
International Journal of Network Security, Vol.17, No.4, PP.365-382, July 2015 365

Secure and Self-healing Control Centers of
Critical Infrastructures using Intrusion Tolerance

Maryam Tanha1, Fazirulhisyam Hashim2, and Shamala Subramaniam3

(Corresponding author: Maryam Tanha)

Department of Computer Science, University of Victoria1

Victoria, BC, Canada, V8P 5C2

(Email: tanha@uvic.ca)

Department of Computer & Communication Systems Engineering, Faculty of Engineering, Universiti Putra Malaysia2

43400 UPM Serdang, Selangor, Malaysia

Faculty of Computer Science and Information Technology, Universiti Putra Malaysia3

43400 UPM Serdang, Selangor, Malaysia

(Received Nov. 14, 2014; revised and accepted Jan. 16 & Mar. 6, 2015)

Abstract

Nowadays, critical infrastructures are highly integrated
with state-of-the-art information and communication
technologies to enhance their efficiency. Due to far-
reaching societal and economic impacts caused by failure
or malfunction of critical infrastructures, cyber security
and self-healing capability are among their salient fea-
tures. A new security paradigm referred to as intrusion
tolerance is envisaged to complement the existing secu-
rity solutions (i.e., intrusion prevention and detection),
as well as to provide availability and self-healing capa-
bilities, particularly for the control centers as the key
components of critical infrastructures. However, intru-
sion tolerance techniques are associated with substantial
cost. In this paper, we propose an intrusion tolerant sys-
tem architecture which incorporates distinctive features,
namely dynamic redundancy level, and hybrid and hier-
archical rejuvenation mechanism. The acquired results
from security analysis of the proposed architecture show
improvements compared to two established architectures.
Also, analysis of the incurred cost demonstrates the cost-
effectiveness of the proposed architecture.

Keywords: Control center, critical infrastructure, intru-
sion tolerance, self-healing

1 Introduction

In recent decades, the growing dependence of critical in-
frastructures on Information and Communication Tech-
nology (ICT) and open standards has raised serious con-
cerns about security issues. Critical infrastructures are
complex physical and cyber-based systems and assets that
lay the foundations for a modern society, and their se-
cure and dependable operation is of utmost importance

for national security and economy. Smart grid (as the
modern power grid), public health system, and transport
system are examples of critical infrastructures. Cyber
systems serve as the backbone of critical infrastructures,
thus cyber security incidents may not only affect the cy-
ber domain but also potentially impact their dependent
physical systems [37]. The cyber-physical dependencies,
large-scale operation, heterogeneity and complexity along
with sophisticated and novel attacks pose grave and new
threats to the mission critical applications in critical in-
frastructures.

Using open standard software and protocols have
opened avenues for attackers to pose dire threats to
different sections of critical infrastructures’ communica-
tion system, particularly SCADA and control systems.
Some of the recent high-profile attacks such as Stuxnet
worm [16,28] and FLAME [29] have been mainly targeted
at control systems of critical infrastructures and crucial
organizations. Moreover, the security objectives of crit-
ical infrastructures differ from the ICT security goals in
their order of significance. Availability, continuity of ser-
vice and safety are the main security priorities in critical
infrastructures.

On top of all the mentioned issues, the widespread and
socio-economic impacts of malfunction or failure of criti-
cal infrastructures resulting from accidental or malicious
events mandate more automatic and robust security so-
lutions [5, 40]. These security approaches can be asso-
ciated with self-healing capabilities of critical infrastruc-
tures. Self-healing responses to malicious acts of sabo-
tage and natural calamities is one the essential features
of critical infrastructures. Self-healing is defined as the
attribute of a system to be able to recognize abnormal
operation (the disturbances may result from security in-
trusions) and subsequently making proper adjustments to

International Journal of Network Security, Vol.17, No.4, PP.365-382, July 2015 366

restore to normal conditions [11]. Control centers are con-
sidered as the brain of critical infrastructures. They are
in charge of data analysis and decision making. For in-
stance, in smart grid as a critical infrastructure [2], based
on the assembled data, the control centers make appropri-
ate adjustments to power supply to satisfy demand as well
as spot and respond to the defects or failures by sending
control commands to field devices. Figure 1 illustrates a
control center which supervises other sections in a critical
infrastructure. This figure also depicts some of the key
components of the control center such as SCADA servers
and historian databases.

SCADA systems (as the key components of control cen-
ters) play a pivotal role in the proper operation of critical
infrastructures, any malfunction or failure of these sys-
tems and their underlying software systems may result in
widespread and devastating effects on industry, economy
and people’s daily life.

Therefore, the correct functioning of SCADA systems
in exigent security circumstances is of paramount im-
portance. Two of the dire threats to SCADA are De-
nial of Service (DoS) and unauthorized access/integrity
breach [23]. These threats will result in the unreliability
of the control signals from the monitoring system as well
as the collected data gathered from different sections of
critical infrastructures that are used for decision making
or other purposes.

In addition, thanks to the time-criticality of the com-
munication and control in some critical infrastructures
such as smart grid, a delay of a few seconds (following
from an availability attack) may lead to irreparable harm
to the national economy and security [18].

Communication Networks

Historian SCADA

Servers

Workstations

Other Application

Servers

Communication

Equipments

Control Center

Other Sections of

a Critical

Infrastructure

Corporate LAN

Firewall

Other Control

Centers

Figure 1: Control center in critical infrastructures

The aforementioned security concerns serve as con-
tributing factors to change our mind set about the level
of security that can be achieved through conventional se-
curity approaches (i.e., prevention and detection [15]) es-
pecially for critical infrastructures.

To satisfy the mentioned security requirements, a
promising mechanism called intrusion tolerance has come
to existence and it has received considerable attention in
recent years [3–5, 7, 20, 22, 26, 27, 31, 38, 40, 47]. Intrusion

tolerance is concerned with the fact that it is always prob-
able for a system to be vulnerable to security compromise
as well as for some attacks to be launched successfully
on a system [40]. In spite of these assumptions, intrusion
tolerance mechanisms ensure that the system prolongs its
normal activities (or acts in a degraded mode providing
only essential services) even when it is under attack or
partially compromised. Thus, rather than preventing in-
trusions from happening in the system, they are tolerated
by adopting and triggering appropriate mechanisms such
as redundancy, diversity, rejuvenation, and so on.

In this paper, we propose an Intrusion Tolerant Sys-
tem (ITS) architecture to enhance the availability and
self-healing capabilities of critical infrastructures while
decreasing the associated cost with intrusion tolerance
techniques.

The main contributions of our research can be summa-
rized as follows:

• We highlight the importance of intrusion tolerance
approach which raises the possibilities for enhanc-
ing the security of crucial components in critical in-
frastructures, particularly control centers and Super-
visory Control and Data Acquisition (SCADA) sys-
tems.

• An ITS architecture is proposed to enhance the level
of security in control centers of critical infrastruc-
tures.

• To provide the availability and self-healing capabili-
ties required by critical infrastructures, special focus
is placed on redundancy and rejuvenation as two in-
trusion tolerance techniques. Also, we propose dy-
namic redundancy level and hybrid and hierarchical
recovery algorithms to alleviate the substantial cost
associated with these techniques.

