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Abstract

In TCC’2011, Green and Hohenberger proposed an adap-
tive oblivious transfer (OT) scheme based on Decisional
3-Party Diffie-Hellman (3DDH) assumption. The encryp-
tion used in the scheme is a combination of Boneh-Boyen
identity-based encryption and a variation of Hohenberger-
Waters signature. The OT scheme is somewhat inefficient
because it combines the two underlying schemes in a very
simple way without making any optimizations. In this pa-
per, we present a review on the Green-Hohenberger OT
scheme and put forth a concrete improvement. We also
show its security under 3DDH assumption. We think the
optimizing skills developed in the paper are helpful for
designing and analyzing other cryptographic schemes.

Keywords: Adaptive oblivious transfer, redundant system
parameters, 3-Party Diffie-Hellman assumption

1 Introduction

The primitive of oblivious transfer (OT) introduced by
Rabin [33] is of fundamental importance to secure multi-
party computation [15, 37]. There are three main OT
models: 1-out-of-2 oblivious transfer, 1-out-of-n oblivi-
ous transfer and k-out-of-n oblivious transfer. 1-out-of-2
oblivious transfer (OT2

1) as a generalization of Rabin’s
“oblivious transfer”, was suggested by Even, Goldreich
and Lempel [14]. In the model, the sender has two se-
crets m1 and m2 and would like to give the receiver one
of them at the receiver’s choice. Meanwhile, the receiver
does not want the sender to know which secret he chooses.
1-out-of-n oblivious transfer (OTn1 ) is a generalization of
OT2

1 proposed by Brassard et al. [5], in which the sender
has n secrets and want to give the receiver one of them
at the receiver’s choice. The receiver does not want the
sender to know which secret he chooses. k-out-of-n obliv-
ious transfer (OTnk ) is a generalization of OTn1 , in which

the sender has n secrets and want to give the receiver k of
them at the receiver’s choice. The receiver does not want
the sender to know which secrets he chooses.

In an adaptive oblivious transfer, a sender commits
to a database of messages and then repeatedly interacts
with a receiver in such a way that the receiver obtains one
message per interaction of his choice (and nothing more)
while the sender learns nothing about any of the choices.
In TCC’2011, Green and Hohenberger [18] presented an
adaptive OT scheme based on 3DDH assumption which
says that given (g, ga, gb, gc, Q) where g generates a bi-
linear group of prime order p and a, b, c are selected ran-
domly from Zp, it is hard to decide if Q = gabc. In their
scheme, the sender commits to a database of n messages
by publishing an encryption of each message and a sig-
nature on each encryption. Then, each transfer phase
can be executed in time independent of n as the receiver
blinds one of the encryptions and proves knowledge of the
blinding factors and a signature on this encryption, after
which the sender helps the receiver decrypt the chosen
ciphertext.

The encryption used in the scheme is a combina-
tion of Boneh-Boyen IBE scheme [3] and a variation of
Hohenberger-Waters signature [19]. However, it combines
the two underlying schemes in a very simple way with-
out making any optimizations. Concretely, there are two
drawbacks:

1) It sets the secret key as (a, b), where a is used only
for decryption and b is used only for signing, sepa-
rately. But we know it is usual that a single secret
key a can be used simultaneously for both signing
and decryption.

2) For random r, s, t ∈ Zp, it expresses the ciphertext as(
gr, (gj1h)r, M · e(g1, g2)r, gt, (urvsd)b(gj3h)t, ur, s

)
where p, g, e(·, ·), g1, g2, g3, u, v, d, h are included in
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public parameters. The session key s is directly ex-
posed. That means the corresponding parameter v
might be removed reasonably.

In this paper, we present an improvement of Green-
Hohenberger adaptive OT scheme and show its security
under 3DDH assumption. We also correct some typos
in the original scheme. The analysis and optimizing skills
presented in the paper is novel. We think they are helpful
for optimizing other cryptographic schemes.

1.1 Related Works

In past decades, there were many works on the research of
OTnk , such as Bellare and Micali [1], Naor and Pinkas [30,
31, 32], Mu, Zhang, and Varadharajan [29], Chu and
Tzeng [12]. Recently, Chang and Lai [10], Chang and
Lee [11], and Liu et al. [2, 13, 20, 22, 26, 27, 28, 35, 36, 38]
have presented some efficient OTnk schemes.

