoor revising re-
quests. Exact keyword search throughout the index
can be well done, and encrypted data stored can be
returned as well.

3) In the private cloud, we make use of the potential
computation and storage resources to generate fuzzy
keyword set, and trapdoors corresponding with ex-

International Journal of Network Security, Vol.17, No.4, PP.471-483, July 2015 473

act keywords responsible for searching on the exact-
keyword index in the public cloud. At the same time,
we allow statistically dynamic ranking of exact ele-
ments through feedback scheme in order to return
more encrypted files related to data user’s input key-
word. Also, decryption of returned encrypted files is
conducted and completed in the private cloud and it
outputs plain-text files to data user.

The remainder of the paper is organized as follows:
Section 2 introduces the system model, treat model, de-
sign goals, and preliminaries. Section 3 presents the novel
scheme DFKSSVS in detail. Section 4 gives the secu-
rity analysis of the whole scheme. Section 5 gives perfor-
mance evaluation compared with [5, 11, 19] respectively.
Related work for searchable encryption SE is discussed in
Section 6. Finally, Section 7 concludes the paper.

2 Problem Statement

2.1 System Model

In the paper, we consider a cloud setting consisting of the
entities: Data User (DU), Data Owner (DO), the Public
& Private Cloud (PC), as is illustrated in Figure 1. Given
a collection of n files denoted as F and their encrypted
forms denoted as C, exact keyword set W extracted from
F , secure index for C derived from W , the private cloud
can generate fuzzy keyword set as well as trapdoors, which
are produced with the secret key generated by authorized
DUs, of similar keywords for exact matching in the pub-
lic cloud, and the private cloud receives encrypted files
corresponding with trapdoors, decrypts and returns the
plain-text form of them to DU. Here, we denote that the
private cloud can provide as much computation capabil-
ity as possible just for relieving DU’s burden of comput-
ing and storage. The public cloud, which is responsible
for mapping trapdoors to encrypted files indexed by their
IDs and linked to a series of exact keywords, supports
exact matching throughout the secure index and returns
encrypted files to the private cloud, and it has verifiable
search-ability due to DU’s verifying request to the series
of searching procedures. DO has files needed to be out-
sourced to the cloud, and generates secret keys through
Setup(k) phase, which are shared with authorized DUs.
DU raises a query and verifies the correctness and com-
pleteness by proof sent from the public cloud. In all, our
DFKSSVS scheme makes the fullest use of specific char-
acters of different parties in the hybrid cloud and certainly
applies the real circumstance of keyword search over a
large scale of cloud encrypted data.

2.2 Threat Model

Firstly, we assume that authentication between DO and
DU has been appropriately done. To search relevant files
for a certain keyword, the trapdoor, which is of encrypted
form, of the given keyword must be generated so as to

match items throughout the secure index in the public
cloud. And DU may want to verify the completeness of
retrieval results by sending requests to the public cloud.
Here, we consider the private cloud to be ”honest-but-
curious”, which means the private cloud servers honestly
obey the principles of different protocols, and have the
ability to learn something additionally sensitive informa-
tion, at the same time, the public cloud to be ”semi-
honest-but-curious”, which means the public cloud servers
may be selfish in order to save computation and band-
width of its own, and have the same basic characters of
private cloud servers. In addition, we take Known Cipher-
text Model into consideration, which means the cloud can
only have access to encrypted files, secure index and trap-
doors, without leaking any information but search pattern
and access pattern. The semantic meaning of the model
with its proven-security has been proposed in [7].

2.3 Design Goals

To enable normally searching on encrypted data when ty-
pos occur, we need to do some work in the trapdoor gen-
eration procedure in order to match corresponding items
throughout the index tree which is already constructed
before. Furthermore, the exact-keyword index can sup-
port verifiable-searching, so we choose the basic idea of
trie-tree index based on symbol tree proposed in [18], and
we utilize it in the exact-keyword searching circumstance.
Specifically, we have the following goals:

1) Cipher-text search supporting fault-tolerant
keyword-based query: this is the basic problem
to which the paper is referred, fuzzy keyword search
on secure exact-keyword index constructed before is
always supported as well.

2) Verifiable-searching in the cloud: this is the need of
DU who wants to verify the correctness and com-
pleteness of retrieval results of a given input keyword
by the proof returned from the cloud.

3) Keyword privacy: in spite of leak of search pattern,
the cloud should not deduce any sensitive informa-
tion through secure index, encrypted trapdoor, and
encrypted files, as is requested to be securely en-
crypted to minimize information leak risks.