The paper is organized as follows. Section 2 provides
a detailed analysis of intrusion tolerance as a promising
security solution for critical infrastructures. Moreover,
the most commonly used intrusion tolerance techniques
are presented and a comparison is made between some
of existing ITS architectures. In Section 3, a detailed
discussion on the proposed intrusion tolerant architecture
(its modules and embedded algorithms) for control centers
of critical infrastructures is presented. The security and
cost analysis of the proposed ITS architecture is provided
in Section 4. Finally, Section 5 draws the conclusion. It
should be noted that the terms recovery and rejuvenation
are used interchangeably throughout this paper.

2 Intrusion Tolerance for Critical
Infrastructures

Intrusion tolerance is commonly referred to as the third
generation of security technologies [14] which provides
complementary features to conventional security mech-
anisms, i.e., prevention and detection. It shows enormous

International Journal of Network Security, Vol.17, No.4, PP.365-382, July 2015 367

potential to be adopted and deployed in critical infras-
tructures’ control centers in which the correct service and
availability is of great importance. The impacts of avail-
ability violation in critical infrastructures are substantial
and affect the physical world. The possible consequences
of service disruption in critical infrastructures range from
financial loss to human loss. As an instance in the context
of smart grid, a compromised server in control center may
result in sending misleading data to the field device. This
attack affects the availability (i.e., not allowing unautho-
rized access and providing correct service). The viable
consequences may be equipment damage (if control com-
mands that are sent to the field device lead to overload
conditions), blackouts or safety issues (if a line is ener-
gized while linemen are in the field servicing the line). To
increase the availability of critical infrastructures’ control
centers the self-healing capabilities are essential. Recov-
ery mechanisms enable the self-healing feature for critical
infrastructures, thus in this paper we placed especial fo-
cus on rejuvenation mechanisms in order to enhance the
availability.

Intrusion tolerance and its paradigms (e.g., replication
and recovery) enable secure and normal operation of the
control centers of critical infrastructures, even when the
system is being attacked or partially compromised. The
primary goal of intrusion tolerance is to tolerate malicious
events and sustained attacks as well as masking, removing
or recovering from intrusions. Thus, intrusion tolerance
measures avert security failures and aid to maintain the
availability of the system. Moreover, intrusion tolerance
places emphasis on the impact of the attack rather than
the cause of it [41].

During the last decade, various research have been
conducted on intrusion tolerance and multiple intrusion
tolerant architectures with specific features and applica-
tions have been proposed. The Willow architecture [17],
COCA [48], DIT [39], MAFTIA [34], SITAR [44],
SCIT [3], Crutial [5], FOREVER [30] and Generic in-
trusion tolerant architecture for web servers [27] exem-
plify a number of the proposed ITS architectures. Some
of these architectures are application-specific. For in-
stance, the goal of COCA is to provide a secure and
fault-tolerant Certification Authority (CA) while Cru-
tial is a distributed firewall-like intrusion tolerant system
for critical infrastructures protection such as power grid.
But primarily, enhancing the security and availability of
distributed services, Commercial Off The Shelf (COTS)
servers and critical information systems have called for
designing such architectures.

There are several intrusion tolerance techniques that
are commonly used in intrusion tolerant systems. Some
of the main techniques are as follows:

• Replication: Space redundancy or replication in-
volves physical resource redundancy which is a key
building block of many intrusion tolerant systems.

• Diversity: Replication suffers from the underlying
problem of fate sharing for replicas [33, 43]. If an

attacker discovers and exploits a vulnerability in one
replica, it is highly likely that all replicas are sus-
ceptible to the same threat. Thus, diversity (usually
in its most common form which is operating system
diversity [10]) serves as a solution to alleviate this
problem.

• Rejuvenation: Rejuvenation involves the restoration
of a replica to a pristine state to eliminate the likely
effects of intrusions or faults [43]. It can be triggered
reactively following from intrusion detection or car-
ried out proactively and periodically.

• Voting: Voting algorithms are employed to reach a
consensus on the valid and final output of non-faulty
replicated components in an ITS. Using Byzantine
Fault Tolerance (BFT) agreement protocols or some
criteria such as edit distance (e.g., hamming dis-
tance) and hash codes make the comparison feasible.
Voting contributes to masking and tolerating intru-
sions [43].

• Secret Sharing: Secret sharing or threshold scheme
is based on the idea of concealing a piece of informa-
tion by splitting it into several shares and distribut-
ing among participants in a manner that specific sub-
sets of the shares are required to rebuild the initial
data [1, 6, 25]. This intrusion tolerance technique
has been used in ITS architectures, e.g., COCA (a
distributed certification authority) and its main pur-
pose is providing confidentiality and integrity. Since
in this paper our main goal is to provide availability
and self-healing capabilities as the top security prior-
ities for the critical infrastructures, we do not include
secret sharing method in our proposed architecture.

• Proxy: Proxies serve as additional layers of defense
between replicated servers and clients.

3 Proposed ITS Architecture

Typical intrusion tolerant systems have single primary fo-
cus. For instance, Scalable Intrusion Tolerant Architec-
ture for Distributed Services (SITAR) is detection trig-
gered, and Self Cleansing Intrusion Tolerance (SCIT) is
recovery based. Some ITS architectures (e.g., Crutial) ap-
ply a hybrid rejuvenation approach (i.e., both proactive
and reactive recovery) that enhances the level of security,
but the complexity and cost of redundancy and recovery
increases enormously. Based on our feasibility studies,
using adaptive redundancy as well as a hybrid and hier-
archical rejuvenation approach assists in reducing the in-
curred cost. Also, the specific requirements of the critical
infrastructures’ control centers (e.g., self-healing capabil-
ities, delay sensitivity) underscore the need for a new ITS
architecture that suits these systems.

By securing the software systems that manage the sub
systems of the control centers, we would be able to mit-
igate the consequences of cyber security incidents that

International Journal of Network Security, Vol.17, No.4, PP.365-382, July 2015 368

Auditing

Replication &

Diversity

R1

R2

Rn

.

.

.

VotingInspector

Consolidator

Outgoing

Data

Incoming

Data

Proxy

Controller

P1

Pn

P2

.

.

.

OutgoingData

Incoming

Data

Reconfiguration

Automatic Rejuvenation

Proactive

Recovery

Reactive

Recovery

Process

Level

System

Level

Manual

Restoration
Process

Level

System

Level

Figure 2: The proposed ITS architecture

affect the physical domain (e.g., blackouts in smart grid)
and subsequently, enhancing the cyber-physical security
of critical infrastructures’ control centers. Our proposed
ITS encompasses a rich blend of a wide spectrum of dif-
ferent intrusion tolerance techniques. As illustrated in
Figure 2, the proposed system comprises five modules,
namely replication & diversity module, auditing module,
consolidator module, reconfiguration module and proxy
module. The role and working principles of the aforemen-
tioned modules are elucidated in the following sections.
In general, our proposed system is a security architecture
that can be hosted by a dedicated server (including au-
diting module, consolidator module, reconfiguration mod-
ule and proxy module) that manages a number of phys-
ical/virtual replicas (in replication & diversity module).
These replicas run one or more critical applications in
control centers as well as agents of the proposed ITS.