Naor and Pinkas [31] initiated the study on the prob-
lem of oblivious transfer with adaptive queries. Their
work was followed by [6, 12, 16, 18, 24, 25, 39]. The
Camenisch-Neven-Shelat OT scheme [6] uses bilinear
groups as the building block and adopts the paradigm
of “encryption and proof of knowledge” to force the
sender to keep the consistency of the transferred mes-
sages. The paradigm has been used in the latter OT pro-
tocols [16, 18, 24, 25, 39]. In Asiacrypt’08, Green and Ho-
henberger [17] presented a universally composable adap-
tive oblivious transfer scheme which makes use of a signa-
ture built from the Boneh-Boyen IBE [3]. Recently, Cao,
Lafitte and Markowitch [9] have shown that the signature
scheme was selectively forgeable and the reduction used
in their proof was flawed. Cao and Cao [8] has improved
Camenisch-Neven-Shelat OT scheme and reaffirmed that
the transferred messages in any OT scheme must be rec-
ognizable to the receiver. Otherwise, the receiver cannot
decide which message should to be extracted. The gist of
the primitive of OT has been really neglected for a long
time. It is a big step towards the practical use of OT.

1.2 The Definition of Adaptive k-out-of-
N Oblivious Transfer

The definition can be found in [18]. For completeness,
we now describe it as follows. An adaptive oblivious
transfer scheme is a tuple of algorithms (SI,RI,ST,RT).
During the initialization phase, the Sender and the Re-
ceiver conduct an interactive protocol, where the Sender
runs SI(M1, · · · ,MN ) to obtain state value S0, and the
Receiver runs RI() to obtain state value R0. Next, for
1 ≤ i ≤ k, the ith transfer proceeds as follows: the Sender
runs ST(Si−1) to obtain state value Si, and the Receiver
runs RT(Ri−1, σi) where 1 ≤ σi ≤ N is the index of the
message to be received. The Receiver obtains state infor-
mation Ri and the message M ′σi or ⊥ indicating failure.
To define the Sender and Receiver security, we need the
following experiments.

Real Experiment. In the experiment of RealŜ,R̂
(N, k,M1, · · · ,MN ,Σ), the possibly cheating sender

Ŝ is given messages (M1, · · · ,MN ) as input and inter-

acts with the possibly cheating receiver R̂(Σ), where
Σ is a selection algorithm that on input the full collec-
tion of messages thus far received, outputs the index
σi of the next message to be queried. At the begin-
ning of the experiment, both Ŝ and R̂ output initial
states (S0, R0). In the transfer phase, for 1 ≤ i ≤ k

the sender computes Si ← Ŝ(Si−1), and the receiver

computes (Ri,M
′
i) ← R̂(Ri−1), where M ′i may or

may not be equal to Mi. At the end of the k-th
transfer the output of the experiment is (Sk, Rk).

Ideal Experiment. In the experiment of Ideal
Ŝ
′
,R̂
′

(N, k,M1, · · · ,MN ,Σ) the possibly cheating sender

algorithm Ŝ
′

generates messages (M∗1 , · · · ,M∗N ) and
transmits them to a trusted party T. In the i-th

round Ŝ
′

sends a bit bi to T; the possibly cheating

receiver R̂
′
(Σ) transmits σ∗i to T. If bi = 1 and

σ∗i ∈ {1, · · · , N} then T hands M∗σ∗i to R̂
′
. If bi = 0

then T hands ⊥ to R̂
′
. After the k-th transfer the

output of the experiment is (Sk, Rk).

Sender Security. An OTNk×1 provides Sender security if

for every real-world p.p.t. receiver R̂ there exists a

p.p.t. ideal-world receiver R̂
′

such that ∀N = `(κ),
k ∈ [1, N ], (M1, · · · ,MN ), Σ, and every p.p.t. dis-
tinguisher:

RealS,R̂(N, k,M1, · · · ,MN ,Σ)

c
≈ Ideal

S′,R̂
′(N, k,M1, · · · ,MN ,Σ),

where `(·) is a polynomially-bounded function.