4) Privacy guarantee: encrypted files should be re-
turned to DU if and only if the correct trapdoor of a
given keyword generated by authorized DU with the
secret key matches the items in secure index and file
IDs are obtained to link with the encrypted files.

5) Result accuracy: By feedback scheme can exact key-
words in the fuzzy keyword set achieve ranking dy-
namically in the private cloud, which is helpful with
trapdoor matching with its ranking position forward
on the score list. This is similar with statistical meth-
ods, but it will not leak no more information than
search pattern and access pattern by encryption.

International Journal of Network Security, Vol.17, No.4, PP.471-483, July 2015 474

Figure 1: Architecture of system & threat model

2.4 Preliminaries

Edit distance: Given two strings Si and Sj , the edit dis-
tance between them is defined as ED(Si, Sj), which
means the minimum steps from one string to an-
other, including insertion, deletion, and substitution
of some character in the string [13].

Trie-tree: A trie-tree, which is always described as
prefix-tree, is a data structure with its essential or-
der of contents in each node storing associative array
where keys are always strings. Different from a bi-
nary search tree, the node of trie-tree in each position
presents the key of an array, sharing the same pre-
fix stored in its parent’s node. And the root node is
always associated with an empty string regarded as
the starting point to conduct searching.

Hash function: A hash function is a function used to
map any arbitrary size of data to a fixed size, with
slightly different input giving rise to big difference
of its output. Here in this paper, we use collision-
resistant hash function (MD5, SHA-1) to gener-
ate trapdoors of exact keywords in the fuzzy key-
word set, and to be the main function in the pre-
processing procedure before constructing secure in-
dex outsourced to the public cloud.

Dictionary: it is a pre-defined keyword collection which
is consisted of all indexed items (keywords) linked
with certain encrypted files.

Typical algorithms: our scheme DFKSSVS is
composed of six polynomial-time algorithms de-
noted as KeyGen(1k), BuildIndex(sk, Wi),
ExactTrapGen(sk, Wi), Test(I, Trapdoor),

V erify(I, proof), Feedback(sk, W ”
s). More details

of algorithms are described below.

3 Distributed Fault-tolerant Key-
word Search Scheme Support-
ing Verifiable Search-ability

In this part, we describe more details on DFKSSVS
scheme. Based on Wang’s [19] and Chai’s [5] schemes pro-
posed before, we present our novel scheme getting greater
effects supported by experiential analysis and experiments
on real-world data set.

3.1 KeyGen(1k)

In the process, DO generates secret keys for index and
trapdoor generation, as well as the key for keyed hash
function, and file encryption. The KeyGen phase is a
randomized key generation algorithm, which is set up and
outputs keys in the way: hk, tk, fk R

←− {0, 1}∗, that is
to say, we take k as input and different secret keys are
output.

3.2 BuildIndex(sk,Wi)

In the process, we consider to use the symbol-based trie-
tree to construct secure index I for the whole encrypted
files of DOs. We use the scheme proposed by Chai [5]
to achieve verifiable-searching on the index tree and inte-
grate Li’s [11] fuzzy keyword generation method to gener-
ate symbol-based trie-tree index based on exact keywords
without abandon of exact-keyword index tree already con-
structed before. That is to say, we can use the new scheme

International Journal of Network Security, Vol.17, No.4, PP.471-483, July 2015 475

to complete fuzzy searching over cloud encrypted data on
the generally secure index tree without verifiability of re-
trieval results, or on the trie-tree index supporting veri-
fiability of matching procedure, and we can also achieve
exact keyword searching on encrypted data as well.

• Keyword extraction from files.
In this phase, DO extracts distinct keywords from
plain-text files, which are used for constructing in-
dex for each file. Different keywords have their own
keyword-weight in each file and one can distinguish
a specific file from others by keywords that the file
possesses. Here, we denote W as exact keywords ex-
tracted from the file set. We can also utilize the
comprehensive dictionary D to check each element’s
correctness and completeness of the exact-keyword
set.

• Build trapdoors of exact keywords.
To exact-keyword set, we need to generate trap-
doors of elements of the keyword set by a pseudo-
random one-way function, which is always used keyed
hash function fhk(·). DO computes Tw = {Twi} =
{f(hk,wi), wi ∈ W} for each wi ∈ W with the
index generation key hk. And then, DO divides
each Twi

into a series of n-length bits determined
by its corresponding symbol in ∆, which is denoted
as η1, η2, · · · , ηz/n, where z is the output length of
keyed hash function.

