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Abstract

Network vulnerabilities are common sources of many se-
curity threats. Attack models representing chains of all
possible vulnerability exploits by attackers can help locate
security flaws and pre-determine appropriate preventative
measures. To realize the full benefits of attack models, ef-
fective analysis is crucial. However, due to the size and
complexity of the models, manually pinpointing potential
critical attacks can be daunting. Thus, there is a need for
an automated analysis approach. Existing techniques are
either based on network topology alone or subjective prior
knowledge. They do not utilize domain-specific knowl-
edge. This paper presents an approach to automatically
ranking states in an attack model in the order of their
intrusion likelihoods. Using the degree of exploitability
of network vulnerabilities and the Markov property, the
proposed approach provides a tractable computation en-
hanced by domain-specific heuristic knowledge for esti-
mating such likelihoods. The paper discusses the details
of the approach, illustrates its use, and compares results
with a similar existing technique with experiments on its
performance.

Keywords: Attack graphs, security models, network vul-
nerability, network security, ranking algorithm

1 Introduction

Securing networks requires understanding of network vul-
nerabilities, which are common sources of many attacks.
Such vulnerabilities include exploitable errors in configu-
rations (e.g., ports and services enabled) or the network
service software (e.g., Apache Chunked-Code on Apache
web servers, buffer overflow on Windows XP SP2 operat-
ing environments, and TNS-Listener on Oracle software

for database servers). These vulnerabilities are unavoid-
able as long as we need the network to provide their cor-
responding services. Building attack models as chains of
all possible vulnerability exploits by attackers can help
security administrators locate security flaws and pre-
determine appropriate preventative measures. To fully
realize the practicality of attack models, effective analysis
is crucial. By analysis, we mean a systematic method for
extracting useful information for security management.

Much work in attack model analysis has been primar-
ily on visualization [9, 16, 17, 22]. Although this can help
security administrators assess overall threats to the net-
work, locating hazardous situations and locations to se-
cure networks is still a challenging task due to the size and
complexity of the attack models. Besides, visualization
often requires human expertise to observe and pinpoint
critical information. Thus, visualization can be time con-
suming and may produce inconsistent findings. There is a
need for an automated approach to attack model analysis
that can assess network security more effectively.

Several formal approaches to automatic attack model
analysis have been proposed using graph theory [10],
probabilistic analysis [21] and game theory [13]. The
probabilistic analysis by Sheyner et al. [21] estimates the
reliability of a given node (or state) in the attack model
(or attack graph) in term of the probability of an attacker
reaching his goal from the node. However, the assign-
ment of arbitrary prior probabilities of detecting each at-
tack action makes this approach ad-hoc as it relies on sub-
jective opinions. Jha et al. [10] introduced a graph-based
approach that identifies the smallest set of exploits to be
removed to prevent the network from all possible attacks
shown in a given attack model. The intent is to identify
the smallest set of counter-measures required to protect
the network. However, the choice of an appropriate set
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of counter-measures does not always depend on its size
alone. Furthermore, the approach is limited to directed
acyclic attack graphs (DAG). Lye and Wing [13] applies a
game theoretic approach to model “rational” interactions
between an attacker and a network administrator during
an attack attempt. Unlike others, this approach is not a
preventative approach and its application is restricted to
complete attack graphs.

A recent approach to attack model analysis aims to
efficiently rank the nodes of an attack model based on
the likelihood of an attacker reaching these states was
introduced by Mehta et al. [14]. The ranking provides
useful information for determining which attack path is
more vulnerable or requires more immediate attention for
network protection. The approach is based on PageR-
ank [4], a well-known link analysis algorithm for Google’s
web search engine. Unfortunately, their ranking results
are not always meaningful. This is because network in-
trusion does not have as much freedom as web browsing
where we can randomly visit any website via URLs. In
network intrusion, an attacker can only advance his attack
position to a node that has connectivity and vulnerabil-
ity to be exploited. Thus, the approach to computing the
probability of advancing each attack action to a new state
requires an adjustment. Mehta el al. introduced a mod-
ified ranking algorithm to address this issue. However,
all of the above approaches tend to view attack model
analysis as a general problem in graph theory and only
use structural topology of the attack model. None makes
use of domain-specific knowledge about network security
(e.g., vulnerability and degree of its exploitability) to ob-
tain more meaningful and accurate analysis.

This paper presents an approach to automatically an-
alyzing security attack models that ranks states in the
attack model in the order of their likelihoods of being in-
truded by an attacker. The proposed approach is most
similar to Mehta et al.’s approach [14]. However, there
are a few major differences that set this work apart from
previous work. First, we use knowledge about the ex-
ploitability of network vulnerability instead of subjective
or no prior domain-specific knowledge in estimating the
intrusion likelihoods as in Mehta et al.’s approach. In par-
ticular, our analysis proposes ExploitRank, a new heuris-
tic ranking algorithm that uses public information on the
Common Vulnerability Scoring System [7] as a measure
for quantifying the exploitability of network vulnerability.
Second, ExploitRank assumes that when an attacker has
no more vulnerability to exploit to advance to the next
state, he will give up on the current path and start find-
ing an alternative attack path from the beginning (i.e.,
at initial states). In contrast, Mehta el al.’s approach as-
sumes that an attacker may either persist on attacking
the same state (analogous to browsing a web page that
has links to itself) or decide to start over. We will show
that these slight differences yield drastically different re-
sults and that our approach produces results that better
match logics in our reasoning than those of Mehta et al.’s.
The paper has the following contributions:

1) An automated framework for protecting a computer
network against malicious attacks via attack models.