It should be noted that in the proposed ITS architec-
ture the emphasis is placed on offering algorithms for au-
tomatic and hierarchical rejuvenation as well as managing
replication and rejuvenation mechanisms cost-effectively.
This is due to the importance of availability and self-
healing capabilities for the critical infrastructure along
with addressing the issue of substantial cost incurred
by intrusion tolerance techniques. In essence, recovery-
oriented computing is a vital aspect of a self-healing sys-
tem [11] such as critical infrastructure. Intrusion toler-
ance techniques such as redundancy and rejuvenation con-
tribute towards provisioning availability and self-healing
characteristics. Moreover, to avoid the proposed ITS from
being compromised by the intruders, it is assumed that
all the components’ tasks and their communications are
performed in a trusted platform. Proxy module also helps
to enhance the security of the ITS.

3.1 Replication & Diversity Module

Replication in ITSs is usually integrated with Byzantine
Fault Tolerance (BFT) algorithms in which the number of
replicas is required to be 3f + 1 to tolerate f faulty repli-
cas. As a result, a fault/intrusion tolerant distributed
system is obtained which is enabled to tolerate f Byzan-
tine (i.e., arbitrary) faults. The aforementioned arbitrary
faults model accidental faults or malicious attacks and in-
trusions. Specifically, the key idea of BFT algorithms is
to enable a system to automatically continue correct op-
eration despite the fact that some of its components show
arbitrary, probably malicious behavior. BFT algorithms
have already been adopted to design intrusion tolerant
services such as network file systems, cooperative backup,
large scale storage and certification authorities [42].

The replication & diversity module consists of a num-
ber of replicas for a critical entity (usually a physical
server running crucial applications such as Master Ter-
minal Unit (MTU) or historian databases as shown in
Figure 1) in the control centers of the critical infrastruc-
tures. In addition, with regard to different levels of se-
curity needed in different points of the critical infrastruc-
tures, this module can be modified accordingly. The repli-
cas can be physically distributed (i.e., in different ma-
chines) for application such as automatic grid separation
in emergency states. As another example in the context
of smart grid, the replication module can be utilized in
substations with replicas as virtual machines running in
the same host. Although the system does not tolerate
physical faults, it may provide adequate protection for
substations in smart grid. Similar approach has been used
in [5].

In this module, the number of replicas is assumed to
be 2f +1+kmax (to tolerate f faulty/compromised repli-
cas provided that there are trusted components) and the
value of f and kmax (f, kmax ≥ 1) are indicated in the
deployment time. A similar approach also used to design
a distributed firewall-like protection device named Cru-
tial Information Switch (CIS) in [5]. kmax denotes the
maximum possible number of concurrent recoveries. The
reason why the value of kmax is added to the number of
replicas will be discussed in the reconfiguration module
section.

As mentioned before, diversity decreases the possibil-
ity of being vulnerable to the same intrusion for different
replicas. In the proposed ITS, all replicas have operat-
ing system diversity to decrease the probability of sharing
the same vulnerabilities. Operating system is considered
a vital element of each replica on account of hosting the
SCADA system and other critical components in control
centers. Subsequently, any misconfiguration or vulnera-
bility in it may bring down the SCADA system and causes
the adversaries achieve breakthroughs [23]. Hence, oper-
ating system diversity proves an appropriate approach for
applying diversity to replicas. However, the number of
existing and tailored operating systems are limited, thus
the diversity level is confined to this number. To have

International Journal of Network Security, Vol.17, No.4, PP.365-382, July 2015 369

an effective system using both redundancy and diversity,
the redundancy level and diversity level are expected be
equal. More specifically, if the total number of replicas is
assumed to be 2f + 1 +kmax, the ideal degree of diversity
should be the same. By using a different operating system
in each replica, it is less probable that the replicas suffer
from similar vulnerabilities. If the diversity degree is less
than redundancy degree, at least two replicas will have
the same operating system and consequently will experi-
ence the same fate in the event of intrusions. In contrast,
if we assume the diversity degree more than redundancy
degree, part of the diversity level is useless since it is not
applied to any replica.

3.2 Consolidator Module

In this module, the outputs are inspected and then con-
solidated into one. More specifically, this module aims at
examining the responses/outputs of the replicas to iden-
tify possible infected/compromised ones. It is composed
of the following sub modules.

• Inspector: Acceptance testing [45] as an intrusion tol-
erance technique is entailed in the inspector module.
It involves application-specific checks with regard to
the security policy to ensure the sanity of outgoing
data (e.g, control commands that are sent to sub-
stations in critical infrastructure) from the replicas.
Any symptom of security compromise detected by it
will trigger the reactive recovery sub module in the
reconfiguration module. In contrast with SITAR, ac-
ceptance testing is only performed on the outgoing
data in our proposed ITS architecture. This would
result in decreasing the delay imposed by the pro-
posed ITS for processing the incoming data in critical
systems such as smart grid control systems that are
delay sensitive. The incoming data must satisfy the
time requirements otherwise it is not useful. Also,
some preliminary check on the incoming data can be
performed by proxies. In contrast, due to the crucial
importance of the outgoing data which are usually
the control commands in critical systems their sanity
and correctness should be tested before letting them
leave the system.

• Voting: This sub module is intended for masking the
impacts of intrusions as well as ensuring the integrity
of replicas outputs. Based on a voting algorithm, it
seeks for the correct output by comparing the redun-
dant outputs from the active replicas that passed the
inspector. In this way, it will arrive at a consensus
on the final desired output to be passed to the proxy
module. This output can be a command or informa-
tion from the control centers destined for a device or
component in critical infrastructures.

3.3 Reconfiguration Module

Reconfiguration module consists of two sub modules
namely, automatic rejuvenation and manual restoration.
When the proposed ITS is able to mask an intrusion, it
uses the automatic rejuvenation sub module, otherwise it
takes advantage of restoration which involves human in-
tervention. Manual restoration happens when for instance
the system is targeted by DoS attacks and only capable
of provisioning the essential services. The sub modules
descriptions are provided in the following sections.

Automatic rejuvenation: Automatic rejuvenation
mostly addresses the required self-healing capabilities of
critical infrastructures. In the event of detecting an ab-
normal behavior of a replica or periodically, it triggers a
recovery for the respective replica. Also, automatic reju-
venation enables the concurrent rejuvenation of at most k
(1 ≤ k ≤ kmax) replicas out of 2f + 1 + kmax (total num-
ber of replicas). The assumption for the total number
of replicas eliminates the impact of compromised repli-
cas (at most f) and recovery on the availability of the
system. It should be noted that k has a fixed value in
Crutial (usually k = 1) whereas the value of k is dynamic
in our proposed ITS architecture.

In this module, a hybrid rejuvenation approach, i.e.,
proactive and reactive recovery, has been used to address
the shortcomings of the two aforementioned rejuvenation
approaches. Reactive recovery mainly relies on the un-
derlying intrusion detection methods and subsequently is
subjected to the same drawbacks such as inability to de-
tect unknown attacks and false positives. In contrast,
proactive recovery can compensate for dormant or un-
detected intrusions. By assuming an asynchronous dis-
tributed system model and proactive recovery and it is
not possible to guarantee that recoveries are performed
within known time bounds. Thus, we have used a hybrid
distributed system model that uses some trusted compo-
nents to ensure that replicas are always rejuvenated in
accordance to predefined time bounds.