• Initialization of trie-tree index.
Firstly, DO takes a quick scan of an empty trie-
tree and determines that the root node is associ-
ated with an empty set as the beginning of search-
ing throughout the whole tree. In addition, DO
defines the identifier for every document file which
is to be outsourced and obtains the identifier set
ID = {IDp, P = |F |}, as well as IDwi represent-
ing all file IDs containing wi, which is a vital path to
search for the relevant encrypted files corresponding
with wi.

• Build symbol-based trie-tree index.
In this phase, we mainly focus on how to insert
η1, η2, · · · , ηz/n into the trie-tree to achieve index
construction of exact keywords in the set, as well
as verifiability of retrieval results. To the root node,
we define an empty set to be regarded as the begin-
ning of keyword-searching. In every child node, we
insert a two-tuple unit, one is ηi and the other is δi,
which symbolizes the route from its parent node to
its own and from itself to its child node. The content
of δi is presented as pi||q1||gik(pi||q), where pi is a
bit-stream, which represents information of its par-
ent node, of 2m in which ηi corresponding with the
position in ∆ is set to 1 while other positions are set
to 0, qi represents information of its child node with
the same way as mentioned above. gik is a keyed
hash function to encrypt node information to sup-
port verifiable-searching. For example, if the current

node stores ηa, whose parent node stores ηb with its
position being the b-th symbol in ∆, and child node
stores ηc in the same way. Then, pi = 0, 1, 0, 0, · · · , 0,
qi = 0, 0, 1, 0, · · · , 0. More detailed information in all
is depicted in Algorithm 1.

• Files to be encrypted and outsourced.
In this phase, files in the collection need to be en-
crypted by secret key fk and outsourced to the pub-
lic cloud. The connection between encrypted files
and their IDs should be well done in the cloud so
as to retrieve relevant encrypted files back to DU by
searching IDwi stored in the leaf node on the trie-tree
index.

3.3 ExactTrapGen(sk,Wi)

In this phase, we discuss the issue of trapdoor generation
corresponding with the input keyword when typos and mi-
nor mistakes occur at the beginning of the query. Consid-
ering that Li’s fuzzy keyword set construction scheme has
been proven weakness of its insecurity by Zheng et al. [20]
in HPCC 2013 conference, which is due to mutual depen-
dency of retrieval history, our scheme uses improved wild-
card & dictionary-based construction scheme to generate
trapdoors of keywords to avoid high history dependency
of trapdoor relevance of distinct keywords. Because the
whole search scheme is constructed in the hybrid-cloud,
we assume that much work referring to some sensitive in-
formation can be done in the private cloud so as to make
the fullest use of its scalable computing and storage re-
sources even if it seems to be ”honest-but-curious” for DU.
We consider that plain-text keywords and secret keys are
deleted after construction of exact keyword set as well as
generation of exact keyword trapdoors, which means that

International Journal of Network Security, Vol.17, No.4, PP.471-483, July 2015 476

Figure 2: Exact-keyword trapdoor construction scheme

only encrypted forms of query information can be seen in
the private cloud. Figure 2 is the exact-keyword trapdoor
construction scheme.

In this process, we first build the fuzzy keyword set
according to the submitted query by using Li’s wildcard-
based fuzzy keyword construction scheme to minimize the
scale of its set, then through dictionary-based method,
we can determine appropriate fuzzy keywords by substi-
tuting the wildcard with fixed alphabet, so we change
fuzzy search into exact search so that keyword search
on encrypted data can be completed in exact-keyword
search scheme. Through comparison of edit distance,
edit distance information with wildcard position Pos as
its form of < Pos,Ed(Wi,W

′
j) >s can be well calcu-

lated to be an important part of ranking tuples which
will be described below. Exact keywords in the fuzzy
set will be transformed into trapdoors with secret key
hk, which are submitted to the public cloud to con-
duct exact matching on secure index. We use improved
dictionary-based fuzzy keyword construction scheme to
expand the number of keywords in the set so as to ab-
sorb much more likely exact keywords for search, which
can improve the probability of relevant encrypted files
needed by DU. In addition, the private cloud sends
{Trapdoor(hk,W ′j)[η′1, η′2, · · · , η′z/n]}j∈[1,y] which is gen-
erated in the public cloud back to DU so as to conduct
V erify(I, proof) procedure.

3.4 Test(I, T rapdoor)

Upon receiving search request from the private cloud, the
public cloud server divides each trapdoor into a series
of symbols in the same way mentioned in Algorithm 1.
Then, Algorithm 2 can generate verification proof con-
taining IDwi

back to DU, and returns relevant encrypted
files to the private cloud. According to IDwi

, DU can
check the plain-text files output by the private cloud and
make requests of verification of retrieval results to the
public cloud. Detailed information is shown in Algo-
rithm 2.