2) An enhanced ranking algorithm for analyzing large-
scale attack models by ranking possible attack states
based on their relative intrusion likelihoods.

The ExploitRank algorithm help provide priorities for
network security management. The rest of the paper is
organized as follows. Section 2 discusses related work.
Section 3 gives preliminary concepts. Sections 4 and 5
describe and illustrate our proposed approach with some
experimental results. Section 7 concludes the paper.

2 Related Work

Majority of research in attack model analysis includes vi-
sualization techniques [16, 17] that have been employed
to simplify an attack model. By grouping together nodes
that have the same characteristics (e.g., same locality)
into a single node, the resulting model is easier to view
and less complicated to find ways to prevent attack paths.
Because most graph visualization is semi-automated or
manual, it tends to be time consuming and the results
obtained can still be far too complex to be useful in prac-
tice. Our approach is automated and does not aim to
simplify the view of the model but helps locate critical
nodes.

Sheyner et al.’s probabilistic approach [21] employs
Markov Decision Process (MDP) to estimate reliability
of each node in the model with the probability of an at-
tacker reaching his goal from a given node. This approach
tends to be subjective and impractical since it requires as-
signments of arbitrary prior probabilities of detecting each
attack action. Our approach, however, does not require
such prior probability assignment.

A graph-based approach by Jha et al. [10] aims at find-
ing a minimum set of countermeasures to guarantee that
the attackers’ goal states will never be reached. This is
done by estimating the smallest set of attacks required to
protect the network along with the smallest set of coun-
termeasures to account for each of the attacks. Jha et
al.’s approach is limited to a DAG, where each attack
path, from an initial state to a goal state, is considered
only once, whereas our approach can be applied to any
attack graph topology.

Another approach to attack graph analysis aims at
ranking graph states by their likelihoods of being at-
tacked [14, 19]. Most of these ranking techniques are
based on the well-known PageRank algorithm [4] for rank-
ing web pages. Among these, the work that is most closely
related to our approach is Mehta et al.’s approach [14]
that modifies the transitions at the end of each attack
path to an initial state instead of every node as used in
PageRank algorithm. However, Mehta el al. treat each
node reachable from a given node to have the same degree
of vulnerability and exploitability. Unlike ours, none of
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the above approaches exploits domain-specific knowledge
about the exploitability of the network vulnerabilities.

3 Preliminaries

3.1 Terms and Concepts in Network Se-
curity

Network vulnerabilities refer to the weaknesses of a tar-
get system network, for examples, security flaws in server
software (e.g., Apache Chunked-Code, Oracle with TNS
Listener software) or network configurations (e.g., en-
abled ports and services). Known vulnerabilities are pub-
licly available (e.g., [5, 18]). Vulnerability can be ex-
ploited when its preconditions are satisfied. These pre-
conditions include connectivity, access privileges on rele-
vant hosts, and network or host configurations.

A vulnerability exploit refers to an attacker’s action
to advance his attack. Typically, an exploit involves
an attacking host (the source on which an attacker per-
forms an exploit), and a victim host (the destination on
which an attacker gains benefits after the exploit has been
carried out). An exploit has two modes: local and re-
mote. To attack, the network must have vulnerabilities
and an attacker must know how to exploit them. Note
that each exploit could involve one or more vulnerabili-
ties (e.g., the “Apache Chunked-Code Buffer Overflow”
exploit involves software vulnerability (e.g., Apache web
server software Version 1.3) and configuration vulnera-
bility (e.g., Apaches default port is enabled on a victim
host). Similarly, vulnerability could be involved in more
than one exploit.

An attack model or attack graph represents the be-
havior of attackers harming a network. Each node in
the graph represents a state, typically specified by the
relevant network attributes such as connectivity between
hosts and an attacker’s access privileges. Each link rep-
resents an action that an attacker takes to gain his access
control in the network. Starting from a set of initial nodes,
an attacker can take an action that exploits the network
vulnerability to reach a set of states satisfying the attacker
goal (e.g., obtain a root privilege on a database server).
There are various forms of attack graphs (e.g., access [1],
host-centric [8], and network-based [21]). However, they
all use the same level of abstraction of attacker’s actions.
Each attack model can have multiple initial states as well
as multiple goal states.

3.2 Link Analysis and the PageRank Al-
gorithm

Ranking web pages is an important function of an Inter-
net search engine. Approaches to ranking web pages are
based on a link analysis, where we assign weights to a
hyperlinked set of web pages to approximate the relative
importance of each web page within the set. Variations of
link-based ranking algorithms include PageRank [4] and

HITS [12]. Because of its accuracy and efficiency, the
Google’s PageRank algorithm becomes one of the most
predominant ranking algorithms, whose main concepts
will be briefly described below.

The rank value of a web page indicates a probability
that a web surfer randomly clicking on links will end up
visiting the page. Thus, the sum of page rank values over
all of the considered web pages must be one. It is assumed
that the initial approximation of this probability would be
equally distributed among all web pages in the considered
collection. PageRank algorithm simulates the clicking be-
havior of a web surfer who can visit a web page either via
an incoming link to the page or picking a URL of the page
at random. The surfer who randomly clicks on links will
eventually stop. At any surfing stage, a damping factor is
the probability that the web surfer will continue surfing
using hyperlinks.