Receiver Security. An OTNk×1 provides Receiver secu-

rity if for every real-world p.p.t. sender Ŝ there exists

a p.p.t. ideal-world sender Ŝ
′

such that ∀N = `(κ),
k ∈ [1, N ], (M1, · · · ,MN ), Σ, and every p.p.t. dis-
tinguisher:

RealŜ,R(N, k,M1, · · · ,MN ,Σ)

c
≈ Ideal

Ŝ
′
,R′

(N, k,M1, · · · ,MN ,Σ).

2 A Simple Security Assumption

Let BMsetup be an algorithm that, on input 1κ, out-
puts the parameters for a bilinear mapping as γ =
(p, g,G,GT , e), where g generates G, the groups G and
GT have prime order p, and e : G×G→ GT . It is both:

(bilinear) for all g ∈ G and a, b ∈ Zp,

e(ga, gb) = e(g, g)ab;

(non-degenerate) if g generates G, then e(g, g) 6= 1.
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Assumption 1. (Decisional 3-Party Diffie-Hellman
(3DDH))[4] Let g generate a group G of prime order
p ∈ Θ(2λ). For all p.p.t. adversaries A, the following
probability is 1/2 plus an amount negligible in λ:

Pr [g, z0 ← G; a, b, c← Zp; z1 ← gabc;

d← {0, 1}; d′ ← A(g, ga, gb, gc, zd) : d = d′].

We use the notation of Camenisch and Stadler [7] for the
proofs of knowledge. For instance, ZKPoK{(x, h) : y =
gx∧H = e(y, h)∧ (1 ≤ x ≤ n)} denotes a zero-knowledge
proof of knowledge of an integer x and a group element
h ∈ G such that y = gx and H = e(y, h) holds and
1 ≤ x ≤ n. All values not enclosed in ()’s are assumed to
be known to the verifier.

3 Review and Analysis of Green-
Hohenberger Adaptive OT

3.1 Review

This protocol follows the assisted (or blind) decryption
paradigm [6, 17, 21]. The Sender begins the OT protocol
by encrypting each message in the database and publish-
ing these values to the Receiver. The Receiver then checks
that each ciphertext is well-formed. See the following Ta-
ble 1 for details.

Ciphertext Structure. The Sender’s public parame-
ters pk include γ = (p, g,G,GT , e) and generators
(g1, g2, h, g3, g4, u, v, d) ∈ G8. For message M ∈ GT ,
identity j ∈ Zp, and random values r, s, t ∈ Zp, the
ciphertext is expressed as:

C =
(
gr, (gj1h)r,M · e(g1, g2)r, gt, (urvsd)b(gj3h)t, ur, s

)
.

Given only pk, j, the VerifyCiphertext function vali-
dates that the ciphertext has this structure.

VerifyCiphertext (pk, C, j). Parse C as (c1, · · · , c7)
and pk to obtain g, g1, h, g3, g4, u, v, d. This routine
outputs 1 if and only if the following equalities hold:

e(gj1h, c1) = e(g, c2) ∧ e(g, c6)

= e(c1, u) ∧ e(g, c5)

= e(g4, c6v
c7d)e(c4, g

j
3h).

3.2 Drawbacks

The encryption used in the scheme is a combination of
the Boneh-Boyen IBE scheme [3] and a variation of the
Hohenberger-Waters signature [19]. It combines the two
base schemes in a very simple way. Concretely, there are
three drawbacks:

1) It sets the secret key as (a, b), where a is used only for
decryption and b is used only for signing, separately.

But it is usual that a single secret key a can be si-
multaneously used for both signing and decryption.
We will set b = a and show that the setting does not
endanger its security. That means the generator g4
could be removed.

2) For random r, s, t ∈ Zp, it expresses the ciphertext as

(
gr, (gj1h)r, M · e(g1, g2)r, gt, (urvsd)b(gj3h)t, ur, s

)
Notice that the session key s is directly exposed. That
means the generator v could be removed, too. The
redundant setting is due to that the authors follow
the Hohenberger-Waters signature based on RSA as-
sumption (see Section 3 in [19]), which does require
a Chameleon hash function. We would like to stress
that the structure uMvs in a bilinear group G has no
the special property of a chameleon hash function be-
cause one can not find s′ satisfying uMvs = uM

′
vs
′
,

given M,M ′ and s, where u, v are two random ele-
ments of G. The authors misapplied the structure.