A hybrid rejuvenation mechanism will enhance the per-
formance of the system through decreasing the possible
duration of time a compromised replica may disrupt the
normal operation of the system [31].

To come up with a cost-effective and hybrid rejuvena-
tion mechanism, we were inspired by a hierarchical re-
active recovery method that has been proposed recently
in [14]. This model eliminates the need for complete re-
covery when the system is partly compromised. The mer-
its of this model can be considered as reduced total re-
covery time, improved flexibility and dependability.

In the proposed ITS architecture, reactive recovery can
be triggered externally and at the system level by the
consolidator module or internally (within a replica) in a
hierarchical fashion (including process level recovery and
system level recovery). Proactive recovery is performed
periodically by choosing an active replica based on small-
est rejuvenation time stamp in a hierarchical manner. It

International Journal of Network Security, Vol.17, No.4, PP.365-382, July 2015 370

is triggered by the proactive recovery sub module of the
reconfiguration module. The details of the proposed re-
juvenation algorithm are provided in Section 3.6.

Manual restoration: This sub module is triggered
when the intrusion (whether detected or not) is non-
maskable (e.g., more than f replicas have been compro-
mised). This may cause the system to be in graceful
degradation mode, stopped functioning mode or complete
failure mode all of which require human intervention and
corrective measures to return to the normal working state.

3.4 Auditing Module

This module maintains audit logs for all modules. The
logs would be useful for security administrator to monitor
and analyze the operation of the system.

3.5 Proxy Module

The Proxy module is placed on the boundary of the ITS
architecture where the data comes in or goes out. The
proxy module shields the internal structure of the ITS
from attackers as well as acting as a load balancer.

The incoming data go through the proxy module as
the first layer of defense. This data is then forwarded
to the replication & diversity module to be dealt with.
Moreover, the control commands from the SCADA system
(outgoing data in Figure 2) pass the proxy to reach the
devices or other components of critical infrastructures.

Proxy module is composed of several proxies located in
different virtual machines that have diversity in their op-
erating systems and are managed by a controller. Proxies
can have three modes, namely online, offline, and cleans-
ing. The number of online proxies can be one or more
based on the decision of the controller. Depending on a
defined exposure time for proxies and a round-robin algo-
rithm, the controller deals with the rotation and chang-
ing turn between proxies [3]. When the exposure time
requirement for a proxy is met, it will go through the re-
juvenation process (or cleansing process) and will be in
cleansing mode. Then, its mode will be altered to offline
mode and it will be ready to be chosen by the controller
to go online.

3.6 Cooperative Operation of Replica-
tion and Reconfiguration Modules

In the proposed ITS architecture, we mainly focus on two
intrusion tolerance techniques, namely redundancy and
rejuvenation. The cooperative operation of replication
and rejuvenation module provides availability and self-
healing features in a cost-effective manner. This would
assist in enhancing the level of security while reducing
the cost.

Hybrid and hierarchical rejuvenation algorithm:
While in [14] the hierarchical recovery is performed at
three levels and only applies to reactive recovery, our pro-
posed algorithm employs a hierarchical recovery strategy
at two levels (i.e., process level and system level) for both
proactive and reactive rejuvenations. It should be noted
that a process is defined as an instance of a computer
program. A process can be a system process such as
a background process for logging and monitoring or an
application process such as Internet Explorer or any ap-
plication that is running on a SCADA server or other
application servers in a control center in critical infras-
tructure. Algorithm 1 shows the proposed hybrid and hi-
erarchical rejuvenation mechanism which is provided by
the cooperation of replication & diversity and reconfigu-
ration modules. Process manager is a module executed
in each active replica to handle the process level recovery.
At the deployment time, critical processes in the replicas
are identified. With regard to this, there are two sets of
processes, namely active set (includes running processes)
and standby set. To differentiate between reactive process
level recovery and proactive process level recovery, the
process manager includes two components, namely PLRR
(Process Level Reactive Recovery) and PLPR (Process
Level Proactive Recovery).

PLRR (Line 1 in Algorithm 1) acts as a type of host-
based IDS which features self-healing capabilities. Based
on a timeout period, it examines the pool of active pro-
cesses. In the event of finding any suspected process,
PLRR will obtain the relevant checkpoint, kills the pro-
cess and activates its peer from the standby set (if there
is any) otherwise the system level reactive recovery (SLR-
RTriggered denotes a system level reactive recovery) may
be performed.

PLPR (Line 15 in Algorithm 1) deals with process level
proactive recovery. After a timeout period which is set
in the proactive recovery sub module of the reconfigura-
tion module, a proactive rejuvenation signal is sent to the
replica with the least rejuvenation time stamp. In this
case, if there are standby processes available for all the
critical active processes, the PLPR will replace each ac-
tive process with its peer from the standby set in a similar
way to PLRR. However, if the aforementioned condition
is not satisfied, the proactive recovery (SLPRTriggered in-
dicates a system level proactive recovery) may be carried
out at system level for the respective replica.

The process level recovery is time-saving compared to
system level recovery as well as it is more secure since it
mainly involves internal information and communication
exchange in a machine. Moreover, it does not require the
replica to go offline for performing the recovery and causes
less overhead on the replica.

Dynamic redundancy level algorithm: The total
number of replicas represents the redundancy or diversity
level (we assume that they have the same value). The re-
dundancy level is a linear and increasing function of f and
k. However, increasing f will have more impact on the

International Journal of Network Security, Vol.17, No.4, PP.365-382, July 2015 371

Algorithm 1 Hierarchical recovery

1: Begin
2: if PLRR− timeout then
3: Detection&Polling();
4: for all the suspected processes (j) in replica i do
5: if Process[j].StandbyAvailable() then
6: Process[j].ObtainCheckpoint(Suspect);
7: Process[j].Kill(Suspect);
8: Process[j].ActivateStandby();
9: Reset respective recovery timer

10: else
11: Replica[i].SLRRTriggered = True;
12: Exit the for loop
13: end if
14: end for
15: end if
16: if PLPR− timeout then
17: Polling();
18: for all the processes (j) in replica i do
19: if Process[j].StandbyAvailable() then
20: Process[j].ObtainCheckpoint(Suspect);
21: Process[j].Kill(Suspect);
22: Process[j].ActivateStandby();
23: Reset respective recovery timer
24: else
25: Replica[i].SLPRTriggered = True;
26: Exit the for loop
27: end if
28: end for
29: end if
30: End

increase of the number of replicas compared to k. This
means that increasing f incurs more resource cost. Hav-
ing less impact on the resource cost, increasing the value
of k would lead to increase in the cost of recovery which
may be more preferable to the resource cost increase fol-
lowing from increasing the value of f .