Let rt(v) be the probability of visiting web page v at
the time t, d be a damping factor and V be a set of web
pages under consideration. For a page v, out(v) and in(v)
is a set of web pages in V with an outgoing link from v,
and an incoming link to v, respectively. The page rank
value is recursively defined and its computation can be
viewed as a Markov process whose state are pages and
the links between pages represent state transitions that
are equal probable. The PageRank ’s computation is given
in the Equation (1) below.

rt+1(v) = (1− d)
∑
u∈V

rt(u)

|V |
+ d

∑
u∈in(v)

rt(u)

|out(u)|
(1)

The second part of Equation (1) represents when the
surfer continues surfing (with probability d) to page v
at time t + 1 by clicking a hyperlink, at time t, from
each page u that has an outgoing link to v (i.e., u ∈
in(v)). Because the chance of clicking each of such page
u is equally likely, the probability of visiting v from each
such u is 1/|out(u)|, assuming that u has no more than
one link to v. Alternatively, the surfer may stop using
hyperlinks (with probability 1 − d) but visit page v at
time t+ 1 by using page v’s URL from any page that the
user is at time t. The probability of visiting v via URL
from any page is 1/|V | and thus, we obtain the first part
of the equation.

To satisfy the constraint that the sum of page rank
values over all of the considered web pages at any time
must be one, a web page that has no outgoing hyperlink
is assumed to have a link pointing to itself. To see this,
consider summing rt+1(v), from Equation (1), over all v.
Thus, the left side yields one by the constraint. On the
right side of the equation, the first part gives (1− d) and
the second part becomes:

d
∑
u∈V

∑
u∈in(v)

rt(u)

|out(u)|
= d

∑
|out(u)|6=0

rt(u). (2)

The second part as shown in Equation (2) needs an
additional term, d

∑
|out(u)|=0 rt(u), to produce a total of
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Figure 1: Hyperlinks of Web pages

d in the second part of the equation so that the right side
of the equation becomes one as desired. Thus, the extra
term is required for the constraint to hold. In fact, adding
this extra term is acquired by assuming for a page with no
outgoing link to have a self-loop link. With this assump-
tion, the constraint is satisfied. As a result, Equation (1)
can be simplified as the following.

rt+1(v) =
(1− d)

|V |
+ d

∑
u∈in(v)

rt(u)

|out(u)|
(3)

The above computation iterates over time to obtain
a stable estimate of the probability distribution of each
page’s visit by random clicking behaviors. Thus, the com-
putation terminates when there is no change in the prob-
ability distribution obtained.

We now give a small example to illustrate how the
PageRank algorithm works. Figure 1 shows a collection
of five web pages where a hyperlink between the pages is
represented by a directed edge.

Based on the above web page structure, we can create
a stochastic matrix (or transition matrix ) [2] A = (aij),
where aij represents a probability that a surfer makes a
transition from page i to page j. Here we assume that
each outgoing page from the same page has equal chance
to be visited. Thus, below is a stochastic matrix cor-
responding to the hyperlinks of web pages in Figure 1.
Here B has two outgoing links to page C and D. Thus,
aBC = aBD = 1/2. Stochastic matrix is used for comput-
ing transitions in each iteration step in a Markov process.



A B C D E

A 0 1 0 0 0
B 0 0 1/2 1/2 0
C 0 0 0 1/2 1/2
D 0 1/2 0 0 1/2
E 0 0 1 0 0


Initially at t = 0, each of the five pages has the same

ranking value of 1/5 because the probability of visiting
each page is equally likely and the sum of these proba-
bilities must be one. Using a commonly used value of
d = 0.85, at t = 1, the ranking values of pages A, B, C,
D and E obtained are 0.03, 0.285, 0.115, 0.200, and 0.370,

respectively. Table 1 summarizes the results up until it-
eration 15, where the ranking values no longer change.

Table 1: Ranking results of PageRank algorithm

t rt(A) rt(B) rt(C) rt(D) rt(E)

0 0.200 0.200 0.200 0.200 0.200
1 0.030 0.285 0.115 0.200 0.370
2 0.030 0.141 0.151 0.200 0.478
. . . . . . . . . . . . . . . . . .
14 0.030 0.099 0.072 0.103 0.696
15 0.030 0.099 0.072 0.103 0.696

As shown in the last column of Table 1, page E has
the highest value of 0.696 and therefore it has the highest
chance to be visited comparing to other pages. In fact,
the ranking order of these web pages, based on their visit
likelihoods, is E, D, B, C, A, respectively.

4 Proposed Approach

The proposed analysis applies domain-specific knowledge
to estimate the probability distribution of intrusion for
each attack state in a given attack model. Specifically, it
identifies, for each attack state, a relative chance of in-
trusion based on the degree of exploitability of its vulner-
abilities. This section describes two core components of
our analysis approach. Section 4.1 defines exploitability
as heuristics to be applied in the ExploitRank algorithm,
which is to be described in Section 4.2.

4.1 Exploitability

Our approach uses knowledge about existing network vul-
nerabilities that can be found in public databases. It is
well recognized that some vulnerability may be exploited
more easily than others. In fact, the complexity of the
vulnerability can affect its exploitability, which in turn
influences the chance of intrusion at different states of
the network attack.

