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Abstract

Active scanning worms have drawn a significant attention
due to their enormous threats to the Internet infrastruc-
ture and services. In order to effectively defend against
them, this paper proposes a novel epidemic SEIQV model
with quarantine strategy. Using this SEIQV model, we
obtain the basic reproduction number for determining
whether the worm dies out completely. The global stabili-
ties of worm-free equilibrium and endemic equilibrium are
proved, and determined by the basic reproduction num-
ber. The impact of different parameters of this model
is studied. Simulation results show that the number of
susceptible, infected and vaccinated hosts are consistent
with theoretical analysis. The model provides a theoret-
ical foundation for controlling and forecasting for active
scanning worms.

Keywords: Basic reproduction number, network security,
quarantine strategy, stability analysis, worm propagation
model

1 Introduction

Active scanning worms are malicious codes which can
replicate themselves and actively infected other hosts with
certain vulnerability via Internet. With the ever increas-
ing number of Internet applications and the emergence
of new technologies, worms have become a great threat
to our work and daily life, caused tremendous economic
losses. Especially, the advent of the Internet of things
would make the threat increasingly serious. How to com-
bat Internet worms effectively is an urgent issue con-

fronted with defenders. Therefore, it is necessary to com-
prehend the long-term behavior of worms and to propose
effective strategies to defend against worms.

Based on the infectivity between a worm and a bio-
logical virus, some epidemic models representing worm
propagations were presented to depict the propagation
of worms, e.g., SIR model [15], SIRS model [9, 14],
SIQV model [24], SIDQV model [25], which all as-
sume that susceptible hosts can immediately translate
into infected ones. This assumption is unreasonable. Ac-
tually, it will take a certain time to send worm copies
to susceptible hosts. To overcome previous drawbacks,
some researchers added a state (E), namely the exposed
state, and then proposed some propagation models, e.g.,
SEIR model [10], SEIRS model [11, 13, 17], SEIQV
model [18], SEIQRS model [8], which assume that ex-
posed hosts can not infect other ones. Actually, an in-
fected host which is in latency can infect other hosts by
means of some methods, e.g., vulnerability seeking. All
the previous models do not take this passive infectivity
into consideration. Recently, Yang et al. [20, 21, 22, 23]
proposed some models, by taking into account the fact
that a host immediately possesses infectivity once it is
infected. These model, however, all make an assumption
that exposed hosts and infected hosts have the same in-
fectivity. This is not consistent with the reality. Although
an exposed host also sends scanning packets to find sus-
ceptive hosts with certain vulnerabilities, the scanning
packets sent by an exposed host are less than an infected
one. Usually, the infection rate of exposed hosts is less
than that of infected ones. Therefore, they should have
different infection rates.

Recently, more attention has been paid to the combina-
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tion of worm propagation model and countermeasures to
study the prevalence of worms, e.g., quarantine [24, 25]
and vaccination [4]. The implementation of quarantine
strategy relies on the intrusion detection systems (IDSes).
Intrusion detection systems can be classified into two cat-
egories: misuse and anomaly intrusion detection systems.
The former is mainly based on a database with the fea-
ture of known attack behaviors, which fails to detect new
ones. The latter can detect both novel and known worms,
but false positive rate is high. In summary, both classes of
intrusion detection systems have defects that affect their
performances.
SEIQV model [18] takes quarantine and vaccination

into consideration as the two main recovery countermea-
sures, and analyzes the global stability of its worm-free
equilibrium. Inspired by SEIQV model [18], we propose
a new extended model, referred to as e-SEIQV (suscepti-
ble - exposed - infected - quarantined - vaccinated) model.
In comparison with SEIQV model [18], the model pro-
posed takes two infection rates into account. Some sus-
ceptible hosts can be directly vaccinated. Using the ba-
sic reproduction number, we derive global stabilities of
a worm-free equilibrium and a unique endemic equilib-
rium by a Lyapunov function and a geometric approach.
Based on these results and further analysis, some effective
methods for controlling worms are recommended.

The rest of this paper is organized as follows. Section 2
formulates the new model and obtains its basic reproduc-
tion number. Section 3 proves the local and global stabili-
ties of the worm-free equilibrium. Section 4 examines the
local and global stabilities of the endemic equilibrium.
Section 5 covers the numerical analysis and the simula-
tions. Section 6 summarizes the paper with some future
directions.