3) The generator g2 is used only for the blind decryp-
tion and the generator g3 is used only for the Ver-
ifyCiphertext. For simplicity, we could explicitly set
that g3 = g2. That is to say, the generator g3 might
be redundant. By the way, the generator d is re-
quired necessarily for the Hohenberger-Waters signa-
ture based on CDH assumption [19]. The generator
h facilitates the security proof of the Hohenberger-
Waters signature. If d is removed, then we have the
following attack. Given a valid ciphertext

C = (c1, · · · , c7)

= (gr, (gj1h)r,M · e(g1, g2)r, gt,

(urvs)b(gj3h)t, ur, s). (1)

An adversary can take a random θ ∈ Zp and compute

Ĉ = (ĉ1, · · · , ĉ7)

= (grθ, (gj1h)rθ,Mθ · e(g1, g2)rθ, gtθ,(
(urvs)b(gj3h)t

)θ
, urθ, sθ). (2)

The ciphertext Ĉ is valid because

e(gj1h, ĉ1) = e(g, ĉ2) ∧ e(g, ĉ6)

= e(ĉ1, u) ∧ e(g, ĉ5)

= e(g4, ĉ6v
ĉ7)e(ĉ4, g

j
3h).

Remark. The random y ∈ Zp chosen by the receiver is
not used at all. This is a typo.



International Journal of Network Security, Vol.17, No.4, PP.454-462, July 2015 457

Table 1: The Green-Hohenberger adaptive OT scheme

SI(M1, · · · ,MN ) RI()
1. Select γ = (p, g,G,GT , e)← BMsetup (1κ),

a, b← Zp, g2, g3, h, u, v, d← G
and set g1 ← ga, g4 ← gb.
pk ← (γ, g1, g2, g3, g4, h, u, v, d), sk ← (a, b).

2. For j = 1 to N , select rj , sj , tj ← Zp 5. Verify pk and the proof.

and set: Cj ← [grj , (gj1h)rj ,Mje(g1, g2)rj , Check for j = 1 to N :

gtj , (urjvsjd)b(gj3h)tj , urj , sj ] VerifyCiphertext (pk, Cj , j)=1.
3. Send (pk,C1, · · · , CN ) to Receiver. If any check fails, output ⊥.
4. Conduct ZKPoK{(a) : g1 = ga}.
Output S0 = (pk, sk). Output R0 = (pk,C1, · · · , CN ).
ST(Si−1) RT(Ri−1, σi)

1. Parse Cσi as (c1, · · · , c7),
select x, y ← Zp
and compute v1 = gxc1.

2. Send v1 to Sender, and conduct:
3. Set R = e(v1, g

a
2 ). WIPoK{(σi, x, c2, c4, c5, c6, c7) :

4. Send R to Receiver and conduct: e(v1/g
x, (gσi1 h)) = e(c2, g)∧

ZKPoK{(a) : R = e(v1, g
a
2 ) ∧ g1 = ga}. e(c6, g) = e(v1/g

x, u)∧
e(c5, g) = e(c6v

c7d, g4)e(c4, g
σi
3 h)}

5. If the proof does not verify, output ⊥.

Else output M ′σi = c3·e(g1,g2)x
R .

Output Si = Si−1. Output Ri = (Ri−1,M
′
σi)

4 An Improvement of Green-
Hohenberger OT Scheme and
Its Security Proof

4.1 The Improvement

The improvement is obtained by removing the redundant
generators g3, g4, v. See the Table 2 for details.

Ciphertext Structure. The Sender’s public parame-
ters pk include γ = (p, g,G,GT , e) and generators
(g1, g2, h, u, d) ∈ G5. For message M ∈ GT , identity
j ∈ Zp, and random values r, t ∈ Zp, the ciphertext
is expressed as:(

gr, (gj1h)r,M · e(g1, g2)r, gt, (urd)a(gj2h)t, ur
)
.

Given only pk, j, the VerifyCiphertext function vali-
dates that the ciphertext has this structure.

VerifyCiphertext (pk,C, j). Parse C as (c1, · · · , c6)
and pk to obtain g, g1, g2, h, u, d. This routine out-
puts 1 if and only if the following equalities hold:

e(gj1h, c1) = e(g, c2) ∧ e(g, c6)

= e(c1, u) ∧ e(g, c5)

= e(g1, c6d)e(c4, g
j
2h).