We define exploitability(v) to be a function that mea-
sures a degree of difficulty in exploiting vulnerability v
with values ranging from zero to one (i.e., from the hard-
est to the easiest to exploit, or from the lowest to the
highest vulnerability). The Common Vulnerability Scor-
ing System (CVSS) [7] and severity factor provides a
standard for computing exploitability of various publicly
known vulnerabilities. Basic CVSS is based on vulner-
ability characteristics that are static over time and user
environments. There are three basic metrics: access vec-
tor, access complexity, and authentication.

Access vector represents difficulty from the access loca-
tion (e.g., local, adjacent network accessible, and network
accessible or remote) required to exploit the vulnerability.
The more remotely an attacker can exploit the vulnera-
bility, the greater the exploitability value will be. Ac-
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cess complexity indicates the level (i.e., low, medium and
high) of effort required to exploit the vulnerability after
an access to the target point is gained. For example, a
buffer overflow in an Internet server has low complexity
since the vulnerability can be exploited once an attacker
gains access of the server. The lower the complexity is,
the higher the exploitability will be. Finally, authentica-
tion is defined to measure the number of authentications
required (e.g., multiple instances, single instance, or no
instance) before network vulnerability can be exploited.
Based on the United State National Institute of Standard
and Technology [15], qualitative domain values of these
three CVSS metrics are quantified to numeric values as
the following:

Access Vector = case Access Vector of

Local access: 0.395

Adjacent network accessible: 0.646

Network accessible: 1.0

Access Complexity = case Access Complexity of

High: 0.35

Medium: 0.61

Low: 0.71

Authentication = case Authentication of

Multiple instances : 0.45

Single instance : 0.56

No authentication: 0.704

As an example, consider CVE-2006-5794, the Common
Vulnerabilities and Exposures (CVE) in the sshd Privi-
lege Separation Monitor in OpenSSH before Version 4.5.
This vulnerability can be exploited by network accessi-
ble (i.e., remote) with no authentication, and the method
to exploit this vulnerability is of low complexity. There-
fore, access vector, authentication, and access complexity
of this vulnerability is 1.0, 0.704 and 0.71, respectively.
Thus, given a severity factor of 20, the exploitability of the
CVE-2006-5794 vulnerability can be calculated as 20 ×
AccessV ector×AccessComplexity×Aunthentication =
9.9968. Note that the exploitability of the vulnerabil-
ity in [3, 8] has a maximum value of 10. To obtain
the exploitability value ranging to a maximum of one
as defined in this paper, we divide the resulting value
by 10. This gives the exploitability(CVE-2006-5794) =
0.99968, which indicates that CVE-2006-5794 has a high
exploitability degree and thus, high vulnerability (i.e.,
easy to exploit/attack).

4.2 The ExploitRank Algorithm

ExploitRank algorithm estimates the probability distri-
bution of intrusion for each attack state in a given attack
model by applying Markov model similarly to how PageR-
ank algorithm applies the model for ranking web pages.
However, there is a subtle difference between web surfing
behaviors and network attacking behaviors.

While a web surfer can randomly pick a web page to
visit via its URL, an attacker does not have the same
freedom. In fact, an attack model provides a constraint
of how an attacker can traverse among attack states. For
example, a surfer can arrive at any web page in one sin-
gle step via URL but an attacker requires more than one
step to advance to an attack state that the target sys-
tem is completely shut down (e.g., by first gaining access
privilege of the target system followed by a few steps to
exploit the target’s vulnerability). For this reason, we
cannot employ the same recurrences of Equations (2) and
(3) for ranking exploitability in attack states.

During an attack, an attacker has options to continue
or quit attacking on a current path. We assume that if
the attacker quits attacking on the current path (because
it is too hard to lead to his goal), he will attempt on an
alternative path by starting over from one of the set of
initial states. Each of the initial state has equal chance
to be a starting point of this new attempt. On the other
hand, if he continues attacking, he will advance to each
of the possible transition states with a probability based
on how hard its vulnerabilities can be exploited (see more
details later).

Based on a Markov model, we obtain Equation (4) and
Equation (5) for computing the probability distribution
of intrusion of a given attack model where we use the
exploitability of vulnerabilities at each attack state along
with the structure of the network. The computation gives
a relative chance of intrusion for each attack state, or,
roughly speaking, a ranking of the exploitability of attack
states in the attack model. Thus, it provides a basis for
the proposed ExploitRank algorithm.

For a given security model, let rt(v) be the probability
of intrusion of attack state v at time t, I be a set of initial
states and h(u, v) be the exploitability of a vulnerability
exploit from u to v as explained in Section 4.1. We define
rt(v), a ranking score of v at time t, recursively as follows:

Case 1: v is not an initial state

rt+1(v) =
∑

u∈in(v)

rt(u) · e(u, v) (4)

Case 2: v is an initial state

rt+1(v) =
∑

u∈in(v)

rt(u) · e(u, v) +

1

|I|

 ∑
u∈V

w∈out(u)

rt(u) · ē(u,w) +
∑
u∈V

out(u)=∅

rt(u)


(5)

where e(u, v) = h(u,v)
|out(u)| and ē(u, v) = 1−h(u,v)

|out(u)| .