2 Mathematical Model Formula-
tion

The total host populationN is partitioned into five groups
and any hosts can potential be in any of these groups at
any time t: the susceptible, exposed, infected, quaran-
tined, vaccinated, with sizes denoted by S, E, I, Q, V ,
respectively. The total number of population N at time t
is given by N(t) = S(t) +E(t) + I(t) +Q(t) + V (t). The
dynamical transfer of hosts is depicted in Figure 1.

In the model, susceptible hosts can be infected by
worms with efficient infection rates β1, β2 and become into
exposed ones and infected ones, or patched into the vac-
cinated state with rate ρ. ω is the transfer rate between
the exposed and the infected. Some exposed and infected
ones can be detected by a misuse detection system and
then constantly quarantined at rates α1, α2, respectively.
α1, α2 are determined by the misuse detection system,
which will become larger if the detection system is set to
be sensitive to worms’ activities. A high performance de-
tection system has higher detection rate and lower false
alarm rate. For example, the detection system should
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Figure 1: State transition diagram with quarantine

have larger α1, α2. Some hosts in the quarantined state
become vaccinated ones by repairing and then patching
at rate θ. Some infected hosts can be detected and then
manually patched at rate γ. The positive parameter µ is
the death rate in each of the five states. Some hosts enter
the network at the number Π, a fraction 1− p of which is
patched into the vaccinated state directly at ”birth”.

Based on the compartment model presented Figure 1,
our model having infected force in the exposed, infected
period is described by the following system of differential
equations:

S
′
(t) = pΠ− β1SE − β2SI − (ρ+ µ)S,

E
′
(t) = β1SE + β2SI − (ω + α1 + µ)E,

I
′
(t) = ωE − (γ + α2 + µ)I,

Q
′
(t) = α1E + α2I − (θ + µ)Q,

V
′
(t) = ρS + γI + θQ+ (1− p)Π− µV.

(1)

Summing the equations of System (1), we obtain

N(t)
′

= Π− µ(S + E + I +Q+ V ). (2)

Therefore, the total population size N(t) converges to
the equilibrium Π/µ. It follows from Equation (2) that
lim inft→∞N(t) ≤ Π/µ. We thus study our System (1),
in the following feasible region:

Ω = {(S,E, I,Q, V ) ∈ R5
+ : S+E+I+Q+V ≤ Π/µ},

which is a positively invariant set of Model (1). We next
consider the dynamic behavior of Model (1) on Ω. It is
easy to see that Model (1) always has a worm-free equi-
librium, P0 = (pΠ/(ρ+ µ), 0, 0, 0, Π

µ (1− p
ρ+µ )).

Let x = (E, I,Q, V, S)T , then Model (1) can be written
as

dx

dt
= F(x)− V(x),

where

F(x) =


β1SE + β2SI

0
0
0
0

 ,
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V(x) =


(ω + α1 + µ)E

(γ + α2 + µ)I − ωE
(θ + µ)Q− α1E − α2I

µV − ρS − γI − θQ− (1− p)Π
β1SE + β2SI + (ρ+ µ)S − pΠ

 .

Differentiating F(x) and V(x) with respect to
E, I,Q, V, S and evaluating at the worm-free equilibrium
P0 = (pΠ/(ρ + µ), 0, 0, 0, Π

µ (1 − p
ρ+µ )), respectively, we

have

DF(P0) =

(
F2×2 02×3

03×2 03×3

)
,

DV(P0) =


Y2×2 0 0 0

0 0 0

Y
′

3×2 θ + µ 0 0
−θ µ −ρ
0 0 ρ+ µ

 ,

where

F2×2 =

(
β1pΠ/(ρ+ µ) β2pΠ/(ρ+ µ)

0 0

)
,

Y
′

3×2 =

 −α1 −α2

0 −γ
β1pΠ/(ρ+ µ) β2pΠ/(ρ+ µ)

 ,

and

Y2×2 =

(
ω + α1 + µ 0
−ω γ + α2 + µ

)
.

FV−1 is the next generation matrix for Model (1).
Thus, the spectral radius of the next generation matrix
FV−1 can be obtained as,

ρ(FV−1) = ρ(F2×2Y
−1
2×2)

= pΠ(β1(γ+α2+µ)+β2ω)
(ρ+µ)(ω+α1+µ)(γ+α2+µ) .