Correctness.

e(gj1h, c1) = e(gj1h, g
rj ) = e((gj1h)rj , g)

= e(g, c2)

e(g, c6) = e(g, urj ) = e(grj , u) = e(c1, u)

e(g, c5) = e
(
g, (urjd)a(gj2h)tj

)
= e (g, (urjd)a) e

(
g, (gj2h)tj

)
= e(g1, c6d)e(c4, g

j
2h)

c3 · e(g1, g2)x

R
=

Mj e(g1, g2)rj · e(g1, g2)x

e(gxc1, ga2 )

=
Mj e(g1, g2)rj · e(g1, g2)x

e(gx, ga2 )e(grj , ga2 )
= Mj

4.2 Security Proof

The improvement is sender-secure and receiver-secure
in the full simulation model under 3DDH assumption.
The security proof is somewhat like that of the original
scheme [18]. For completeness, we now describe it as fol-
lows.

Sender security. Given a (possibly cheating) real-world

receiver R̂, we show how to construct an ideal-world re-

ceiver R̂
′

such that all p.p.t. distinguishers have at most
negligible advantage in distinguishing the distribution of
an honest real-world sender S interacting with R̂ (RealS,R̂)
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Table 2: The improvement of Green-Hohenberger adaptive OT scheme

SI(M1, · · · ,MN ) RI()
1. Select γ = (p, g,G,GT , e)← BMsetup (1κ),

a← Zp, choose g2, h, u, d← G
and set g1 ← ga.
pk ← (γ, g1, g2, h, u, d), sk ← a. 5. Verify pk and the proof.

2. For j = 1 to N , select rj , tj ← Zp Check for j = 1 to N :
and set: Cj ← [grj , (gj1h)rj ,Mj e(g1, g2)rj , VerifyCiphertext (pk, Cj , j)=1.

gtj , (urjd)a(gj2h)tj , urj ] If any check fails, output ⊥.
3. Send (pk,C1, · · · , CN ) to Receiver.
4. Conduct ZKPoK{(a) : g1 = ga}.

Output S0 = (pk, sk). Output R0 = (pk,C1, · · · , CN ).

ST(Si−1) RT(Ri−1, σi)
1. Parse Cσi as (c1, · · · , c6), select x← Zp

and compute v1 = gxc1.
2. Send v1 to Sender, and conduct:

3. Set R = e(v1, g
a
2 ). WIPoK{(σi, x, c2, c4, c5, c6) :

4. Send R to Receiver and conduct: e(v1/g
x, (gσi1 h)) = e(c2, g)∧

ZKPoK{(a) : R = e(v1, g
a
2 ) ∧ g1 = ga}. e(c6, g) = e(v1/g

x, u)∧
e(c5, g) = e(c6d, g1)e(c4, g

σi
2 h)}

5. If the proof does not verify, output ⊥.

Else output M ′σi = c3·e(g1,g2)x
R .

Output Si = Si−1. Output Ri = (Ri−1,M
′
σi)

from that of R̂
′

interacting with the honest ideal-world
sender S′ (Ideal

S′,R̂
′ ).

1) To begin, R̂
′

selects a random collection of messages
M̄1, · · · , M̄N ← GT and follows the SI algorithm
with these as input up to the point where it obtains
(pk,C1, · · · , CN ).

2) It sends (pk,C1, · · · , CN ) to R̂ and then simulates the
interactive proof

ZKPoK{(a) : g1 = ga}.

(Even though R̂
′

knows sk = a, it ignores this value
and simulate this proof step.)

3) For each of k transfers initiated by R̂,

a. R̂
′

verifies the received WIPoK and uses the
knowledge extractor E2 to obtain the values

σi, x, c1, c2, c3, c4 from it. R̂
′

aborts and outputs
error when E2 fails.

b. When σi ∈ [1, N ], R̂
′

queries the trusted party
T to obtain Mσi , parses Cσi as (c1, · · · , c6) and
responds with

R =
c3 e(g1, g2)x

Mσi

(if T returns ⊥, R̂
′

aborts the transfer). When

σi /∈ [1, N ], R̂
′

follows the normal protocol. In

both cases, R̂
′

simulates

ZKPoK{(a) : R = e(v1, g
a
2 ) ∧ g1 = ga}.