When v is not an initial state, the only way to attack v
is by continuing exploiting a vulnerability from any state
u to v, where u was attacked in a previous step, i.e., u ∈
in(v). The likelihood of attack from each such u depends
on the chance to intrude u, i.e., rt(u), and the likelihood
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of each vulnerability exploit from u to v, i.e., e(u, v). The
latter depends on the chance of selecting the move from
u to v out of all possible moves from u, i.e., 1/|out(u)|
and the probability based on how hard it is to apply the
exploit, i.e., h(u, v), the exploitability of the vulnerability
exploit from u to v. Thus, we obtain Equation (4).

On the other hand, when v is an initial state, an at-
tacker can reach v in two ways. First, by continuing ad-
vancement from previously intruded state as derived in
Equation (4), we can obtain the first part of Equation (5).
The other way to reach v is based on our assumption that
when the attacker gives up on the current attack path, he
will start over from any initial state. Thus, the likelihood
to intrude each initial state v depends on the chance to
intrude any possible state u, i.e., rt(u), and the chance
that the attacker will not continue exploiting a vulnera-
bility from u to start over from v. If u has a vulnerability
exploit to w, i.e., w ∈ out(u) and u is not a terminal
node, then the chance of u not to continue with this ex-
ploit and start over at v (out of all possible initial states)

is 1
|I| ×

1−h(u,w)
out(u) . However, if u is a terminal node, u does

not have an out-going exploit and by our assumption,
the chance of the attacker not to exploit the vulnerability
from u is certain. Thus, the chance of u starting over at
v becomes 1/|I|. This gives Equation (5).

Based on the recurrence equation above, we construct
the ExploitRank algorithm as shown in Algorithm 1,
where all variables are as defined. Assume that any given
attack model can be represented as a graph, G(V,E),
where V and E represents a set of attack states and a set
of vulnerability exploits, respectively. ExploitRank takes
the attack model G with an exploitability degree cor-
responding for each possible connection between attack
states as inputs. The probability distribution of network
intrusion is computed recursively and iteratively using the
stochastic matrix, defined in line 22, until the process
reaches a stationary point in line 31. The algorithm pro-
duces a relative chance of intrusion at each attack state
in a given model. This can be viewed as ranking among
attack states in the order of the exploitability of their
vulnerabilities. Next we evaluate the proposed approach
by comparing the results obtained from the ranking be-
tween with and without the proposed heuristic (i.e., ours
vs. Mehta et al.’s approach).

Note that Mehta et al. adopted the assumption used
in PageRank algorithm where the attacker (or web surfer)
may still pursue attacking (surfing) the terminal state u
with probability d, the damping factor, leaving the chance
of attacking v to be 1 − d. This difference with our ap-
proach is shown in Figure 2, where A is an initial node.
In addition, Mehta et al.’s approach does not provide an
explicit formulation of the Markov model as expressed
in the equations here. More importantly, their approach
does not take the degree of the difficulty in exploiting the
vulnerability into consideration.

Algorithm 1 ExploitRank

1: Procedure ExploitRankG(V,E), h
2: I ← asetofinitialstates
3: A← zeromatrixofsize|V | × |V |
4: t← 0
5: for each v ∈ V do
6: r0(v)← 1/|V |
7: end for
8: for each u ∈ V and v ∈ V do
9: if u ∈ in(v) then

10: e(u, v)← h(u, v)/|out(u)|
11: end if
12: if v ∈ out(u) then
13: ē(u, v)← (1− h(u, v))/|out(u)|
14: else
15: ē(u, v)← 1 {u is a terminal node}
16: end if
17: if v /∈ I then
18: w(u, v)← e(u, v)
19: else
20: w(u, v)← e(u, v) + ē(u, v)/|I|
21: end if
22: a(u, v)← a(u, v) + w(u, v)
23: end for
24: repeat
25: for each v ∈ V do
26: for each v ∈ V do
27: rt+1(v)← a(u, v)× rt(u)
28: end for
29: end for
30: t← t + 1
31: until rt+1(v) = rt(v),∀v ∈ V
32: return rvt ,∀v ∈ V
33: end procedure

5 Illustration

This section illustrates the proposed approach in details.
Consider a simple but realistic network as shown in Figure
3, where there are two service hosts: IP1 and IP2, and
an attacker’s workstation, Attacker, connecting to each of
the servers via a central router. The network has a secu-
rity requirement that “no one can obtain a root privilege
access to host IP2 ”.

Three types of vulnerabilities detected by a scanner
(e.g., Nessus [3]): (1) CVE-2006-5794 (vulnerability in
the sshd Privilege Separation Monitor in OpenSSH Ver-
sion before 4.5) (2) CVE-2006-5051 (a signal handler race
condition in OpenSSH Version before 4.4), and (3) CVE-
2004-0148 (a configuration problem on the restricted-gid
option). The first two can be exploited remotely to by-
pass the authentication process (thus, maintain a user
access level in a victim host), and to obtain a denial of
service (thus, gain a root access level in the victim host),
respectively. Local users can exploit the last vulnerabil-
ity to bypass access restrictions by changing their access
permissions of a home directory via the ftp, which causes
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Figure 2: Comparing assumptions at a terminal node

Figure 3: A simple scenario

its service program, wu-ftpd to, instead, allow access of
the root directory. We annotate each configuration of the
network in Figure 3 with its corresponding vulnerabilities
and their associated labels. For example, IP2 has two
vulnerabilities, namely CVE-2006-5794 (or v1) and CVE-
2004-0148 (or v3). More details of these common standard
vulnerabilities are described in [7, 20]. Although our ap-
proach can be applied to any form of a security model,
in this study we use a host-centric attack graph model
[8]. Suppose the goal of an attacker is to violate a se-
curity requirement. Based on the network configurations
and the vulnerabilities shown in Figure 4, we can auto-
matically generate a host-centric attack model as shown
in Figure 4a) by employing a model-checking tool such as
NuSMV [6] as illustrated in [8].