Having a dynamic redundancy level is regarded as an
effective way to cut the resource cost and recovery cost
to a certain extent. An adaptive redundancy level algo-
rithm has been offered in [27] based on attack and alert
severity. It provides a triplex regime for critical applica-
tions, i.e., three web servers out of N web servers process
each client request. This regime can be dynamically in-
creased provided that the attack rate increased. After
a specific period of time with no compromise detection,
the regime will be decreased. Three algorithms for dy-
namic redundancy design have been presented in [24] for
NAN (Neighbourhood Area Network) gateways in crit-
ical infrastructure which considered availability thresh-
old and cost minimization. Our proposed dynamic re-
dundancy algorithm is integrated with recovery mecha-
nism and handled by the automatic rejuvenation module.
Considering the possible maximum redundancy/diversity
level (MaxRL = MaxDL = 2f + 1 + kmax) as an up-
per bound for the total number of replicas, the offered

adaptive redundancy level algorithm involves increasing
the value of k (Line 7 in Algorithm 2) based on the
number of system level recovery signals sent to the re-
configuration module. If the number of ongoing rejuve-
nations is equal to k and RL < MaxRL (RL denotes
redundancy level and it is equal to 2f + 1 + k which is
the number of active or under recovery replicas), then
a new incoming system level rejuvenation signal would
result in increasing the number of k by one, otherwise
(if k = kmax, i.e, RL = MaxRL) the recovery signal is
ignored by the automatic rejuvenation module. After a
time-out period, if the number of ongoing rejuvenations
is less than k, this value is reduced by 1. We can also
conclude that the number of standby replicas is calcu-
lated by subtracting the value of (RL) from the value of
(MaxRL) in each moment. Algorithm 2 illustrates the
adaptive redundancy algorithm.

Algorithm 2 Dynamic redundancy level

1: Begin
2: k = 1;
3: RL = 4;
4: MaxRL = 6;
5: while true do
6: if SLRRTriggered ‖ SLPRTriggered then
7: if OngoingRejs = k && RL < MaxRL then
8: k + +;
9: RL+ +;

10: OngoingRejs+ +;
11: Reset respective recovery timer
12: else
13: if OngoingRejs < k then
14: OngoingRejs+ +;
15: end if
16: end if
17: end if
18: if RL− timeout then
19: if OngoingRejs < k then
20: k −−;
21: RL−−;
22: end if
23: end if
24: end while
25: End

3.7 A Case Study: Trojan Horse Attack
on Smart Grid Control Centers

For the benefits of readers we describe the working prin-
ciple of the proposed ITS architecture by an attack sce-
nario in the context of smart grid. Suppose a possible
intrusion scenario in which an attacker (an outsider or a
malicious insider) has bypassed prevention or even detec-
tion mechanisms and has gained access to the SCADA
system in smart grid (this attack can be considered as
privilege escalation). Subsequently, he/she tries to infect
one or more replicas of a critical component. Figure 3

International Journal of Network Security, Vol.17, No.4, PP.365-382, July 2015 372

Figure 3: Case study: Trojan horse

depicts a SCADA server that has been compromised by
a Trojan horse. It is less probable that more than one
replica be infected by this attack since there is diversity
in the operating systems of the replicas (all of them are
not vulnerable to the same type of attack). We can con-
sider more than one type of attack (not only Trojan horse)
on the system but due to the diverse replicas it is highly
unlikely that more than one replica affected by the same
type of attack. As long as the current redundancy level
is less than or equal to the maximum allowed by the ITS,
there can be faulty replicas that have been intruded even
by more than one type of attack (whether unknown at-
tack or known attack). It is possible that the adversary
causes the replica become malfunctioned by running a
Trojan and changing some system files which may result
in sending inappropriate control commands (in case of
automatic operation). However, the command must first
pass the consolidator. It is highly probable that the com-
promised replica(s) being recognized (due to the fact that
the replicas have different operating systems, all of them
may not be infected by the same attack targeted at a
special type of vulnerability, and thus the generated re-
sponses would be different) by the inspector (using detec-
tion capabilities) and the infected replicas would undergo
reactive recovery. Another possibility is that the infected
outputs may be masked by the voting module. In addi-
tion, process manager running in each replica may detect
the infection and trigger the process level rejuvenation.
Even if the intrusion tolerance mechanisms fail to detect
the intrusion, it is possible that the attack’s impact is
masked through proactive recovery (whether at process
level or system level). During the performance of attack
masking measures by the proposed ITS, if the number
of required concurrent rejuvenations becomes more than
current RL (RL < MaxRL), the redundancy level will
be increased adaptively (at most up to MaxRL).

3.8 Comparison of Existing ITS Archi-
tectures and the Proposed ITS Ar-
chitecture

The intrusion tolerance techniques can be utilized to an-
alyze and compare different intrusion tolerant architec-

tures. Some representatives of existing ITS architectures
have been compared by conducting qualitative analyses
in [22,26]. Table 1 depicts such analysis with emphasis on
the paradigms of intrusion tolerance employed in several
ITSs. The spectrum of architectures have distinct fea-
tures. In this paper, we conduct a comparative analysis
to enable a clear reflection of their respective attributes.
Moreover, our provided comparison encompasses a higher
volume of ITSs.

As it can be seen in Table 1, replication and diver-
sity are the techniques adopted by almost all of the
ITSs. The adaptive redundancy that has been employed
in the ITS for web servers and our proposed architec-
ture contributes towards reducing the redundancy cost.
Although design diversity (e.g., using different operat-
ing systems) is the dominant type of diversity used by
the ITSs, FOREVER and Crutial can employ time diver-
sity (i.e., rejuvenation introduces diversity). Some ITSs
such as FOREVER, Willow and Crutial apply a hybrid
recovery method whereas others like SCIT only use proac-
tive recovery. To the best of our knowledge, none of the
existing ITSs utilizes the hierarchical recovery strategy
introduced in [14]. However, as mentioned earlier, our
proposed ITS architecture uses a hybrid and hierarchical
recovery approach which decreases the recovery cost. One
of the indirection techniques that is widely preferred is the
use of proxies as the mediator between the COTS servers
and the outside network. Intrusion detection methods
whether anomaly-based or signature-based are very com-
mon among the ITSs. Byzantine agreement algorithms
and secret sharing are the other intrusion tolerant mech-
anisms that have been implemented in some of the ar-
chitectures. Among the ITSs shown in Table 1, SCIT
and SITAR have drawn more attention in published in-
trusion tolerance research and investigated with regard
to their performance [9,19,21,38]. In addition, interested
readers can find useful hints about implementation of the
proposed architecture in existing architectures as stated
in [3, 5, 44, 46]. For instance, the SCIT has used Vir-
tual Box as the virtual machine monitor and setup four
Ubuntu 9.04 server edition on each machine. This ap-
proach may be applied to the replicated servers in our
proposed architecture.

4 Performance Evaluation

This section is divided into two parts namely, security
analysis and cost analysis. Security analysis using a semi
Markov model shows the effectiveness of the hybrid reju-
venation approach to enhance the security whereas cost
analysis demonstrates the cost-effectiveness of the pro-
posed algorithms.