3.5 V erify(I, proof)

In this part, we introduce the verification process of re-
trieval results in detail. We have noticed that the secret
key tk plays a very important role in the construction
phase of δj . Given that each node in the trie-tree has
a unique route from the root node to itself, we believe
that we can verify correctness and completeness of results
through the δj , which consists its unique parent node in-
formation and each child node symbol information. DO
generates secret keys shared with authorized DUs, which
makes attackers unable to forge a search proof without
the correct tk. And DU can verify retrieval results by
re-generating proof with shared secret key tk.

When the public cloud server completes the search pro-

International Journal of Network Security, Vol.17, No.4, PP.471-483, July 2015 477

cess, IDset corresponding with relevant encrypted files,
which are the file set of returned encrypted files from the
public cloud, can be obtained by DU from the private
cloud to check the integrity of retrieval results, and search
proof is sent by the public cloud server. If the search pro-
cess completes, DU can verify the results by IDset; oth-
erwise, verification can be well done by proof contents
wherever the search process is suspended. Another point
needed to be noted is that the comprehensive symbol set
∆ is shared with authorized DUs. See Algorithm 3 for
more detailed verifying process.

3.6 Feedback(sk,W ”
s)

In this part, we mainly focus on feedback scheme to con-
struct a dynamic ranking list of trapdoors without leaking
of sensitive information other than search pattern and ac-
cess pattern in the private cloud. Considering that the
private cloud always refers to cloud service for a spe-
cific organization or government, we believe that it is less
”honest-but-curious” than what we assume to be in the
common sense. So we can use some plain-text informa-
tion corresponding with trapdoors of exact keywords to
achieve dynamic ranking of retrievals statistically from
DUs. By feedback scheme can DUs receive much more
relevant files containing the exact keywords derived from
the input keyword with minor typos, which is benefited
from the effectively statistical tendency of typos or little
mistakes between DUs and the private cloud. Figure 3 is
a procedure of feedback scheme in DFKSSVS.

We have taken it into consideration that we should not

International Journal of Network Security, Vol.17, No.4, PP.471-483, July 2015 478

Figure 3: Procedure of feedback scheme in DFKSSVS

leak any sensitive information other than search pattern
and access pattern, let alone the plain-text keywords ex-
isting in the private cloud. But we also emphasize the
cloud being powerfully capable of computing and storage,
so we choose exact keyword set with its trapdoors gen-
eration to be under control and they are to be deleted
after the ranking element with its three tuples has been
generated in the set. Above all, the search procedure
is conducted by its encrypted form in the whole phase.
Without loss of generality, we can find that the security of
the novel search scheme on encrypted data has the same
level as traditional SSE schemes researched before and
achieves dynamically ranking of retrieval results between
DUs and the cloud.

4 Security Analysis

Privacy-preservation: In this paper, we only take
privacy-preserving concerns into account during the
whole search procedures. For sensitive files, tra-
ditional encrypted algorithms can guarantee their
security and integrity, which is out of discussion
of our research. We mainly focus on confiden-
tiality of the index and trapdoors in phases of
BuildIndex(sk,Wi), ExactTrapGen(sk,Wi), and
Feedback(sk,W ”

s). Due to security of collision-
resistant keyed hash functions, generation of trap-
doors can be securely conducted, which means that
it is impossible for any attacker to get plain-text sen-
sitive information without secret key hk and hash
algorithms. In addition, in Feedback(sk,W ”

s) phase,

although we expose plain-text keywords to the pri-
vate cloud so as to exploit its potentially tremen-
dous computing capability, we can assure that risks
of privacy security can be reduced to its minimum
point due to timely deletion operations of exact key-
words in the private cloud, and lower security threat
level compared with the public cloud as well. To gain
dynamical ranking of retrieval results from DUs, we
make the fullest use of the private cloud to compute
exact keywords corresponding with the input fuzzy
keyword and trapdoors of them with a little bit sac-
rifices of keyword privacy in the private cloud. Here,
we refer to Li’s scheme security analysis to prove our
scheme’s search security.