Each state is labeled by a tuple representing a host
name and its access level obtained by an attacker. Thus,
(Attacker, root) is an initial state since an attacker has a
root access privilege on his own machine. The attacker’s
goal is to obtain a root access to IP2 and thus, (IP2,
root) represents a goal state. In Figure 4b), we rename
the states (Attacker, root), (IP1, root), (IP1, user), (IP2,
user) and (IP2, root) as s0, s1, s2, s3, and s4, respectively.

Table 2 shows the exploitability computed for each
of the relevant vulnerabilities obtained from publically
known CVSS as described in previous section. Based on
the heuristic values in Table 2, we obtained the corre-
sponding attack graph for analysis as shown in Figure
4b) by replacing a state transition of each vulnerability
exploit by a corresponding exploitability from Table 2.

The model obtained in Figure 4b) is used for comput-
ing a stochastic matrix A = (aij) in the ExploitRank al-
gorithm to estimate a probability of transitions between

Figure 4: Annotated attack model for analysis

Table 2: Vulnerability and exploitability

Vulnerability
Exploit

Vulnerability Exploitability

v1 CVE-2006-5794 0.99
v2 CVE-2006-5051 0.49
v3 CVE-2004-0148 0.39

any two attack states. The normalization is required so
that the sum of the probabilities of all possible transitions
from each state would be one. Note that for each applica-
ble exploit of exploitability p, an attacker has two possi-
ble transitions: pursuing the exploit to the next state with
likelihood p, or not pursuing the exploit and moving to an
initial state to start over with probability (1p). Therefore,
the sum of probabilities of all possible transitions for each
exploit is one. Thus, to obtain the normalized stochastic
matrix, each probability of exploit from state s to state
t is normalized by a total number of applicable exploits
from s. For example, in Figure 4b), there are three ap-
plicable exploits to advance from state s0, to states s1,
s2 and s3 with exploitability values 0.49, 0.99, and 0.99,
respectively. Thus, the probability of applying the exploit
to make a transition from s0 to s1 can be estimated from
the normalized heuristic value of 0.49/3 = 0.16. Simi-
larly, the transition probabilities from s0 to s2 and s3 can
be estimated to 0.33 and 0.33, respectively. By the above
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argument, it is clear that the probability of a transition
from s0 (an initial state) to s0 can be estimated from the
normalized sum of probabilities of not pursuing all the
three exploits from s0 yielding a likelihood of entering s0
to be (0.51 + 0.01 + 0.01)/3 = 0.18. These results are
shown in the first row of the matrix below.



s0 s1 s2 s3 s4

s0 0.18 0.16 0.33 0.33 0
s1 0.01 0 0 0.99 0
s2 0.26 0.245 0 0.495 0
s3 0.38 0.16 0.33 0 0.13
s4 1 0 0 0 0


Applying the above transition matrix to the Ex-

ploitRank algorithm, Table 3 shows the results of the in-
trusion probability distribution obtained by iteration. As
shown in Table 3, a steady state is reached in iteration 16,
where we obtain the intrusion likelihoods of each state.

Table 3: Computing intrusion likelihoods

t rt(s0) rt(s1) rt(s2) rt(s3) rt(s4)

0 0.200 0.200 0.200 0.200 0.200
1 0.366 0.113 0.132 0.363 0.026
2 0.265 0.148 0.240 0.297 0.047
. . . . . . . . . . . . . . . . . .
15 0.274 0.147 0.200 0.335 0.043
16 0.274 0.147 0.200 0.335 0.043

The results of ranking attack states in the host-centric
attack model are shown in the first column of Table 4. We
then apply Mehta et al.’s ranking approach that does not
employ the exploitability heuristic and obtain the results
in the second column of Table 4.

Table 4: Comparisons of ranking results

State Our approach Mehta et al.’s approach

s0 0.274 0.150
s1 0.147 0.145
s2 0.200 0.102
s3 0.335 0.209
s4 0.043 0.394

As shown in Table 4, using exploitability heuris-
tics (i.e., our approach) gives a ranking result of
〈s3, s0, s2, s1, s4〉, whereas not using any heuristics (i.e.,
Mehta et al.’s approach) gives a ranking result of
〈s4, s3, s0, s1, s2〉. Mehta el al.’s approach and ours sug-
gest that s4 and s3, respectively has the highest (relative)
likelihood of being attacked (i.e., most vulnerable). How-
ever, based on the structure of the attack model in Figure
4b), every path from s0 to s4 must pass thru s3. There-
fore, attacking s4 is harder than s3. Thus, the intrusion

likelihood of s3 should be higher than that of s4. This is
consistent with our ranking result but not Mehta et al.’s.

