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Abstract

The Goldbach’s conjecture has plagued mathematicians
for over two hundred and seventy years. Whether profes-
sionals or amateur enthusiasts, all have been fascinated
by this question. Why do mathematicians have no way
to solve this problem? Till now, Chen has been recognized
for the most concise proof his “1 + 2” theorem in 1973.
In this article the authors will use elementary concepts to
describe and indirectly prove the Goldbach conjecture.

Keywords: AKS algorithm, number axis, symmetrical
primes

1 Introduction

Until now, the best proof of the theorem is by Chen [3] in
1973 that states every large even integer can be written
as the sum of a prime and the product of at most two
primes. Recently, Bournas [2] proposed his contribution
that proves the conjecture is true for all even integers
greater than 362. Silva et al. [6] describes how the even
Goldbach conjecture was confirmed to be true for all even
numbers not larger than 4 · 1018 and the odd Goldbach
conjecture is true up to 8.37·1026. Lu [16] showed an even
integer x at most O(x0.879) can not be written as a sum of
two primes. On the other hand, Zhang [26] proved that
there are infinitely many pairs of primes that differ by
less than 7 · 107. Zhang’s result is a huge step forward in
the direction of the twin prime conjecture. Some people

∗Part of this work was carried out while the first author was at
Longyang University supported by the information security team
project. Email:chenglian.liu@gmail.com

in related research also gave good contributions [8–11,13,
18,22,25].

In this paper, the authors will introduce the fundamen-
tal concepts rather than the entire proof in its complexity.

2 Review of Goldbach conjecture
issue

The (strong) Goldbach conjecture states that every even
integer N greater than six can be written as the sum of
two primes such as

138 = 131 + 7

= 127 + 11

= 109 + 29

= 107 + 31

= 101 + 37

= 97 + 41

= 79 + 59

= 71 + 67.

The expression of a given even number as a sum of two
primes is called a ‘Goldbach partition’ of that number.
For example: The integer 138 can be expressed in 8 ways.
We say the GC number can be described in the form as

GC = Pi + Pj 7−→ (Pi − 2n) + (Pj + 2n), (1)

where Pi and Pj are both primes. Let R(n) be the
number of representations of the Goldbach partition
where

∏
2 is the twin prime constant [14], say R(n) ∼



International Journal of Network Security, Vol.17, No.4, PP.445-453, July 2015 446

2
∏

2

(∏
Pk|n,k=2

)
Pk−1
Pk−2

∫ n
2

dx
(ln x)2 . Ye and Liu [24] also

gave the estimation formula G(x) = 2C
∏
p≥3

(p−1)
(p−2) ·

(Li(x))2

x +O(x · e−c
√
ln x).

2.1 The RSA Cryptosystem

The RSA algorithm [21] is well known public key
cryptosystem. It is widely used many application such
as traitor tracing scheme [23], multi-secrect sharing
scheme [5], and anonymous multi-receive encryption
scheme [12] so on. We briefly introduce the principle
of RSA in this subsection. The signer prepares the
prerequisite of an RSA signature: two distinct large
primes p and q, n = pq, Let e be a public key so that
gcd(e, φ(n)) = 1, where φ(n) = (p − 1)(q − 1), then
calculate the private key d such that ed ≡ 1 (mod φ(n)).
The signer publishes (e, n) and keeps (p, q, d) secret. The
notations are the same as in [21].

RSA Encryption and Decryption:
In RSA public-key encryption, Alice encrypts a plaintext
M for Bob using Bob’s public key (n, e) by computing the
ciphertext

C ≡ Me (mod n),

M ≡ Cd (mod n),

where n, the modulus, is the product of two or more
large primes, and e, the public exponent, is an (odd)
integer e ≥ 3 that is relatively prime to φ(n), the order
of the multiplicative group Z∗n. The signer uses private
key d to decrypt message M from the ciphertext C.