Theorem: the novel scheme is secure regarding to its
search privacy.
Similarly with Li’s method, we assume that the pro-
posed scheme cannot achieve the index & trapdoor
privacy against in-distinguish-ability under chosen-
plaintext-attack (IND-CPA), which means that there
exists a polynomial-time algorithm A who can in-
telligently deduce and rightly obtain plaintext sen-
sitive information through the encrypted forms of
keywords. Then, we construct another algorithm A′

which utilizes A to decide whether f ′(·) < g′(·) >
is a pseudo-random function the same as f(sk, ·) <
g(tk, ·) > or a real-random function. A′ can have ac-
cess to an oracle Of ′(·) < Og′(·) >, and takes as a real
number value x as input and f ′(x) < g′(x) > as the
output. For any request of index & trapdoor gen-
eration, A′ can answer it with f ′(·) < g′(·) >. The

International Journal of Network Security, Vol.17, No.4, PP.471-483, July 2015 479

Table 1: Comparison of the aforementioned schemes

Content Li’s Scheme Chai’s Scheme Wang’s Scheme Our scheme
Storage cost O(MN) O(N) O(MN) < O(MN)
Search cost O(1) O(L) O(1) O(1)

Construction cost O(MN) O(N) O(MN) O(1)
Verifiable-searching NO YES YES YES

Fuzzy-searching YES NO YES YES
Verification cost - O(L) O(1) O(1)

Supporting ranking - - - YES
Search intelligence - - - YES

adversary makes a request of two challenge keywords
w0 and w1 after several queries to Of ′(·) < Og′(·) >.
A′ takes a random b ∈ {0, 1} and submits wb to the
challenger for computing f ′(wb) < g′(wb) >. Once A′

receives the answer y, it sends y to the adversary to
conduct a guess of answering the value of b′ ∈ {0, 1}.
If A can get the right value of b′ which is equal to
b, f ′(wb) < g′(wb) > is not a random value, which
can be directly deduced or easily guessed. By this
way can A′ decide whether f ′(·) < g′(·) > is a real
random function or not. However, due to the stan-
dard assumption of in-distinguish-ability of pseudo-
random functions and real-random functions, A can
correctly guess the right value of b′ with probabil-
ity of 1/2, which makes it clear that the previous
assumption is wrong. So, any keyword with its en-
crypted form in the search process can impossibly
leak any sensitive information to the attack, that
is, the search procedure is secure. Another point to
which we should pay attention is that our provable-
security process is a little bit different from Li’s and
Wang’s methods whose variables are fuzzy keywords
generated by wildcard-based scheme expansion. And
g(tk, ·) makes it almost impossible for any adversary
to fake δj = pi||qi||gtk(pi||qi) in each node, as well as
pi||IDwi ||gtk(pi||IDwi)||gtk(IDwi) in the leaf node in
the whole proof .

Verifiable-searching: DU can verify correctness and
completeness of retrieval results by proof which the
public cloud sends back. The proof is composed of
several parts corresponding with the content of each
node in the searchable trie-tree index. We decrypt
each part in the proof and compare its content with
trapdoor’s symbol element in the fixed position of ∆
in order to check consistency of the both parts. With-
out tk, it is impossible for DU to conduct the proce-
dure of verification of results, which means verifiable-
searching can be securely achieved by DU.

5 Experimental Performance
Evaluation

In this part, we first compare our novel scheme with
Li’s [11], Chai’s [5], and Wang’s [19] schemes so as to
clearly present advantages of the scheme proposed in this
paper. Here, we denote N as the total number of dis-
tinct keywords and M as the maximum size of exact key-
word set generated through the input fuzzy keyword. Ta-
ble 1 shows the comparative contents of the four afore-
mentioned schemes. Secondly, we give the performance
evaluations and analyses under the real-world set experi-
ment.

5.1 Performance Comparison

In the aspect of storage cost, our scheme is different from
Li’s and Wang’s schemes, which need O(MN) cost when
fuzzy keyword set was constructed. Given that the im-
proved dictionary-based fuzzy keyword set construction
method is used for exact keyword expansion, distinct key-
words in the fuzzy set can be selected and filtered by the
comprehensive dictionary so that the storage cost is cut
down to less than O(MN). In addition, although our
scheme’s search cost is the same as Wang’s to be O(1),
it is more effective for locating the symbol in the set be-
cause we adopt to use symbol’s position in the set to rep-
resent its content when secure index is generated. Due to
our scheme’s transportability, it is always feasible for se-
cure exact-keyword-index constructed before to conduct
exact matching for relevant encrypted files, so the con-
struction cost can be a constant number O(1) compared
with the three schemes which need more computation and
storage cost to generate the new index. With regard
to verification cost, Chai’s scheme require L times de-
cryption operations to accomplish verification procedure,
where L is the length of input keyword for fuzzy search-
ing, but our scheme inherits Wang’s scheme to achieve
O(1) verification cost by calculating hash value to match
with the proof sent from the public cloud. Furthermore,
our scheme achieves interaction between the DU and the
private cloud so as to make the returned encrypted files
in order accordingly to statistical circumstances of mi-

International Journal of Network Security, Vol.17, No.4, PP.471-483, July 2015 480

Figure 4: Time of fuzzy keyword set construction for ED = 1 (left) and ED=2 (right)

nor typos. This point can also achieve search intelligence
through dynamic ranking of trapdoors in the private cloud
in order to satisfy DU’s needs of ranked retrieval results
in the public cloud as well.