To further compare the two ranking results, both agree
that the initial state s0 is more vulnerable than s1, and s2
since the attacker has already intruded the initial state.
However, the ranking order between s1 and s2 are in con-
flict. Consider an attack from the initial state. As shown
in Figure 4b), to reach state s1 (e.g., from s0, s2 or s3) re-
quires exploiting vulnerability v2, whereas to reach state
s2 (e.g., from s0 or s3) requires exploiting vulnerability
v1. However, according to the CVSS standard, since
exploitability(v1) = 0.99 but exploitability(v2) = 0.49,
v1 is more vulnerable than v2. Therefore, intruding s2
(via v1) is easier than s1 (via v2). For example, from
initial state s0, reaching s2 requires v1 exploit compared
to a v2 exploit or a chain of v1 and v1 exploits to reach
s1. Therefore, s2 should rank higher than s1. This intu-
itive reasoning conforms to our ranking order but contra-
dicts with the ranking order produced by Mehta et al.’s
approach. In this particular example, using exploitabil-
ity heuristic based on vulnerability appears to offer more
sensible ranking results that obtained without the use of
heuristic knowledge.

6 Experiments

This section describes two sets of experiments to assess
the performance of our approach on relatively large at-
tack models. The first aims to evaluate ranking results of
relatively large attack model and the second focuses on
computational cost for large-scale models.

6.1 Ranking Large Models

Figure 5 shows an attack graph of 66 nodes studied in [23].
The graph was generated with a security property that the
intruder would never attain root privileges on the Linux
host. As described in [23], Figure 5 shows the shaded
nodes to signify areas that the intrusion detection system
(IDS) alarm has been sounded. Thus, it is possible for the
intruder to escape the detection by attacking a portion to
the right of the graph that is not “covered” by the IDS.
Figure 5 highlights an example of such an attack scenario
(a path with solid square nodes), where each attack step
identified by exploit number and name. Here the goal
states, shown by double circled nodes, are when the in-
truder violates the security property (i.e., he successfully
gains a root privilege on the Linux host). Here the attack
model has 16 goal states and one single initial state.

It is clear that making a decision on which vulnerability
and security flaws to fix first in order to effectively pro-
tect the network can be a complex task, especially when
dealing with a large attack model. In this context, we ran
the ExploitRank algorithm to rank nodes in the attack
graph in order of their intrusion likelihoods. To evalu-
ate the ranking results, since there is no known solution,
we compare our results with those obtained from Metha
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Figure 5: Attack model does not have a full coverage from an IDS [23]

et al.’s approach. Using the attack model, excluding the
root, of Figure 5, Figures 6 and 7 show results obtained
by Mehta et al.’s approach and ours, respectively.

Recall that Mehta et al.’s approach assumes that ev-
ery child node is equally likely to be attacked from the
parent node, whereas ours differentiates each possibility
based on the exploitability of a corresponding vulnerabil-
ity to be exploited. In this experiment, we assign three
exploitability values: 0.1, 0.3, and 0.7 as shown by a dash,
solid, and thick solid line to represent the exploit that is
hard, somewhat hard, and easy to perform, respectively.

Nodes with equal resulting likelihoods (ranking scores)
are labeled with the same rank. As shown in Figure 6,
ranking results of Mehta et al.’s approach are the same for
nodes that are on the same level with the same degrees of
exposure (i.e., incoming arrows), e.g., ranks 6, 14, 43, 53,
61, and so on. The reason for the former (nodes of the
same level are of the same rank) is because of the use of
Markov property where intrusion likelihoods of states in
a current level are impacted by only intrusion likelihoods
of states in a previous level, whereas the latter (nodes
of the same degree of exposure) is by the assumption on
equal likelihoods of attacks from a parent to every child.
However, in practice, this is highly unlikely the case, as
we know that intrusion likelihoods depend on types of
exploits and their exploitability degrees.

Figure 7 shows the ranking results obtained by our
approach using a random exploitability assignment as de-
scribed earlier. Glancing at the results, we no longer ob-
tain the same regularity as observed by Mehta et al.’s
approach. It is not necessary that nodes of the same level
and the same parent would have the same rank. Both
approaches give the root to have the highest rank since
it is the easiest to intrude (since the intruder is already
there). However, Mehta et al.’s results rank the four goal
states at the bottom to be next easiest to intrude. This

could be due to the persistence (damping) factor and the
assumption that attackers who intrude nodes with no out-
going link (terminal nodes) will persist on their attempt
to attack with a probability of the damping factor be-
fore giving up to start over (as shown in Figure 2). To
compare results of the two approaches in more details,
consider three representative scenarios as summarized in
Table 5. The number entries, as marked in Figures 6 and
7, represent ranking labels of the nodes, from left to right,
in the corresponding depth level of each scenario.

Table 5: Comparison of three ranking scenarios

Scenario Mehta et al.’s approach ExploitRank

Level 1 6, 6, 6 2, 1, 2
Level 4 53, 53 44, 56

Bottom level 4, 4 26, 32

Scenario 1 compares three nodes in Level 1 from the
root. Mehta et al.’s approach reports that the three nodes
are of the same rank. This is clearly wrong. In Figure 7,
node 1 has higher rank (more likely to be intruded) than
the other two nodes 2. This is because:

1) all the three nodes are intruded by exploiting vulner-
ability from the same node 0 (root), and

2) the second exploit has the highest exploitability de-
gree (i.e., easiest to intrude), therefore its destination
node 1 should have the highest rank.