RSA Digital Signature:

s ≡Md (mod n),

where (n, d) is the signer’s RSA private key. The signature
is verified by recovering the message M with the signer’s
RSA public key (n, e):

M ≡ se (mod n).

2.2 The Relationship of the Goldbach’s
Conjecture and the RSA Cryptosys-
tem

Constant [4] proposed the algebra factoring of the cryp-
tography modulus and proof of Goldbach’s conjecture.
He connected each relationship. His methodology is de-
scribed as follows:
Since we know the modulus n = p · q, we assume

s = p+ q.

Step 1. Compute

p2 − sp+ n = 0.

Step 2. Compute

p, q =
1

2
(s± c) (2)

since

c =
√
s2 − 4n. (3)

Step 3. Compute s2 = c2 + 4n, or we can reexpress as

c2 = s2 − 4n.

Example 1:
We assume n = 721801, then 4n = 4 · 721801 = 2887204.
We also compute

√
4n ≈ 1699.177 since s2 > 4n, we there-

fore start the integer s by 1700. From Equation (2) and

Table 1: n = 721801

Times s s2 4n c2 c

1 1700 2890000 2887204
√

2796 52.87

2 1702 2896804 2887204
√

9600 97.97

3 1704 2903616 2887204
√

16412 128.10

4 1706 2910436 2887204
√

23232 152.42

5 1708 2917264 2887204
√

300600 173.37

6 1710 2924100 2887204
√

36896 192.08
...

...
...

...
...

...

51 1800 3240000 2887204
√

352796 593.96

52 1802 3247204 2887204
√

360000 600

Equation (3), we have s = 1802, and c = 600, to calculate
the following table.

p =
1802 + 600

2
= 1201,

q =
1802− 600

2
= 601.

We obtain p = 1201, and q = 601. The result is as shown
in Table 1.

Example 2:
We assume n = 321907 where s2 > 4n, namely 4n =
4 · 321907 = 1287628. Since

√
1287628 ≈ 1134.73, we

therefore start the integer s by 1136. From above it is
stated, c must be an integer. Hence, we assume s = 1148
and set c = 174. From Equation (2) and Equation (3),
we have

p =
1148 + 174

2
= 661,

q =
1148− 174

2
= 487.

We obtain p = 661, and q = 487. The result is as shown
in Table 2. When the modulus n goes up to 1024-bits
or greater than 2048-bits length, is this methodology still
efficient? This is an interesting question.
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Table 2: n = 321907

Times s s2 4n c2 c

1 1136 1290496 1287628
√

2868 53.55

2 1138 1295044 1287628
√

7416 86.11

3 1140 1299600 1287628
√

11972 109.41

4 1142 1304164 1287628
√

16563 128.59

5 1144 1308736 1287628
√

21108 145.28

6 1146 1313316 1287628
√

25688 160.27

7 1148 1317904 1287628
√

30276 174

3 Our Analysis

In this section, we introduce another methodology that
analyzes the Goldbach’s conjecture properties and the re-
lationship with twin prime.

3.1 The Goldbach’s Conjecture Proper-
ties

In this subsection, the authors describe the Goldbach’s
conjecture properties. Notations are described in the
following.

Notations:

Pn: The nth prime number.
gp: Smallest prime factor of number m.

P [m]: Largest prime factor of m.
P0[m]: Smallest prime factor of m > 1.

dk: = Pj − Pi, gap or distance between two
primes, it should be an even integer.

π(x): The number of primes p, p ≤ x.
G(x): The number of Goldbach partition.
GC: An even number for the Goldbach

Conjecture (GC) number.
PG: An integer for the prime gaps (PG) number.
M : Denotes M = GC

2 .
PiM : A distance value from point Pi to point M ,

this value differs from dk if M is not a prime.
MPj : A distance value from point M to point Pj ,

this value differs from dk if M is not a prime.
SPN : Assume Pi and Ph are prime number pairs.

M is the midpoint between Pi and Ph, where
M , Pi, Ph lie on the X axis; say Pi and Ph
are symmetric prime numbers to integer M
on the X axis.