According to Theorem 2 in [2], the basic reproduction
number of Model (1) is

R0 =
pΠ(β1(γ + α2 + µ) + β2ω)

(ρ+ µ)(ω + α1 + µ)(γ + α2 + µ)
. (3)

For the concision of notation, let m = ω + α1 + µ and

n = γ + α2 + µ. Thus R0 = pΠ(β1n+β2ω)
(ρ+µ)mn .

The first four equations in System (1) have no depen-
dence on the fifth one. Therefore, the fifth equation can
be omitted. Thus, System (1) can be rewritten as the
following four-dimensional system:

S
′
(t) = pΠ− β1SE − β2SI − (ρ+ µ)S,

E
′
(t) = β1SE + β2SI − (ω + α1 + µ)E,

I
′
(t) = ωE − (γ + α2 + µ)I,

Q
′
(t) = α1E + α2I − (θ + µ)Q.

(4)

Next, we will study the stabilities of worm-free equi-
librium and endemic equilibrium on System (4).

3 Stability of Worm-free Equilib-
rium

It is easily obtained that System (4) has a worm-free equi-
librium given by P0 = (pΠ/(ρ+ µ), 0, 0, 0).

Lemma 1. When R0 < 1, the worm-free equilibrium P0

is locally asymptotically stable in Ω. When R0 > 1, the
worm-free equilibrium P0 is an unstable saddle point.

Proof. The Jacobian matrix of Model (4) at P0 is

J(P0) =


−(ρ+ µ) − β1pΠ

(ρ+µ) − β2pΠ
(ρ+µ) 0

0 β1pΠ
(ρ+µ) −m

β2pΠ
(ρ+µ) 0

0 ω −n 0
0 α1 α2 −(θ + µ)


It is easily obtained that J(P0) has two negative eigen-

values λ1 = −(ρ+µ), and λ2 = −(θ+µ), the other eigen-
values of J(P0) are determined by the following equation

λ2 +(m+n− β1pΠ

(ρ+ µ)
)λ+mn− (nβ1 + ωβ2)pΠ

(ρ+ µ)
= 0. (5)

When R0 < 1, then mn > (nβ1 + ωβ2)pΠ/(ρ+ µ).
For mn > (nβ1 + ωβ2)pΠ/(ρ+ µ), we can obtain m+

n > n + β1pΠ/(ρ + µ) + pΠβ2ω/(ρ + µ), thus m + n −
β1pΠ/(ρ + µ) > n + β2pΠ/(ρ + µ) > 0, which means
the Equation (5) has two negative roots. Therefore, the
worm-free equilibrium P0 is locally asymptotically stable.

When R0 > 1, then mn− (nβ1 + ωβ2)pΠ/(ρ+ µ) < 0,
which means the Equation (5) has a positive root and a
negative root. Therefore, the worm-free equilibrium P0 is
unstable saddle point.

Lemma 2. When R0 ≤ 1, the worm-free equilibrium P0

is globally asymptotically stable in Ω. When R0 > 1, all
solutions starting in Ω and sufficiently close to P0 move
away from {P0}.

Proof. Consider the Lyapunov function

L =
β1n+ β2ω

mn
E +

β2

n
I.

Its derivative along the solutions to Model (4) is

L
′

= β1n+β2ω
mn (β1SE + β2SI −mE) + β2

n (ωE − nI)

= β1n+β2ω
mn (β1SE + β2SI)− (β1E + β2I)

= (β1E + β2I)(β1n+β2ω
mn S − 1)

≤ (β1E + β2I)(pΠ(β1n+β2ω)
mn(ρ+µ) − 1)

= (β1E + β2I)(R0 − 1)
≤ 0.