4.1 Security Analysis

Security quantification of the proposed ITS architecture
is needed for assessing the outcome of the desired perfor-

International Journal of Network Security, Vol.17, No.4, PP.365-382, July 2015 373

mance measures as well as performance comparison with
other architectures. To achieve this goal, a state-space
model is developed that incorporates an attacker’s be-
havior along with the system’s response to an attack or
intrusion [9, 12, 19, 21, 38]. State transition diagrams as-
sist in the evaluation of the transitions impacted by the
inter-domain dependencies in the cyber-physical systems.
They describe how the attacker’s actions cause transitions
to failure states [32]. The main advantage of state transi-
tion models is the ability to provide a fine-granular system
description which includes the dynamic behavior of sys-
tem [13]. Moreover, these models are tailored to model
immense and complex systems such as the critical infras-
tructures. In this paper we utilize Semi-Markov Process
(SMP) which is a generalization of both continuous and
discrete time Markov chains which allows arbitrary state
holding time distribution functions, probably relying on
both the current state and on the state to be visited af-
terwards [8]. We place focus on the evaluation of the sen-
sitivity of the steady-state availability and Mean Time
To Security Failure (MTTSF) as performance measures
to variations in model parameters (i.e., pI and hG). The
same approach has been used in [19,21,38]. A comparison
between the proposed ITS and two of the existing ITSs,
namely SITAR and SCIT has been made using these pa-
rameters. The aforementioned architectures have been
chosen for comparison with our proposed ITS firstly, due
to their main focus on improving availability which is the
top security priority in critical infrastructures and sec-
ondly due to their popularity compared to other existing
ITS architectures. The analytical evaluation has been
carried out using MATLAB simulator.

4.1.1 System Model

The derived state transition diagram for the proposed
ITS is shown in Figure 4. Considering both reactive
and proactive intrusion tolerance measures (particularly
in terms of the hybrid rejuvenation mechanism as the case
in our proposed ITS and also in Crutial) differentiates this
state transition diagram from its peer in [19]. Thus, it
can serve as a generic model for analyzing the behavior of
various ITS architectures.This state transition diagram
incorporates different security related states of the ITS
and their respective interrelationships. Table 2 presents
these security states and their corresponding descriptions.

The system changes from one state to the other during
its functional lifespan following from normal usage, abuse,
maintenance and corrective measures, failures, and so on.
Therefore, the behavior of the system is portrayed as the
transitions between the states and each transition corre-
sponds to a specific event. Since the interval between the
transition from one state to the other (i.e., state holding
time or inter event time) is inclined to be random, its un-
derlying process is defined as a stochastic process [13].
In our system, this process is associated with arbitrary
probability distributions, thus, it can be modeled using
an SMP.

Table 2: Different states of the system and their
respective descriptions

State Description
G Good
V Vulnerable
I Intruded

DMC Detected Masked Compromised
UMC Undetected Masked Compromised
UNC Undetected Not masked Compromised
DNC Detected Not masked Compromised
GD Graceful Degradation
FS Fail-secure
F Failed

An SMP can be studied by finding the embedded dis-
crete time Markov chain that requires two sets of param-
eters [12,19]:

1) Mean sojourn time (i.e., state holding time) for each
state;

2) The transition probabilities between different states.

With respect to Figure 4, the Discrete Time Semi
Markov Model (DTSMM) possesses a discrete state space
Xs= {G, V, I, UMC, DMC, DNC, UNC, FS, F} for which
hi indicates the mean sojourn time in state i ∈ Xs and
pij represents the transition probabilities between states
i and j (i, j ∈ Xs).

4.1.2 Availability Formulation and Analysis

We analyze the sensitivity of the availability with respect
to two parameters, including the probability of intrusion
(pI) and the mean time to resist becoming vulnerable to
intrusions (hG) [35, 36]. The steady-state availability A
is defined as the probability that the system is in one of
normal functioning states. One approach to determine
the availability is to pinpoint what the unavailable states
(i.e., states FS, F and UNC) are. Thus, the steady-state
availability A can be formulated as,

A = 1− (πUNC + πFS + πF) (1)

where πi, i ∈ {UNC,FS, F} denotes the steady-state
probability of being in state i for the SMP, that can be
computed as,

πi =
νihi∑
νjhj

, i, j ∈ Xs (2)

where hi indicates the mean state holding time in state
i and νi denotes the embedded Discrete Time Markov
chain (DTMC) steady-state probability in state i. We
can derive νis from the following two equations,

ν = ν · P (3)∑
i

νi = 1, i ∈ Xs (4)

International Journal of Network Security, Vol.17, No.4, PP.365-382, July 2015 374

Table 1: Comparative analysis of intrusion tolerant architectures (Y: Yes, N: No, O: Optional)

COCA DIT Willow SITAR SCIT MAFTIA Crutial FOREVER ITS for web servers Proposed architecture
Replication Y Y Y Y Y Y Y Y Y Y
Diversity N Y Y Y O Y Y Y Y Y

Proactive Recovery Y Y Y N Y N Y Y Y Y
Reactive Recovery N Y Y Y N Y Y Y Y Y

Hierarchical Recovery N N N N N N N N N Y
Voting/BFT Agreement Y Y N Y N Y Y Y N Y

Proxy N Y N Y N N N N Y Y
Intrusion Detection Capabilities Y Y Y Y N Y Y Y Y Y

Secret Sharing Y N N N N Y N N N N

G V

DMC

I

GD

FS

F

UMC

UNC

DNC

pre-attack

actions

a successful

exploit or attack

happens

fixed before

successful attack d
etected

 m
ask

ab
le

gr
ac

ef
ul

deg
ra

dat
io

n

intrusion

treatment and

recovery without

degradation

fails while

provoking an

alarm

fail-secure detected

non-maskable

undetected

non- m
ask

able

undetected

maskable

manual

restoration

Figure 4: State transition diagram for the proposed ITS

where the P is the transition probability matrix of the
corresponding DTMC for the proposed ITS,

P =

G V I DMC UNC UMC DNC FS GD F

G 0 1 0 0 0 0 0 0 0 0
V 1− pI 0 pI 0 0 0 0 0 0 0
I 0 0 0 pDM pUN pUM pDN 0 0 0
DMC 1 0 0 0 0 0 0 0 0 0
UNC 1 0 0 0 0 0 0 0 0 0
UMC 1 0 0 0 0 0 0 0 0 0
DNC 0 0 0 0 0 0 0 pFS pGD pF

FS 1 0 0 0 0 0 0 0 0 0
GD 1 0 0 0 0 0 0 0 0 0
F 1 0 0 0 0 0 0 0 0 0

In this paper, the mean state holding times hi for all
the states of DTMC have been assumed to have the same
values as [19] except for the state UMC which is a new
state (corresponding to proactive recovery) for our pro-
posed ITS.

Finally, by using Equations (1)-(4), the steady-state
availability (AP) of our proposed ITS is computed as,

Ap = 1−
hUNCpIpUN + hFpIpDNpF + hFSpIpDNpFS

hG + hV + pI(hI + hDMCpDM + hUNCpUN + hUMCpUM

+ hDNCpDN + hGDpDNpGD + hFSpDNpFS + hFpDNpF) (5)

In a similar manner, the steady-state availability for
SITAR (ASITAR) and SCIT (ASCIT) are derived as,

ASITAR = 1−
hUNCpIpUN+hF

pIpDNpF + hFSpIpDNpFS

hG + hV + pI(hI + hDMCpDM + hUNCpUN + hDNCpDN

+ hGDpDNpGD + hFSpDNpFS + hFpDNpF) (6)

ASCIT = 1− hFpIpF

hG + hV + pI(hI + hUMCpUM + hFpF)
(7)

It should be pointed out that some of the transition
probabilities may have different values or even may not
be applicable for all three ITSs. This follows from the fact
that the three ITSs do not possess the same state space
(DTSMM’s state space for SITAR does not include state
UMC whereas SCIT does not contain the states DMC,
DNC, UNC, GD and FS).