2n|PiM : The 2n divide the PiM .

Some basic properties are shown as follows:

Property 1. odd + even = odd.

Property 2. even + even = even.

Property 3. odd + odd = even.

Property 4. even − even = even.

Property 5. odd − odd = even.

Property 6. even − odd = odd.

Property 7. even · even = even.

Property 8. odd · even = even.

Property 9. odd · odd = odd.

The relationship diagram is shown in Figure 1.

even

odd

odd

oddeven

even even

912

7

3

4

5

8

Figure 1: The odd and even numbers relationship of prop-
erties in arithmetic

In this article, we classify the Goldbach Conjecture
(GC) into three categories. The fundamental concepts
in detail are shown in Figure 2. For convenience, we used

M = GC
2

odd number

even numbers

2

primes

non− primes

non− primes

Case 2: (2n)|PiM , and (2n)|MPj

Case 3: (2n+ 1)|PiM , and (2n+ 1|)MPj

Case 1: Pi = Pj

Figure 2: The Goldbach conjecture’s situation case

the notation Case 1, Case 2 and Case 3 to describe the
following scenarios. We suppose an integer GC, where
GC ≥ 6 and it is an even positive number, there also ex-
ists an integer M , where M = GC

2 . We use an X-axis line
to express distance, see Figure 3.

Case 1: IfM is a prime, then there exists a prime number,
say Pi where Pi = Pj and located on M point at
X axis (See Figure 4).
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0 1 Pi Pj GCGC
2

X

Figure 3: The X-axis of number line

0 1 Ph Pk GCGC
2

Pi = Pj

2n 2n
distance distance

X

Figure 4: Case 1 situation

Case 2: If M is not a prime, and is an odd number, there
exists at least one pair of symmetrical primes.
Say Pi and Pj , where the distance is PiM =
MPj , and 2n|PiM , 2n|MPj (See Figure 5).

0 1 Pi Pj GCGC
2

2n 2n
distance distance

X

Figure 5: Case 2 situation

Case 3: If M is not a prime, and is an even number, there
exists at least one pair of symmetrical primes.
Say Pi and Pj where the distance is PiM = MPj ,
and 2n+ 1|PiM , 2n+ 1|MPj (See Figure 6).

0 1 Pi Pj GCGC
2

2n+ 1 2n+ 1
distance distance

X

Figure 6: Case 3 situation

Theorem 1 (Bertrand-Chebyshev Theorem). For any
real number n, where n ≥ 1, there always exists at least a
prime between the interval n and 2n.

Proof. We suppose that(
2n

n

)
≤

∏
p≤
√
2n

P r
∏

√
2n<p≤ 3

2n

P
∏

m<p≤2n

P

≤
∏
p≤
√
n

(2n)
∏

√
2n<p≤m

P
∏

m<p<2m

P . (4)

For each n, where 1 ≤ n < 4010, such as 2, 3, 5, 7,
13, 23, 43, 83, 163, 317, 631, 1259, 2503, . . ., 3967, 3989,
4001, 4003, 4007. We choose a small prime p, and another
greater than n say p′. The relationship is as follows:

p ≤ n ≤ p′ ≤ 2p ≤ 2n. (5)

Thus, this finishes the proof.

Proposition 1. If M = GC
2 , where M is a prime, say

M = Pi = Pj, and Pi located onM point at X axis. There
exists at least one pair of symmetrical primes Ph and Pk,
where the distance value PhM = MPk.

Proof. We assume M is prime, then M − Ph = PhM is
also an even integer, according to Property 5. The odd
integers are subtracted to give an even integer. There are
two symmetrical prime numbers, say Ph and Pk located
on the two sides of M at the center point position. The
distance PhM is equal to distance MPk, divided by 2n.
If Ph+Pk

2 = M while Ph 6= Pi 6= Pk, it also matches
Ph +Pk = GC. Thus, we have obtained the first solution
M = Pi = Pj if and only if M is a prime. The second
solution is Ph + Pk = GC if and only if Ph and Pk are
both primes.