4) R̂
′

uses R̂’s output as its own.

Theorem 1. Let εZK be the maximum advantage with
which any p.p.t. algorithm distinguishes a simulated
ZKPoK, and εExt be the maximum probability that the
extractor E2 fails (with εZK and εExt both negligible in
κ). If all p.p.t. algorithms have negligible advantage ≤ ε
at solving the 3DDH problem, then:

Pr
[
D(RealS,R̂(N, k,M1, · · · ,MN ,Σ)) = 1

]
−

Pr
[
D(Ideal

S′,R̂
′(N, k,M1, · · · ,MN ,Σ)) = 1

]
≤

(k + 1)εZK + kεExt +Nε

(
1 +

p

p− 1

)
.

Proof. We first define the following games:

Game 0. The real-world experiment conducted between
S and R̂ (RealS,R̂).

Game 1. This game modifies Game 0 as follows: (1)
each of S’s ZKPoK executions is replaced with a
simulated proof of the same statement, and (2) the
knowledge extractor E2 is used to obtain the val-
ues (σi, x, c̄4, c̄5, c̄6) from each of R̂’s transfer queries.
Whenever the extractor fails, S terminates the exper-
iment and outputs the distinguished symbol error.
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(There is a typo in the original argument. It says
that “the knowledge extractor E2 is used to obtain
the values (σi, x, y, z, c̄4, c̄5, c̄6, c̄7) from each of R̂’s
transfer queries”. We stress that both the values y, z
are not used at all.)

Game 2. This game modifies Game 1 such that, when-
ever the extracted value σi ∈ [1, N ], S’s response
R is computed using the following approach: parse
Cσi = (c1, · · · , c6) and set

R =
c3 e(g1, g2)x

Mσi

.

When σi /∈ [1, N ], the response is computed using
the normal protocol.

Game 3. This game modifies Game 2 by replacing the
input to SI with a dummy vector of random mes-
sages M̄1, · · · , M̄N ∈ GT . However when S computes
a response value using the technique of Game 2,
the response is based on the original message vector
M1, · · · ,MN . We claim that the distribution of this
game is equivalent to that of Ideal

S′,R̂
′ .

For notational convenience, define:

Adv[Game i] = Pr[D(Game i) = 1]−Pr[D(Game 0) = 1].

By the following Lemmas, we then obtain

Adv[Game 3] ≤ (k + 1)εZK + kεExt +Nε(1 +
p

p− 1
).

Lemma 1. If all p.p.t. algorithms D distinguish a
simulated ZKPoK with advantage at most εZK and the
extractor E2 fails with probability at most εExt, then
Adv[Game 1] ≤ (k + 1)εZK + kεExt.

Proof. See the proof of Lemma A.1 in [18].

Lemma 2. If no p.p.t. algorithm has advantage > ε in
solving the 3DDH problem, then

Adv[Game 2]−Adv[Game 1] ≤ Np

p− 1
· ε

Proof. For every query where σi /∈ [1, N ], S calculates
the response R as in the normal protocol, and thus the
distribution of R is identical to Game 1. Thus we need
only consider queries where σi ∈ [1, N ].

Given a transfer request containing v1, let us implicitly
define

gr
′

= v1/g
x

for some r′ ∈ Zp. Express the σi-th ciphertext in the

database as Cσi = (c1, · · · , c6). If gr
′

= c1 then the com-
puted response R will have the same distribution as in
the normal protocol. To show this, let c1 = grσi for some

rσi ∈ Zp and c3/Mσi = e(g1, g2)rσi . We can now write
the normal calculation of R as:

R = e(c1g
x, ga2 ) = e(grσi gx, ga2 )

= e(g1, g2)rσi e(g1, g2)x =
c3 e(g1, g2)x

Mσi

.

It remains only to consider the case where gr
′ 6= c1. We

will refer to this as a forged query and argue that R̂ cannot
issue such a query except with negligible probability under
the 3DDH assumption in G. Specifically, if R̂ submits a
forged query with non-negligible probability, then we can
construct a solver B for 3DDH that succeeds with non-
negligible advantage.