Furthermore, L
′

= 0 if and only if E = I = 0 or
R0 = 1. Thus, the largest compact invariant set in
{(S,E, I,Q)|L′

= 0} is the singleton {P0}. When R0 ≤ 1,
the global stability of P0 follows from LaSalle’s invariance
principle [5]. LaSalle’s invariance principle [5] implies that
P0 is globally asymptotically stable in Ω. When R0 > 1,
it follows from the fact L

′
> 0 if E > 0 and I > 0. This

completes the proof.
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4 Stability of Endemic Equilib-
rium

The endemic equilibrium P ∗(S∗, E∗, I∗, Q∗) of Model (4)
is determined by equations

pΠ− β1SE − β2SI − (ρ+ µ)S = 0,

β1SE + β2SI − (ω + α1 + µ)E = 0,

ωE − (γ + α2 + µ)I = 0,

α1E + α2I − (θ + µ)Q = 0.

(6)

By some simple computation, we obtain
S∗ = pΠ

R0(ρ+µ) ,

E∗ = (γ+α2+µ)I
ω = nI

ω ,

I∗ = pΠ(1−1/R0)ω
(ω+α1+µ)(γ+α2+µ) = pΠ(1−1/R0)ω

mn ,

Q∗ = (α1(γ+α2+µ)+α2ω)I
ω(θ+µ) = (α1n+α2ω)I

ω(θ+µ) .

(7)

Now we investigate the local stability of the endemic
equilibrium P ∗(S∗, E∗, I∗, Q∗). The Jacobian matrix of
Equation (4) at the endemic equilibrium P ∗ is

J(P ∗) =


B1 −β1S −β2S 0

β1E + β2I β1S −m β2S 0
0 ω −n 0
0 α1 α2 −θ − µ


(8)

where, B1 = −β1E−β2I − ρ−µ. Its characteristic equa-
tion is det(λI − J(P ∗)) = 0, where I is the unit matrix.
Therefore,

det(λI−J(P ∗)) = (λ1+θ+µ)(λ3+Aλ2+Bλ+C) = 0, (9)

where

A = n+ ρ+ µ+ β1E + β2I +
β2ωm

β1n+ β2ω
> 0,

B = β2mω
β1n+β2ω

(ρ+ µ+ β1E + β2I)

+ β1S(β1E + β2I) + n(ρ+ µ+ β1E + β2I)
> 0,

C = mn(β1E + β2I) > 0.

By a direct calculation, we obtain that AB − C > 0.
According to the theorem of Routh-Hurwitz [1], it fol-
lows that all the roots of Equation (9) have negative real
parts. Therefore, the endemic equilibrium P ∗ is locally
asymptotically stable.

From the above discussion, we can summarize the fol-
lowing conclusion.

Lemma 3. When R0 > 1, the endemic equilibrium P ∗ is
locally asymptotically stable in Ω.

Next, we apply the geometrical approach [7] to inves-
tigate the global stability of the endemic equilibrium P ∗

in the region Ω.

Theorem 1. [7] Consider the following systems:
x

′
= f(x), x ∈ Ω.

If the following conditions are satisfied:

1) The system (∗) exists a compact absorbing set K ⊂ Ω
and has a unique equilibrium P ∗ in Ω;

2) P ∗ is locally asymptotically stable;

3) The system (∗) satisfies a Poincaré-Bendixson crite-
rion;

4) A periodic orbit of the system (∗) is asymptotically
orbitally stable, then the only equilibrium P ∗ is the
globally asymptotically stable in Ω.

Lemma 4. If R0 > 1, the unique positive equilibrium P ∗

of Model (4) is globally asymptotically stable in Ω.

Proof. We only need to prove that all assumptions of The-
orem 1 hold.

If R0 > 1, then the worm-free equilibrium is unstable
according to Lemma 1. Moreover, the behavior of the
local dynamics near the region P0 described in Lemma
1 implies that Model (4) is uniformly persistent in the
region Ω. That is, there exists a constant c > 0, such
that any solution (S(t), E(t), I(t), Q(t)) of Model (4) with
initial value (S(0), E(0), I(0), Q(0)) in Ω satisfies

min{lim inf
t→∞

S(t), lim inf
t→∞

E(t), lim inf
t→∞

I(t), lim inf
t→∞

Q(t)} ≥ c.

This can be proved by applying a uniform persistent re-
sult in [3] and by the use of a similar argument as in the
proof in [6]. The uniform persistence of System (4) in the
bounded set Ω is equivalent to the existence of a com-
pact K ∈ Ω that is absorbing for System (4). During the
process of obtaining the endemic equilibrium P ∗, we can
know that P ∗ is the unique equilibrium in the interval
(0,Π/µ). Assumption (1) holds.