0 1 317

2n 2n
distance distance

X
61 9719 127 139151

12 12 30 18 12123018

15879

dn: distance

Figure 7: An example of Case 1 situation

Suppose GC = 158, and GC
2 = 79.

158 = 7 + 151

= 19 + 139

= 31 + 127

= 61 + 97

= 79 + 79.

Proposition 2. If M is not a prime, but is an odd num-
ber, there exists at least two prime numbers, say Ph and
Pk that are located on either side of the center point M .
The distance from Pi to M is equivalent to that from M
to Pj.

Proof. We assume M is an odd number, then M − Pi =
Pj − M . As stated previously Pi + Pj = 2M = GC,
but Pi 6= Pj . From Property 5, the odd integers are sub-
tracted to give an even integer. Thus, we have the value
PiM of distance from Pi to M must be an even integer,
and is divided 2n. On the other hand, there is a simi-
lar situation from M to Pj since 2n|PiM, 2n|MPj while
Pi 6= Pj . We have Pi + Pj = 2M = GC, because Pi 6= Pj
and Pi < M < Pj . This is one solution of symmetrical
primes. Case 1 is a special situation of Case 2.
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0 7 5937

2n 2n
distance distance

X
67 714111 3129 79 12713197 109101

2 418 6 18 84 2 24 186188 42

13869

dk: distance

107

Figure 8: An example of Case 2 situation

Suppose GC = 138, and GC
2 = 69.

138 = 131 + 7

= 127 + 11

= 109 + 29

= 107 + 31

= 101 + 37

= 97 + 41

= 79 + 59

= 71 + 67.

Proposition 3. If M = GC
2 , is not a prime, but is an

even number, there exists at least two primes, say Pi and
Pj located on either side of M centerpoint position, where
the distance PiM equals MPj, 2n+ 1|PiM, 2n+ 1|MPj.

Proof. We assume M is not a prime and is an even num-
ber. According to Property 6, the even number is sub-
tracted from the odd number and the result is an odd
number. We, therefore, know this distance value must
be an odd integer while Pj 6= Pj . Hence, the relation-
ship as Pi < M < Pj . Since PiM = MPj . We have
Pi + Pj = 2M = GC; however, Pi 6= Pj . Thus, we
obtained one solution where two primes are symmetrical
about the point of M on the X axis line. If and only if
n = 0, where M − Pi equals Pj −M , it has Pj − Pi = 2
since Pi + Pj = 2M = GC, say (Pi, Pj) are twin primes.
The twin prime is also a special situation of Case 3.

0 6137

2n+ 1 2n+ 1
distance distance

X
67 73433 3113 79 12713797 109103

18 610 6 18 6 3 186 1061863

14070

dk: distance

Figure 9: An example of Case 3 situation

Suppose GC = 140, and GC
2 = 70.

140 = 3 + 137

= 13 + 127

= 31 + 109

= 37 + 103

= 43 + 97

= 61 + 79

= 67 + 73.

X

dk: distance

13 17 4737 53 604119 3123 591170 61 67 73 79 83 89 97 101 103 107 109113 120

4 2 4 2 4 8 6 4 6 6 6 1 1 6 6 6 4 6 8 4 2 4 2 4

2n+ 1 2n+ 1
distance distance

Figure 10: An example of twin prime situation

Suppose GC = 120, and GC
2 = 60.

120 = 7 + 113

= 11 + 109

= 13 + 107

= 17 + 103

= 19 + 101

= 23 + 97

= 31 + 89

= 37 + 83

= 41 + 79

= 47 + 73

= 53 + 67

= 59 + 61.

Theorem 2. For all prime numbers that are greater than
3, the prime gap (PG, or distance) is an even integer.