We now describe the solver B. B takes as input a
3DDH tuple (g, gτ , gψ, gω, Z), where Z = gτψω or is
random, and each value τ, ϕ, ω was chosen at random
from Zp. It will simulate S’s interaction with R̂ via the
following simulation.

Simulation Setup. B first picks j∗ ← [1, N ] and
yd, xd, xh, xz ← Zp. It sets

u = gψ, d = g−ψxdgyd , h = g−ψj
∗
gxh , g2 = gψgxz , g1 = gτ .

Thus, we implicitly have a = τ . The remaining compo-
nents of pk are chosen as in the real protocol.
(There is a typo in the original argument. It says that “B
first picks j∗ ← [1, N ] and a, yv, yd, xv, xd, xh, xz, rj , tj ←
Zp”. Clearly, the secret key a for decryption is not known
to the solver B. Besides, it is not necessary for B to pick
rj , tj in the Setup because they are not used at all in the
phase.)

For j = 1 to N , B generates each correctly-distributed
ciphertext Cj = (c1, · · · , c6) as follows:

The simulation for j = j∗. Pick tj ← Zp and set the
ciphertext as:

(c1, · · · , c6) =
(
gxd , (gj1h)xd ,M · e(g1, g2)xd ,

gtj , (gτ )yd(gj2h)tj , uxd
)
.

The ciphertext is well-formed because:

e(gj1h, c1) = e(gj1h, g
xd) = e((gj1h)xd , g) = e(g, c2)

e(g, c6) = e(g, uxd) = e(gxd , u) = e(c1, u)

e(g, c5) = e
(
g, (gτ )yd(gj2h)tj

)
= e (g, (uxdd)τ ) e

(
g, (gj2h)tj

)
= e(g1, c6d)e(c4, g

j
2h).

The simulation for j 6= j∗. Pick rj , t
′
j ← Zp. Set

Y = gt
′
j/(gτ )(rj−xd)/(j−j

∗)

and the ciphertext as:

(c1, · · · , c6) =
(
grj , (gj1h)rj ,M · e(g1, g2)rj , Y,
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(gτ )yd · Y xzj+xh · (gψ)t
′
j(j−j

∗), urj
)
.

Let us define Y = gtj and thus implicitly set

tj = t′j − τ(rj − xd)/(j − j∗),

which is randomly distributed in Zp. Just by inspection,
it’s clear that all of the elements except c5 are correctly
distributed. Thus it remains to show that:

(gτ )yd · Y xzj+xh · (gψ)t
′
j(j−j

∗) = (urjd)τ (gj2h)tj

In fact, we have:

c5 = (gτ )yd · Y xzj+xh · (gψ)t
′
j(j−j

∗)

= (gτ )yd · (gtj )xzj+xh · (gψ)t
′
j(j−j

∗)

= (gτψ)rj−xd(gτ )yd · (gtj )xzj+xh

·(gψ)t
′
j(j−j

∗)(g−τψ)rj−xd

= (gψ(rj−xd))τ (gyd)τ · (gxzj+xh)tj

·(gψ)t
′
j(j−j

∗)(g−τψ)rj−xd

= ((gψrj )(g−ψxd+yd))τ · (gxzj+xh)tj

·(gψ)t
′
j(j−j

∗)(g−τψ)rj−xd

= (urjd)τ · (gxzj+xh)tj · (gψ)t
′
j(j−j

∗)(g−τψ)rj−xd

= (urjd)τ · (gxzj+xh)tj · (gψ(j−j
∗))t

′
j−τ(rj−xd)/(j−j

∗)

= (urjd)τ · (gxzj+xh)tj · (gψ(j−j
∗))tj

= (urjd)τ · ((gψ+xz )jg−ψj
∗+xh)tj

= (urjd)τ · (gj2h)tj .

Answering Queries. Upon receiving a query from
R̂, B verifies the accompanying WIPoK and extracts
(σi, x, c̄4, c̄5, c̄6) and the value v1. Note that R̂ must issue
at least one forged query where v1/g

x is not equal to the
first element of Cσi . When this occurs, if σi 6= j∗ then B
aborts and outputs a random bit.