5.2 Performance Evaluation

In this section, we analyze the efficiency and accuracy of
our scheme based on the experimental results in the real-
world data set, that is, Request For Comments (RFC)
which contains a large distinct keywords with techni-
cal files. And all the experimental results are obtained
from implementation of the aforementioned schemes us-
ing JAVA on the Linux Server with Intel Core i5 Processor
4.0 GHz and 4G memory. Experimental contents include
Time of Fuzzy Keyword Set Construction, Time of Index
Construction, Time of Trapdoor Construction, Time of
Keyword Search, and Recall & Precision of Top-k Results
Corresponding with an Input Keyword, which can be also
called as Performance evaluation.

Figure 4 presents time of fuzzy keyword set construc-
tion along with the number of distinct keywords for
ED = 1 and ED = 2. We can easily understand that
exact keywords generated by the method illustrated in
Figure 2 are almost linear with the increasing number of
distinct keywords for different edit distances. In addition,
due to the fact that exact keywords in the fuzzy set are
greatly expanded when ED = 2, the time of generating
the fuzzy keyword set has reached 5.675s when the num-
ber of distinct keywords reaches 5000 in our experiment,
which shows that edit distance is a key factor of shaping
the overall efficiency of keyword search and one can no
longer tolerate to waste a few seconds to generate exact
keywords for fuzzy searching.

Figure 5 shows the relationship between time of index
construction and number of distinct files. Because we
adopt exact keywords extracted from the plain-text files
to construct index, the time cost is mainly on calculating
hash values of different keywords, positioning the corre-

sponding symbols to insert inner nodes, and integrating
each node’s parent and child node position information to
form δj for verification. We select [1000, 20000] files to
extract and stem keywords for generating exact-keyword
index, and the construction time is linear with the in-
crease of distinct keywords corresponding with their files.
Furthermore, our scheme always works well with regard
to the secure exact-keyword index constructed before for
searching relevant encrypted files in the public cloud.

Figure 6 gives the detailed information of trapdoor con-
struction time along with the increase of distinct key-
words. Similarly with Figure 4, the cost of trapdoor
construction time is extremely large when ED = 2 be-
cause of the large number of exact keywords generated
in the private cloud. We respectively select [1000, 10000]
distinct keywords in RFC. Although edit distance is the
main factor of keyword trapdoor cost, we can also find
that ED = 1 is statistically much more common toward
only one keyword. So we can take the instance of ED = 1
to be the main point into consideration without concern
about low efficiency resulted from larger edit distances.

Figure 7 presents the time cost of keyword search.
Given the real number of exact keywords indexed in the
public cloud, here we choose [1000, 10000] respectively,
we find that we convert fuzzy keyword searching into ex-
act keyword matching so that the search time in terms
of one input keyword has the same character as that of
several times of exact matching of keywords. For all the
procedures of keyword search, efficiency of our scheme can
be accepted considering the existing schemes [5, 11, 16].
Moreover, because returned files include many relevant
ones indexed by distinct keywords tracing back to the in-
put keyword, the time can reach several seconds, which
means that there are more selective ones for retrieving
according to DU’s searching interest.

Figure 8 shows the result of the proposed scheme sup-
porting dynamic ranking, which embodies search intelli-
gence by feedback scheme in the private cloud. Here, we
use recall rate and precision rate to evaluate the whole

International Journal of Network Security, Vol.17, No.4, PP.471-483, July 2015 481

scheme. Recall rate is denoted as tp/(tp +fn) while preci-
sion rate is tp/(tp+fp), where tp is true positive, fp is false
positive, and fn is false negative. The value of k in top−k
selection is determined by DU according to his retrieval
interest. In this experiment, we first set up the times of
feedback to be 10, 50, 100, and choose the value of k in
[10, 55] with step-length of 5 for top−k selection. As illus-
trated in Figure 8, the recall rate is almost flat with the
lowest percentage to be 96.42% no matter which k is se-
lected, and the precision rate is markedly improved from
T = 10 to T = 100 with its upper bound to be 98.57%
in our experiment. Although different DUs have different
retrieval interests, the interaction bridge between DU and
the cloud can take DU’s retrieval history with statistical
typos into construction of dynamic ranking list for trap-
doors of exact keywords without exposing any sensitive
information other than search pattern and access pattern
in the private cloud, which is a sparkling point of search-
ing intelligence in symmetric searchable encryption (SSE)
field.