Proof. For any prime numbers that are greater than 3,
the PG should be an odd number. From Property 5, the
answer is an even number when two odd numbers are
subtracted from each other. The prime gap is an even
number if the prime is greater than 3. Suppose two odd
numbers p and q, where p < q, and p 6= q. Since

p ≡ 1 (mod 2)

and q ≡ 1 (mod 2),

we obtained |p− q| ≡ 0 (mod 2).

Lemma 1. We suppose the prime gap PG is a positive
integer. From Theorem 2, the PG

2 has two results, it may
have an even number, or may have an odd number. We
rewrite the expression as

PG

2

{
≡ 0 (mod 2), this is an even number.
≡ 1 (mod 2), this is an odd number.

When PG
2 ≡ 0 (mod 2), is an even integer; and PG

2 ≡ 1
(mod 2) is an odd integer.
Let d = PG

2 , it then

q − d =

{
even number.
odd number.

We assume d = PG
2 , and q − d = s.

1) If d is an odd integer, from Property 5, the s should
be an even integer.
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2) If d is an even integer, from Property 6, the s should
be an odd integer.

Theorem 3 (Symmetric Prime Number Theorem). For
any two prime numbers p and q, p < q that are greater
than 3, with the X axis as the line of symmetry, the two
prime numbers should be located on both sides of an inte-
ger M , the distance from p to M and M to q are propor-
tionally equal.

Proof. As known,

(q −M) = (M − p),

since
(q + p) = 2M.

From Theorem 1, there exists at least a prime between M
and 2M . In other words, there also exists at least a prime
between M

2 and M . Hence, there are two prime numbers

0 3 p qM
X

M
2

2M3M
2

distance distance

Figure 11: The symmetric primes on the X axis situation

located on the X axis line between M
2 and 2M . It can be

seen, the primes p and q are symmetrical to M . If not,
the (q − p) = (M − p) is a contradiction.

There is some related literature about prime symmetric
problems in [7,17,19,20], but slightly different than what
is discussed in this article.

3.2 The Goldbach’s Conjecture and the
Twin Prime Relationship

In this subsection, the authors describe a relationship of
Goldbach’s conjecture and twin prime. Previously, we
listed an example of a special situation in Case 3, and
drew a diagram in Figure 10. Here, we discuss in depth
this issue. We describe the conception of prime combi-
nations in Goldbach’s conjecture. From Equation (1),

GC = Pi + Pj
(4n+ 3) + (4n+ 3)
(4n+ 1) + (4n+ 1)

(4n+ 3) + (4n+ 1)
(4n+ 1) + (4n+ 3) : may exist twin prime style.

: may exist twin prime style.

Figure 12: The twin prime of Goldbach’s conjecture on
the X axis situation

rewrite as the following:

Pi + Pj =

{
(4n + 1) + (4n + 1), are both ‘+1’ form.
(4n + 3) + (4n + 3), are both ‘+3’ form.
(4n + 1) + (4n + 3), mixed ‘+1’ and ‘+3’ form.

Theorem 4. For each twin prime pair (Pi, Pj) where the
integers are greater than or equal to (5, 7), say (Pi, Pj) ≥
(5, 7). There must belong this type of ‘(4n+ 1) + (4n+ 3)’
or ‘(4n+ 3) + (4n+ 1)’ forms.

Proof. For each twin prime pair (Pi, Pj) where the values
are greater than or equal to (5, 7). We assume an integer
n, where n ≥ 1, namely

(4n+ 1)− (4n+ 1) = 0 (mod 4),

and
(4n+ 3)− (4n+ 3) = 0 (mod 4).

On the other hand,

(4n+ 3)− (4n+ 1) = 2 (mod 4),

or
(4n+ 1)− (4n+ 3) = | − 2| ≡ 2 (mod 4).

This is to say, the twin prime pair (Pi, Pj) must be ex-
pressed as the form of ‘(4n+ 1) + (4n+ 3)’ or ‘(4n+ 3) +
(4n+ 1)’. Otherwise, it is a contradiction.

The relationship of twin prime pair (Pi, Pj), as shown in
Figure 13 and Figure 14.