In Figure 5, the availability for SCIT falls sharply when
the probability of intrusion increases compared to the
other two ITSs. This is due to the fact that SCIT lacks
detection capabilities and only uses periodic rejuvenation.
SCIT may alleviate the impacts of attacks on the system,
but it does not identify the type of attack (if it is a known
attack) to deal with it more appropriately (e.g., trigger-
ing recovery when an attack is detected). However, its
advantage is dealing with unknown attacks. Considering
Figure 5, availability performance of the proposed ITS

International Journal of Network Security, Vol.17, No.4, PP.365-382, July 2015 375

shows 0.6% and 36% improvement compared to SITAR
and SCIT respectively. Figure 6 shows the positive im-
pact of increasing the time that the system is in the good
state on the availability (i.e., the availability increases as
the hG rises). For larger values of hG, there is a slight
difference in availability performance of the three ITS. In
this figure, availability performance of the proposed ITS
presents 0.3% and 9% improvement compared to SITAR
and SCIT respectively. This is mostly due the use of the
hybrid and hierarchical recovery approach in the proposed
ITS. While proactive recovery (reflected in state UMC in
Figure 4) deals with dormant faults in the system or un-
known attacks against the system, reactive recovery (re-
flected in state DMC in Figure 4) eliminates the effects of
known attacks on the system.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 11
0.4

0.5

0.6

0.7

0.8

0.9

1

pI (Probability of Intrusion)

A
va

ila
bi

lit
y

SITAR
SCIT
Proposed ITS

Figure 5: Impact of probability of intrusion on
availability

0.5 1 2 3 4 5 6 7 8 9 10
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

hG (Mean Time to Resist Becoming Vulnerable to Intrusions)

A
va

ila
bi

lit
y

SITAR
SCIT
Proposed ITS

Figure 6: Impact of state holding time in state G
on availability

4.1.3 MTTSF Formulation and Analysis

MTTSF is defined as the mean elapsed time for the sys-
tem to reach one of the security-compromised states (also
called absorbing states), provided that the system begins
in state G [19]. In the context of critical infrastructure, it
can demonstrate the resiliency and robustness of the pro-
posed ITS for control centers’ critical components such
as SCADA and application servers. A secure and robust
ITS is expected to have a high MTTSF when facing intru-
sions. Using a similar approach to availability analysis,
we analyze the MTTSF with regard to pI and hG param-
eters. We take advantage of an SMP with absorbing and
transient states. In the state transition diagram shown in
Figure 4, the set of states Xa = {UNC, GD, FS, F} are
considered as the absorbing states (i.e., the probability of
moving out of these states is zero). These states indicate
the security compromised states. The rest of the states
are called transient states and denoted by Xt = {G, V,
I, UMC, DMC, DNC}. The transition probability Ma-
trix M exhibits the transition probabilities between the
transient states (i.e., Q) and the states originating from
transient states to absorbing states (i.e., C) in an orga-
nized form.

M =

 Q | C
−− | −−
0 | I

Matrixes Q and C are as follows:

Q =

G V I DMC UMC DNC

G 0 1 0 0 0 0
V 1− pI 0 pI 0 0 0
I 0 0 0 pDM pUM pDN

DMC 1 0 0 0 0 0
UMC 1 0 0 0 0 0
DNC 0 0 0 0 0 0

C =

UNC FS GD F

G 0 0 0 0
V 0 0 0 0
I pUN 0 0 0
DMC 0 0 0 0
UMC 0 0 0 0
DNC 0 pFS pGD pF

Then we can compute the MTTSF by the following

formula [19],

MTTSF =
∑
i∈Xt

Vihi (8)

where Vi indicates the average number of times the tran-
sient state i has been visited before the DTMC arrives
at one of the absorbing states and hi indicates the mean
state holding time in state i.

Let qi be the probability of start in state i (here, it
is assumed that the DTMC starts in state G) and qji be
the transition probability from the transient state j to the
transient state i. So, the Vis can be computed through
solving the system of equations,

Vi = qi +
∑
j

Vjqji, i, j ∈ Xt (9)

International Journal of Network Security, Vol.17, No.4, PP.365-382, July 2015 376

Finally, we use Equation (8) to calculate the MTTSF for
the proposed ITS as,

MP =
hGp
−1
I + hVp

−1
I + hI + hDMCpDM + hUMCpUM + hDNCpDN

1− pDM − pUM

(10)

Using the same approach, we derive the expression for
SITAR [19] and SCIT as follows,

MSITAR =
hGp
−1
I + hVp

−1
I + hI + hDMCpDM + hDNCpDN

1− pDM

MSCIT =
hGp
−1
I + hVp

−1
I + hI + hUMCpUM

1− pUM

As illustrated in Figure 7, MTTSF has a reciprocal
relationship with the probability of intrusion, i.e., it de-
creases as the probability of intrusion rises. The proposed
ITS architecture shows improved MTTSF with regard to
pI (17% compared to SITAR and 2% compared to SCIT)
since it has more security features (e.g., proactive and re-
active recovery) and thus more system states (correspond-
ing to tolerance measures) when dealing with intrusions.

As shown in Figure 8, MTTSF ascends when the sys-
tem spends more time in state G. In this graph, the proac-
tive rejuvenation in SCIT seems to have more effects on
the MTTSF when increasing the hG in comparison with
the reactive rejuvenation in SITAR. The acquired results
show that the stability of our proposed ITS is better than
the others. The improvement in MTTSF performance is
16% and 0.8% compared to SITAR and SCIT respectively.
The acquired results for MTTSF also prove the security
enhancement of the proposed architecture compared with
the other two systems. As mentioned in availability anal-
ysis, the masking capabilities (pM) of the proposed ITS
have been improved.

4.2 Cost Analysis

One of the downside of using intrusion tolerance is the
substantial cost incurred by the underlying techniques
such as redundancy and rejuvenation. Thus, the afore-
mentioned techniques should be used meticulously. The
proposed algorithms provide assistance for using redun-
dancy and rejuvenation in an efficient manner to decrease
the incurred cost. Since there is a trade-off between cost
and security, the proposed algorithms make an effort to
maintain an accepted level of security while reducing the
associated cost. We considered two types of cost (in terms
of overhead) as follows:

• Rejuvenation cost: The rejuvenation cost is repre-
sented by the number of system level rejuvenations.