Otherwise let us consider the distribution of R̂’s query.
For some t, r′ ∈ Zp the soundness of the WIPoK ensures
that

(v1/g
x, c̄6) = (gr

′
, ur

′
)

and
(c̄4, c̄5) = (gt, (ur

′
d)a(gσi2 h)t).

By substitution we obtain:

c̄5 = (gψr
′
g−ψxd+yd))τ (g(ψ+xz)j

∗
g−ψj

∗
gxh)t

= gτψ(r
′−xd)gτydgt(xzj

∗+xh).

Let us implicitly define the value

h′ = (v1/g
x)g−xd = gr

′−xd .

B can obtain h′τψ by computing

c̄5/(g
τyd c̄ xzj

∗+xh
4 ).

Provided that h′ 6= 1, B can now compute a solution to
the 3DDH problem by comparing

e(h′τψ, gω)
?
= e(Z, h′).

If h′ = 1 then B aborts and outputs a random bit.

Probability of abort. There are two conditions in which B
aborts: (1) when R̂ does not issue a forgery for σi = j∗,
and (2) when σi = j∗ but (v1/g

x)g−xd = 1. Since j∗, xd
are outside of R̂’s view and our base assumption is that
R̂ that makes at least one request on σi ∈ [1, N ], the
probability that B does not abort is ≥ p−1

p ·
1
N . Thus,

if no p.p.t. algorithm solves 3DDH with probability > ε,
then Adv [Game 2 ]- Adv [Game 1 ] ≤ Npε

p−1 .

Lemma 3. If no p.p.t adversary has advantage > ε at
solving the 3DDH problem, then

Adv [Game 3]−Adv [Game 2] ≤ Nε.

Proof. See the proof of Lemma A.3 in [18].

Receiver Security. For any real-world cheating sender Ŝ we

can construct an ideal-world sender Ŝ
′

such that all p.p.t.
distinguishers have negligible advantage at distinguishing
the distribution of the real and ideal experiments. Let us

now describe the operation of Ŝ
′
, which runs Ŝ internally,

interacting with it in the role of the Receiver.

1) To begin, Ŝ
′
runs the RI algorithm, with the following

modification: when Ŝ proves knowledge of a, Ŝ
′

uses
the knowledge extractor E1 to extract a, outputting
error if the extractor fails. Otherwise, it has obtained
the values (pk, C1, · · · , CN ).

2) For i = 1 to N , Ŝ
′

decrypts each of Ŝ’s ciphertexts
C1, · · · , CN using the value a as a decryption key,
and sends the resulting M∗1 , · · · ,M∗N to the trusted
party T.

3) Whenever T indicates to Ŝ
′

that a transfer has been

initiated, Ŝ
′

runs the transfer protocol with Ŝ on the

fixed index 1. If the transfer succeeds, Ŝ
′

returns the
bit 1 (success) to T, or 0 otherwise.

4) Ŝ
′

uses Ŝ’s output as its own.

Theorem 2. Let εWI be the maximum advantage that
any p.p.t. algorithm has at distinguishing a WIPoK, and
let εExt be the maximum probability that the extractor E1

fails. Then ∀ p.p.t. D:

Pr[D(RealŜ,R(N, k,M1, · · · ,MN ,Σ)) = 1]−

Pr[D(Ideal
Ŝ
′
,R′

(N, k,M1, · · · ,MN ,Σ)) = 1]

≤ (k + 1)εExt + kεWI .

Proof. Refer to the proof of Theorem 3.3 in [18].
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5 Conclusion

In this paper, we present a review on the Green-
Hohenberger adaptive OT scheme and put forth a con-
crete improvement which is based on 3DDH assumption
in bilinear groups. We show that in the original scheme
there are some redundancies. Using the modified simu-
lation which needs more less parameters than the simu-
lation presented in the original paper, we prove that the
improvement keeps secure under 3DDH assumption. This
is a more simple assumption than q-power DDH assump-
tion and q-strong DH assumption for [6], Decision Lin-
ear q-Hidden LRSW assumption for [17], Decisional nth
Residuosity assumption for [23], Comp. Dec. Residuos-
ity assumption and q-DDHI assumption for [21], DLIN
assumption, q-Hidden SDH assumption and q-TDH as-
sumption for [34]. The skills developed in the paper,
we believe, is helpful for optimizing other cryptographic
schemes.
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