0 3 4n− 1 4n+ 14n
X

4n− 2 4n+ 34n+ 2

distance distance

4n− 3

(4n+ 3)
or express

PjPi

Figure 13: An relationship of twin prime situation I

0 3 4n+ 1 4n+ 34n+ 2
X

4n 4n+ 14n+ 4

distance distance

4n− 3

(4n− 1)

or express

PjPi

Figure 14: An relationship of twin prime situation II

Proposition 4. If Pi+Pj ≡ 0 (mod 4) ≡ 0 (mod 6) ≡ 4

(mod 8), and
Pi+Pj

2 ≡ 2 (mod 4) ≡ 0 (mod 6) ≡ 2

(mod 8) or
Pi+Pj

2 ≡ 2 (mod 4) ≡ 0 (mod 6) ≡ 6

(mod 8), there may exist a twin prime where the (
Pi+Pj

2 −
1,

Pi+Pj

2 + 1) is (4n+ 1) + (4n+ 3) form.

Proof. As known from Proposition 3,
Pi+Pj

2 is an even
number. Otherwise, it is a contradiction. According to
Property 6:{

Pi+Pj

2 − 1 is an odd number.
Pi+Pj

2 + 1 is an odd number too.

Note that
Pi+Pj

2 ≡ 2 (mod 4) ≡ 0 (mod 6) ≡ 6 (mod 8),

we see the
Pi+Pj

2 is 4n+ 2 form. Therefore, the
Pi+Pj

2 − 1
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is 4n+ 1 form, and
Pi+Pj

2 + 1 is 4n+ 3 form.

Since
Pi+Pj

2 ≡ 2 (mod 4) ≡ 0 (mod 6) ≡ 2 (mod 8),

by Theorem 4, we know (
Pi+Pj

2 − 1,
Pi+Pj

2 + 1) is (4n +
1) + (4n+ 3) form.

Proposition 5. If Pi+Pj ≡ 0 (mod 4) ≡ 0 (mod 6) ≡ 0

(mod 8), and
Pi+Pj

2 ≡ 0 (mod 4) ≡ 0 (mod 6) ≡ 0

(mod 8) or
Pi+Pj

2 ≡ 0 (mod 4) ≡ 0 (mod 6) ≡ 4

(mod 8), there may exist a twin prime where (
Pi+Pj

2 −
1,

Pi+Pj

2 + 1) is (4n+ 3) + (4n+ 1) form.

Proof. As known, the
Pi+Pj

2 is an even number. Since
Pi+Pj

2 ≡ 0 (mod 4) ≡ 0 (mod 6) ≡ 0 (mod 8). We see

the
Pi+Pj

2 is 4n form. Hence
Pi+Pj

2 − 1 is 4n + 3 form.

Therefore
Pi+Pj

2 + 1 is 4n + 1 form. Now, as
Pi+Pj

2 ≡ 0

(mod 4) ≡ 0 (mod 6) ≡ 0 (mod 8), the
Pi+Pj

2 is 4n form

too. Thus, the
Pi+Pj

2 + 1 is 4n + 1 form. This inference
is consistent with the above statement.

Proposition 6. If
Pi+Pj

2 is prime, the Pi + Pj can not
be combined with (4n+1)+(4n+3) or (4n+3)+(4n+1)
forms. It can be represented as (4n + 1) + (4n + 1) or
(4n+ 3) + (4n+ 3) forms. It is impossible to have (4n+
3) + (4n+ 1) or (4n+ 1) + (4n+ 3) forms.