According to Lemma 3, we know that the endemic
equilibrium P ∗ is locally asymptotically stable in the re-
gion Ω. Assumption (2) holds.

The Jacobian matrix of Model (4) is denoted by Equa-
tion (8). Choosing the matrix H as H = diag(−1, 1, −1,
−1), it is easy to prove that HJH has non-positive off-
diagonal elements, thus we can obtain that System (4) is
competitive. This verifies the Assumption (3).

The second compound matrix J [2](P ∗) of J(P ∗) can
be calculated as follows:

J [2](P ∗) =


A1 β2S 0 β2S 0 0
ω A2 0 −β1S 0 0
α1 α2 A3 0 −β1S −β2S
0 b 0 A4 0 0
0 0 b α2 A5 β2S
0 0 0 −α1 ω A6


(10)

where,
A1 = −(β1E + β2I + ρ+ µ+m− β1S),
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A2 = −(β1E + β2I + ρ+ µ+ n),
A3 = −(β1E + β2I + ρ+ 2µ+ θ),
A4 = −(m+ n− β1S),
A5 = −(m+ µ+ θ − β1S),
A6 = −(n+ θ + µ),
b = β1E + β2I.

The second compound system of Model (4) in a peri-
odic solution can be represented by the following differ-
ential equations:

X
′
(t) = A1X + β2SY + β2SL,

Y
′
(t) = ωX +A2Y − β1SL,

Z
′
(t) = α1X + α2Y +A3Z − β1SM − β2SU,

L
′
(t) = bY + (β1S −m− n)L,

M
′
(t) = bZ + α2L+A5M + β2SU,

U
′
(t) = −α1L+ ωM − (n+ µ+ θ)U.

(11)

In order to prove that System (11) is asymptotically
stable, we consider the following Lyapunov function:

V (X,Y, Z, L,M,U ;S,E, I,Q)

= sup{|X|+ |L|+ |M |, E
I

(|Y |+ |Z|+ |U |)}.

By the use of the uniform persistence, we obtain that
the orbit of P (t) = (S(t), E(t), I(t), Q(t)) remains a posi-
tive distance from the boundary of Ω, thus, we know that
there exists a constant c satisfying

V (X,Y, Z, L,M,U ;S,E, I,Q)

≥ c sup{|X|, |Y |, |Z|, |L|, |M |, |U |},

for all (X,Y, Z, L,M,U) ∈ R6 and (S,E, I,Q) ∈ P (t).
For the differential equations in Equation (11), we can

obtain the following differential inequalities by direct cal-
culations:

[D+(|X|+ |Y |+ |Z|) ≤ −(2µ+ ω + α1)(|X|+ |L|

+|M |) +
E

I
(β1S + β2S

I

E
)

(|Y |+ |Z|+ |U |),
D+(|L|+ |M |+ |U |) ≤ ω(|X|+ |L|+ |M |)− (2µ

+α2 + γ)(|Y |+ |Z|+ |U |).

Then,

D+
E

I
(|Y |+ |Z|+ |U |) ≤ ω

E

I
(|X|+ |L|+ |M |)

+(
E

′

E
− I

′

I
− (2µ+ α2

+γ))
E

I
(|Y |+ |Z|+ |U |).

From the pervious formula, we can obtain

D+|V (t)| ≤ max{g1(t), g2(t)}V (t),

where,

g1(t) = −(2µ+ δ1 + ω) + (β1S + β2S
I

E
),

g2(t) = ω
E

I
+
E

′

E
− I

′

I
− (2µ+ α+ δ2 + p).

From Model (4), we can obtain

E
′

E
= β1S + β2S

I

E
− (ω + α1 + µ),

I
′

I
= ω

E

I
− (γ + α2 + µ).

Therefore,

g1(t) =
E

′

E
− µ, g2(t) =

E
′

E
− µ.

Then,∫ ζ

0

sup{g1(t), g2(t)}dt ≤ lnE(t)|ζ0 − µζ = −µζ < 0,

which implies that (X(t), Y (t), Z(t), L(t),M(t), U(t)) →
0, as t→∞. Thus, the second compound System (11) is
asymptotically stable. This verifies the Assumption (4).

We verify all the assumptions of Theorem 1. Therefore,
P ∗ is globally asymptotically stable in Ω.