Figure 5: Time of index construction

.

6 Related Work

Song et al. [14] firstly presented the notion of searchable
encryption with his specific stream cipher-text scheme.
But the searching overhead is linear to the size of plain-
texts which need to be encrypted. Goh [9] developed a
scheme using Bloom Filter to minimize the work load un-
der the condition of the number of all files in the col-
lection set to establish a secure index. Boneh et al. [2]
first constructed public-key based searchable encryption,
whose work is so meaningful that many other scien-
tific research teams propose different schemes achieving
public-key encryption and private-key decryption. Con-
junctive keyword search schemes are also recommended
in [1, 3, 4, 10, 15], and specific real needs such as
order-preserving symmetric encryption, single keyword or

Figure 6: Time of trapdoor construction

Figure 7: Time of keyword search

Figure 8: Performance evaluation

International Journal of Network Security, Vol.17, No.4, PP.471-483, July 2015 482

multi-keyword search on encrypted data and so on are
likewise studied further. Application scenarios are greatly
expanded due to different real work needs. Cao et al. [4],
Wang et al. [17] proposed a ranked keyword search to pro-
tect privacy by using symmetric encryption schemes to
achieve ranking. Different schemes are established to em-
phasize the keyword ranking of retrieval results in cloud
encrypted data, which is the vital research direction in
the searchable encryption field.

7 Conclusion

In this paper, we tackled the issue of fault-tolerant veri-
fiable keyword search on cloud encrypted data. We con-
sidered the severe disadvantage of Li’s scheme, which was
found by Zheng presenting his conclusion in HPCC 2013
Conference, so it is important to construct a securely full-
scale fuzzy keyword set so as to conduct fuzzy searching
with verifiability in hybrid cloud. We proposed a novel
scheme called DFKSSVS, which not only fully exploits
infinite computing capability in the private cloud to ac-
complish fuzzy keyword set construction, but also sup-
ports verifiable-searching by proof sent from the public
cloud, and dynamic ranking of retrieval results according
to DU’s searching history. Security analysis presents that
our scheme can achieve provable-security of IND-CKA,
because we have successfully converted fuzzy searching
into exact keyword matching in the whole process which
has been proven semantically secure before. Experimen-
tal results show accuracy, efficiency, and complexity of our
new scheme, and compared with [5, 11, 19], our scheme
can securely achieve our design goals—fuzzy matching,
verifiable-searching, privacy-preservation, and retrieval
accuracy based on dynamic ranking through feedback
scheme.

Acknowledgments

This work is supported in part by Postdoctoral Research
Foundation in Aviation University of Air Force. The au-
thors would like to thank the Northeast Area Information
Data Center Workshop discussion, and show great grati-
tude to the anonymous reviewers proposing constructive
suggestions for this paper.

References

[1] J. Baek, R. Safavi-Naini, W. Susilo, “Public key en-
cryption with keyword search revisited,” in Proceed-
ings of International Conference on Computational
Science and Its Applications (ICCSA’08), LNCS
5072, pp. 1249–1259, 2008.

[2] D. Boneh, G. D. Crescenzo, R. Ostrovsky, G. Per-
siano, “Public key encryption with keyword search,”
in Proceedings of EUROCRYPT’04, pp. 506–522,
2004.

[3] D. Boneh, B. Waters, “Conjunctive, subset, and
range queries on encrypted data,” in Proceedings of
the 4th Theory of Cryptography Conference, LNCS
4392, pp. 535–554, 2007.

[4] N. Cao, C. Wang, M. Li, K. Ren, W. Lou, “Pri-
vacy preserving multi-keyword ranked search over en-
crypted cloud data,” in Proceedings of the 31th IEEE
International Conference on Computer Communica-
tions (IEEE INFOCOM’11), pp. 829–837, 2011.

[5] Q. Chai, G. Gong, “Verifiable symmetric search-
able encryption for semi-honest-but-curious cloud
servers,” University of Waterloo, 2011. (http://www.
cacr.math.uwaterloo.ca/techreports/2011/cacr2011-
22.pdf)

[6] M. Chuah, W. Hu, “Privacy-aware bed-tree based so-
lution for fuzzy multi-keyword search over encrypted
data,” in Proceedings of the 31st International Con-
ference on Distributed Computing Systems Work-
shops (ICDCSW’11), pp. 273–281, 2011.