Proof. We suppose Pi, Ph and Pj are three primes, where

Ph =
Pi+Pj

2 .
By Lemma 1, there exists an integer s, where s = Ph−Pi.
Since Pj = Ph + s and 2Ph = Pi + Pj , if Ph is 4n + 1
form, then this is (4n+ 1) + (4n+ 1) form, say Ph + Pj .
From Proposition 1, if and only if Ph is 4n+ 1 form, then
Ph− s = Pi, where s is an even number. We rewrite it as
follows:
(4n+ 1)− 2n = Pi is 4n+ 1 form (while n = 0).
Alternatively, (4n + 1) + 2n = Pj is 4n + 3 form (while
n = 1).
If and only if Ph is 4n + 3 form, then Ph + s = Pj . We
rewrite the expression as below: (4n + 3) + 2n = Pj is
4n+ 3 form (while n = 0).
On other side, (4n + 3) − 2n = Pj is 4n + 1 form (while
n = 1).

In summary, Goldbach’s conjecture ⊇ (4n+ 1) + (4n+ 3)
⊂ twin prime.

3.3 The Relationship between G(x) and
π(x) in Goldbach’s Conjecture

In Table 3, the G(x) is the number of prime pairs. For
example, the positive integer 25, 300 has 314 prime pairs
matched with the Goldbach’s rule. And the integer
253, 000 has 2011 prime pairs matches. When the in-
teger is approaching infinity, the G(x) is also increased.
However, Items 5, 9, 11 and 14 are exceptions. Note that
a pattern begins to surface beginning with the 4th item.
The G(x) term value is between 5 and 6 for every two
rows following. When the positive integer is approaching

infinity, then the number of prime numbers π(x) also in-
creasing; it shows a very steady positive growth. However
the G(x) does not follow this rule. Different even num-
bers GC for different swayed Goldbach partitions. There
is no any strong relevance between each number GCi to
the other number GCj . Hence, there are no rules to pre-
dict this status. The experimental results are shown in
Table 3 and Figure 15.

Table 3: The relationship of Goldbach partitionG(x) with
π(x)

item Positive Integer G(x) π(x) π(x)
G(x)

1 12650 186 1510 8.11
2 25300 314 2787 8.87
3 50600 553 5190 9.38
4 75900 1478 7473 5.05
5 101200 918 9691 10.55
6 126500 1140 11864 10.40
7 151800 2635 14007 5.31
8 177100 1802 16091 9.92
9 202400 1669 18178 10.89
10 227700 3688 20243 5.48
11 253000 2011 22280 11.07
12 278300 2130 24301 11.40
13 303600 4676 26289 5.62
14 318950 2059 27520 13.36
15 331600 2160 28533 13.20
16 344250 4652 29521 6.34
17 356900 2356 30512 12.95
18 369500 2321 31488 13.56
19 382200 6325 32460 5.13

20 394850
...

...
...

21 407500
...

...
...

22 420150 5264 35398 6.72
Note: this table does not include the prime number 2

Open problems:

1) How did we know the GC
2 is a prime number? The

AKS algorithm [1] determines whether a number is
prime or composite within polynomial time, it may
be a discrepancy in the method. Lenstra and Pomer-
ance [15] primality testing is other solution.

2) If the twin prime problem is solved, could it also solve
the Goldbach’s conjecture? The authors doubts this
is the case. The twin prime situation is just a special
case in Goldbach’s conjecture.

3) If the puzzle of prime numbers is solved, will it may
also solve the number of Goldbach partition?

4 Conclusions

We clearly described two examples of relationship be-
tween RSA and Goldbach conjecture; this method suc-



International Journal of Network Security, Vol.17, No.4, PP.445-453, July 2015 452

Figure 15: A relationship of G(x) with π(x) in positive integers

cessfully attack the RSA cryptosystem. Our contribution
are useful to understand other algebra factoring method-
ology, when the modulus n goes up to over 1024 bits
length, does it still efficiency to factor? It becomes to our
future work. On the other hand, for the prime number
gaps problem, Zhang has a very good result. However, it
is still far from a way to solve the Goldbach conjecture.
The authors pointed out the prime symmetrical situation,
may be useful to assist in understanding about the Gold-
bach conjecture, even though they did not offer a general
formula on the Goldbach partition. The prime symmetri-
cal property may also solve the puzzle of prime numbers.
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