5 Numerical Simulations

In this experiment, we choose the Slammer as basic be-
havior of a worm. To obtain the spread of worms in
a large-scale network, 1,000,000 hosts are selected as
the population size. According to the real conditions
of the Slammer worm, the worm’s average scan rate is
s = 4000 per second [12]. Slammer worm’s infection
rate can then be computed as β2 = s/232 = 0.00000093,
β1 = 0.0000009. At the beginning, the number of suscep-
tible, exposed, infected, quarantined and vaccinated hosts
are S(0) = 999, 990, E(0) = 0, I(0) = 10, Q(0) = 0 and
V (0) = 0, respectively. The quarantined rates of exposed
hosts and infected hosts are α1 = 0.0001 , α2 = 0.004 per
minute, respectively.

Other parameters in these simulations are given as fol-
lows: µ = 0.00001, ρ = 0.00002, θ = 0.005, ω = 0.05,
p = 0.1, γ = 0.001, where R0 = 0.677 < 1. The worm
will gradually disappear according to Theory 2. Figure 2
illustrates the number of susceptible, exposed and infected
hosts when R0 is 0.677. From Figure 2, we can clearly see
that the tendency of the worm propagation is depressive,
which is consistent with Lemma 2. Finally, all infected
hosts vanish, and become into vaccinated state. In or-
der to effectively defend against such worms, we must
adopt some feasible methods to decrease the infection
rate [16, 19] or increase the following parameters (e.g.,
the transfer rates between the exposed and the recovered,
between the exposed and the infected) to guarantee the
basic reproduction number R0 < 1.
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Figure 2: Globally asymptotically stable worm-free equi-
librium

When α1 = 0.02, α2 = 0.06, θ = 0.009, we can ob-
tain R0 = 2.654 > 1. Other parameters do not vary. We
can see the results in Figure 3. As can be seen from Fig-
ure 3, the number of susceptible and infected hosts even-
tually become positive values between 0 and Π/µ. S(t),
I(t), V (t) all approach their steady state, and the worm
persists. This is fully consistent with the conclusions of
Lemma 4.
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Figure 3: Globally asymptotically stable endemic equilib-
rium

In our model, the main defending method is the use
of quarantine strategy. There are two quarantined rates
in the proposed model. Intuitively, both of them all play
an important role in decreasing the number of infected
hosts. Next, we study the effect of the quarantined rates.
when α1 is equal to 0.0001, 0.001 and 0.01, respectively,
we can see the result in Figure 4. From Figure 4, we can
see that the quarantined rate α1 plays a minor role in
decreasing the number of hosts infected by worms. On
the other hand, a larger α1 might cause a higher false
alarm rate of the detection system, and block some users’
normal activities.

When we change the values of the quarantined rate α2,
e.g., 0.002, 0.004, 0.006 and 0.008, we obtain the result in
Figure 5. From Figure 5, it can be seen that the quaran-
tined rate α2 has an obvious significant effect on defending
worms. The larger the quarantined rate is, the less the
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Figure 4: Effect of quarantined rate α1

number of infected hosts are. The quarantined rate plays
an important role in containing the infected hosts. The
quarantined rate relies mainly on the accuracy of intrusion
detection systems. The detection rate depends mainly on
the quarantined rate α2 of infected hosts. That is, a more
effective detection rate will generate a larger quarantined
rate. We can improve the efficiency and decrease the false
positive of intrusion detection systems to obtain a larger
quarantined rate.
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6 Conclusions

This paper proposed an epidemic model to defend the
propagation of active scanning worms, which takes the
quarantine strategy into account. Firstly, we obtain the
basic reproduction number using the next generation ma-
trix. Next, with the help of the reproduction number, we
prove the stabilities of worm-free equilibrium and endemic
equilibrium. When the reproduction number is less than
or equal to one, our model has only a worm-free equilib-
rium which is globally stable, which implies the worm dies
out eventually; when the reproduction number is larger
than one, our model has a unique endemic equilibrium
which is globally stable, it implies that the worm per-
sists in the whole population and tends to a steady state.
Finally, simulation results are given to verify our conclu-
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sions. Our future work will expand this model which can
characterize more features of Internet worms, e.g., taking
delay or impulse into consideration.
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