Since the other two have the same exploitability that is
somewhat hard to exploit, they both must be of lower
rank than node 1, hence nodes 2.

Scenario 2 compares relative ranks of two nodes in
Level 4. In Figure 7, consider nodes 44 and 56. Both
have two incoming exploits from the same parent nodes
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Figure 6: Ranking results by Mehta et al.’s approach

at Level 3. However, both of the incoming exploits to
node 44 have exploitability of 0.3 (somewhat hard to ex-
ploit), while both of the incoming exploits to node 56 are
of exploitability 0.1 (hard to exploit). Therefore, node
44 has a higher order of intrusion likelihood than node
56 as ranked by our approach. However, Mehta et al.’s
approach results in equal rank for nodes 53.

Finally, Scenario 3 compares relative ranks of two ter-
minal nodes at the bottom level of the tree. In Figure
7, consider nodes 26 and 32. Since each can only be in-
truded by exploiting from its parent who has the same
intrusion likelihood (i.e., the same rank of 22), the des-
tination of a dark solid link (high exploitability of 0.7),
node 26 must be easier to intrude. Thus, node 26 has a
higher intrusion likelihood than node 32 as obtained by
our approach. Once again, Mehta et al.’s approach does
not distinguish such likelihoods. Based on the three case
scenarios, ExploitRank algorithm outperforms Mehta et
al.’s approach. Although we do not compare all possible
relative ranking results, we anticipate that our approach
would rank correctly based on the logics of our recurrence
formulae.

In addition, we have also experimented with a modi-
fied Metha et al.’s approach where exploitability is used
as a heuristic for estimating prior probability for an ex-
ploit. The ranking results of our approach still outperform
those of the modified Mehta et al.’s approach (not shown
here). For example, consider a relative ranking of 26 and
32 in Figure 7. The modified Metha et al.’s approach
that uses exploitability as heuristic gives the same rank-
ing score of 3 for these two nodes. This is clearly wrong
since both nodes have parents of the same ranking order;
each can be reached by a single exploit where one has
a higher exploitability degree than the other. Therefore,
the resulting ranks of these two nodes should be different.
The main distinction that contributes to this significant
difference is due to the fact that Mehta et al.’s approach
assumes that an attacker behaves like a surfer when he

reaches a terminal node in that there is a chance that we
would continue penetrating the node intrusion (or surfing
the site with the likelihood of a damping factor), while our
approach does not. As a result, Mehta et al.’s assump-
tion increases the intrusion likelihoods of terminal nodes
and lessens the impact of the degree of exploitability of
the exploits to reach these nodes. Unlike Mehta et al.’s
approach, we assume that the attacker starts over when
he reaches the terminal point of the attack path.

6.2 Performance on Large-scale Attack
Models

This section presents experiments to see if the proposed
approach can be computed efficiently enough to cope with
large-scale attack models. Our ExploitRank algorithm
was implemented using NodeJS language on Ubuntu
Linux machine with an Intel Core i5 CPU of 3.20 GHz
and 2 GB memory.

Table 6 shows a sample of running times of the imple-
mented algorithm with various sizes (number of nodes and
edges) of attack graphs. The edges were randomly gen-
erated. As shown in Table 6, while the size of the graph
roughly grows with a constant rate of four, the running
times grow approximately at the rates of 4, 5, 2 and 3.5,
respectively, making the ratios between the size growth
and the running time growth close to one (except for the
case of 1024 nodes).

Table 6: Running times of our ranking approach

#Nodes #Edges Graph Size Running
time (sec)

128 8,192 8,320 0.5
256 32,768 33,024 2.1
512 131,072 131,584 10.7

1,024 524,288 525,312 20.2
2,048 2,097,152 2,099,200 71.5
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Figure 7: Ranking results by ExploitRank algorithm

Figure 8: Performance of the ranking algorithm

To further evaluate the performance of our approach,
we ran 500 runs of experiments with various sizes of attack
models ranging from 60 to 501,000. Figure 8 shows the
resulting runtimes in milliseconds. The running time ob-
tained fits to an approximate linear equation: 0.0185n1.13,
where n is the attack graph size. Just like PageRank algo-
rithm that can handle ranking of a huge number of web
pages, based on similar concepts of Markov Model, our
ExploitRank algorithm can scale with linear time in size
of the graph. The advantage of ranking algorithm is that
one can give the number of top k nodes to be ranked.
This is useful when resources are limited.

7 Conclusions

We present an automated approach to attack model anal-
ysis that allows quantitative ranking of network nodes by
their intrusion likelihoods. What sets our approach apart
from the rest is our use of domain-specific knowledge that
can be obtained from public databases or derived in a
principled way from the structure of the network. The
approach is adapted from a Markov Model-based ranking
algorithm that is well-established tractable computational

model used for intractable problems (e.g., ranking web-
pages).

This paper differs from our previous work [11] in that
the previous work extends Mehta et al.’s approach to us-
ing the exploitability concept. However, as we have illus-
trated in this paper in the example in Section 6.1 that
the basic assumption adapted by Mehta et al.’s approach
is not appropriate for use in intrusion analysis. Future
work includes additional evaluations of the proposed ap-
proach by investigating a large network in real-world ap-
plications.
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