[7] R. Curtmola, J. Garay, S. Kamara, R. Ostrovsky,
“Searchable symmetric encryption: improved defini-
tions and efficient construvtions,” in Proceedings of
the 13th ACM Conference on Computer and Com-
munications Security, pp. 79–88, 2006.

[8] C. Gentry, “Fully Homomorphic Encryption Using
Ideal Lattices,” in Proceedings of the 41st ACM Sym-
posium on Theory of Computing (STOC’09), pp.
169–178, 2009.

[9] E. Goh, “Secure indexes,” Technical Report
2003/216, Cryptology ePrint Archive, 2003. (http://
eprint.iacr.org/2003/216)

[10] P. Golle, J. Staddon, B. Waters, “Secure conjunc-
tive keyword search over encrypted data,” in Proceed-
ings of Applied Cryptography and Network Security
(ANCS’04), pp. 31–45, 2004.

[11] J. Li, Q. Wang, C. Wang, N. Cao, K. Ren, W. Lou,
“Fuzzy keyword search over encrypted data in cloud
computing,” in Proceedings of the 29th IEEE Inter-
national Conference on Computer Communications
(IEEE INFOCOM’10), pp. 441–445, 2010.

[12] C. Liu, L. Zhu, L. Li, Y. Tan, “Fuzzy keyword search
on encrypted cloud storage data with small index,”
in Proceedings of IEEE International Conference on
Cloud Computing and Intelligence Systems (IEEE
CCIS’11), pp. 269–273, 2011.

[13] S. E. Ristad, N. Peter, “Learning string edit dis-
tance,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 20, no. 5, pp. 522–532,
1998.

[14] D. Song, D. Wagner, A. Perrig, “Practical techniques
for searches on encrypted data,” in Proceedings of
the 2000 IEEE Symposium on Security and Privacy
(S&P’00), pp. 44–55, 2000.

[15] W. Sun, B. Wang, N. Cao, M. Li, K. Ren, W. Lou,
“Privacy preserving multi-keyword text search in the
cloud computing supporting similarity-based rank-
ing,” in Proceedings of the 8th ACM Symposium on
Information, Computer and Communications Secu-
rity (ASIA CCS’13), pp. 71–82, 2013.

International Journal of Network Security, Vol.17, No.4, PP.471-483, July 2015 483

[16] B. Wang, S. Yu, W. Lou, T. Hou, “Privacy-
preserving multi-keyword fuzzy search over en-
crypted data in the cloud,” in Proceedings of the 34th
IEEE International Conference on Computer Com-
munications (IEEE INFOCOM’14), pp. 1–9, 2014.

[17] C. Wang, N. Cao, J. Li, K. Ren, W. Lou, “Se-
cure ranked keyword search over encrypted cloud
data,” in Proceedings of the IEEE 30th Interna-
tional Conference on Distributed Computing Systems
(ICDCS’10), pp. 253–262, 2010.

[18] C. Wang, K. Ren, S. Yu, “Achieving usable and
privacy-assured similarity search over outsourced
cloud data,” in Proceedings of the 32nd IEEE Inter-
national Conference on Computer Communications
(IEEE INFOCOM’12), pp. 451–459, 2012.

[19] J. Wang, X. Chen, H. Ma, Q. Tang, J. Li, H. Zhu,
“A verifiable fuzzy keyword search scheme over en-
crypted data,” Journal of Internet Service and In-
formation Security, vol. 2, no. 1/2, pp. 49–58, 2012.

[20] M. Zheng, H. Zhou, “An efficient attack on a fuzzy
keyword search scheme over encrypted data,” in Pro-
ceedings of 2013 IEEE International Conference on
High Performance Computing and Communications
(IEEE HPCC’13), pp. 1647–1650, 2013.

[21] W. Zhou, L. Liu, H. Jing, “K-gram based fuzzy key-
word search over encrypted cloud computing,” Jour-
nal of Software Engineering and Applications, vol. 6,
no. 1, pp. 29–32, 2013.

Jie Wang received the MS degree in Aviation University
of Air Force, China. His research interests include applied
cryptography, secure cloud storage, SSE (Symmetric
Searchable Encryption) as well as ASE (Asymmetric
Searchable Encryption), and big-data mining. He has
published more than 10 research papers in refereed
domestic and international conferences and journals.

Xiao Yu is a post-doctor researcher at Aviation Uni-
versity of Air Force. He received his PhD degree in
Chinese Academy in 2007. His research interests include
information security and applied cryptography.

Ming Zhao is a professor at Aviation University of Air
Force and received his doctor’s degree in Jilin University
in 2008. His current researches include cloud architecture,
cloud storage and cloud computing security.