• Redundancy cost: The redundancy level can be con-
sidered as a performance metric that can repre-
sent the incurred redundancy cost. It should be
noted that the redundancy level is influenced by both
proactive and reactive rejuvenation mechanisms since
they affect the number of concurrent rejuvenations.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 11
0

2

4

6

8

10

12

14

15

pI (Probability of Intrusion)

M
T

T
SF

SITAR
SCIT
Proposed ITS

Figure 7: Impact of probability of intrusion on
MTTSF

0.5 0.6 0.7 0.8 0.9 1
3.5

4

4.5

5

5.5

6

6.5

hG (Mean time to Resist Becoming Vulnerable to Intrusions)

M
T

T
SF

SITAR
SCIT
Proposed ITS

Figure 8: Impact of state holding time in state G
on MTTSF

To demonstrate the efficiency of the proposed algorithms,
a cost analysis is conducted using OMNeT++ simulator.
We consider six different simulation scenarios as follows:

• S1: Only system level proactive rejuvenation (as is
the case in SCIT)

• S2: Hierarchical proactive rejuvenation

• S3: Only system level reactive rejuvenation (it is used
as a part of reconfiguration measures in SITAR)

• S4: Hierarchical reactive rejuvenation

• S5: Hybrid system level rejuvenation (as is the case
in Crutial)

• S6: Hybrid and hierarchical rejuvenation (our pro-
posed algorithms)

International Journal of Network Security, Vol.17, No.4, PP.365-382, July 2015 377

In all scenarios, the adaptive redundancy level algorithm
is used. The primary factor that differentiates one sce-
nario from another is the type of employed rejuvenation
mechanisms. Moreover, it is assumed that the system is
under sustained attack (i.e., the incoming traffic to the
ITS always includes attack traffic as well). S6 is the sce-
nario that completely shows the proposed algorithms. S1

to S6 serve as proofs of concept for the impact of using
different recovery mechanisms on the incurred cost and
security of the system.

Other assumptions and simulation parameters are as
follows. The number of replicas (whether active or under
recovery), denoted by RL, at each moment during sim-
ulation is 2f + 1 + k with the minimum value of 4 (i.e.,
f, k = 1) and maximum value of 6 (i.e., MaxRL).The
traffic distribution follows Poisson process. The time
between arrivals are exponentially distributed with rate
2ms. It is assumed that with current parameters, no fail-
ure happens (i.e., meaning the attackers are not able to
compromise more than f replicas in a way that the in-
fected replicas cannot be detected or the impact of the
intrusion cannot be masked). So, the system will always
be available and operates correctly. Moreover, the possi-
ble results will be calculated as the average over 10 runs
except for the S1 and S2 in which no randomness is used
and therefore repeating the experiment will not affect the
results. The default parameters used in our simulation
are tabulated in Table 3.

Table 3: Simulation assumptions

Parameter value

Number of runs 10

f 1

k 1,2,3

MaxRL (MaxDL) 6

Redundancy level (RL) 4-6

Number of active replicas at the beginning of the simulation 4

Simulation time 21600s

Number of critical processes in each replica 5

Number of backups for each process in per replica 3

Replica processing time exponential(0.003s)

Process level reactive rejuvenation period 300s

Process level proactive rejuvenation period 240s

System level rejuvenation time 600s

4.2.1 Simulation Results and Discussion

This section demonstrates the efficacy of the proposed
algorithms using different scenarios.

Rejuvenation cost: Figure 9 illustrates the number of
performed system level rejuvenations in distinctive sce-
narios respectively. It is shown that the total number
of carried out system level rejuvenations have been de-
creased in S6 (in which our proposed hybrid and hier-
archical recovery is used). Thus, the rejuvenation cost
is reduced while the security and resiliency enhanced us-
ing a hybrid and hierarchical rejuvenation approach. Al-
though in S2 the number and time duration of recoveries
have minimum value, the level of security and tolerance

is not satisfactory because the system only uses hierarchi-
cal proactive recovery and it does not possess detection
capability.

But as a virtue, S2 shows the effectiveness of hierarchi-
cal proactive recovery in terms of rejuvenation cost reduc-
tion compared to S1. This is also applicable to S4 which
demonstrates the desired effect of hierarchical reactive re-
covery compared to S3 in which only system level reactive
recovery is employed. Nevertheless, S4 still suffers the
problem of not being able to handle unknown and novel
attacks as well as false positives. Also, S5 (which uses hy-
brid system level rejuvenation) shows reduced rejuvena-
tion overhead compared to S1 and S3 in which proactive
and reactive system level recovery have been employed
respectively.With regard to the aforementioned issues, we
can draw the conclusion that the limitations of the first
five scenarios are alleviated in S6.

S1 S2 S3 S4 S5 S6
0

10

20

30

40

50

60

70

80

90

R
ed

un
da

nc
y

C
os

t

Scenario

Figure 9: Rejuvenation cost in terms of the number of
performed system level rejuvenations in each scenario

Figure 10 illustrates a detailed view of the provided
results in Figure 9. In fact, the total number of reju-
venations in each scenario is gained from calculating the
average values of these parameters for each replica over
10 simulation runs and then summing the averages (ex-
cept for S1 and S2 as mentioned earlier). Furthermore,
the redundancy level is reflected in Figure 10 by showing
zero number of recoveries and zero rejuvenation time for
the sixth replica in S1 and S2, i.e., the redundancy level is
5 (RL = 5) in these scenarios. This is mostly due to the
inability of detection in these scenarios that would result
in less number of performed concurrent rejuvenations and
consequently less changes in the in the redundancy level.

Process level and system level rejuvenations: Fig-
ure 11 displays a view of the average number of performed

International Journal of Network Security, Vol.17, No.4, PP.365-382, July 2015 378

 S1 S2 S3 S4 S5 S6
0

5

10

15

20
Replica 1

 S1 S2 S3 S4 S5 S6
0

5

10

15

20
Replica 2

 S1 S2 S3 S4 S5 S6
0

5

10

15

20
Replica 3

A
ve

ra
ge

 N
um

be
r

of
 S

ys
te

m
 L

ev
el

 R
ej

uv
en

at
io

ns

 S1 S2 S3 S4 S5 S6
0

5

10

15

20
Replica 4

A
ve

ra
ge

 N
um

be
r

of
 S

ys
te

m
 L

ev
el

 R
ej

uv
en

at
io

ns

 S1 S2 S3 S4 S5 S6
0

5

10

15

20
Replica 5

Scenario
 S1 S2 S3 S4 S5 S6

0

5

10

15

20
Replica 6

Scenario

Figure 10: Average number of performed system level rejuvenations per replica for each scenario

process level rejuvenations and the average number of sys-
tem level rejuvenations in scenarios that features hierar-
chical recovery, i.e., S2, S4 and S6. In all three scenarios,
most of the rejuvenations are carried out at process level.
This shows the impact of hierarchical recovery on the re-
duction of recovery overhead resulting from system level
rejuvenations (in S1, S3 and S5 all the rejuvenations are
done at system level). In S6, the average number of pro-
cess level rejuvenations has been increased compared to
S4 and consequently the average number of system level
recoveries and rejuvenation overhead has been decreased.
Although in S2, the average number of system level re-
juvenations is less than its peer in S6, it does not satisfy
the required level of security due to lack of detection abil-
ities. Moreover, the average number of system level re-
juvenations in S2 depends on the frequency of triggering
proactive recovery as well as the number of redundant pro-
cesses related to each critical process in a replica. Assume
there is a fixed number of redundant (backup) processes
for each process. In this case, increasing the frequency of
triggering proactive recoveries would result in the rise in
the number of system level rejuvenations. In contrast, if
the frequency of proactive recovery is constant, then in-
creasing the number of backup processes assigned to each
process, would reduce the number of system level recov-
eries (while increasing the number of process level recov-
eries). As it is shown in Table 3, the number of replicated
processes is 4 for each crucial process in a replica. This
means that it is expected to have on average of 4 process
level rejuvenations per system level rejuvenation in S2.
This deterministic relation follows from the fact that S2

only employs proactive recovery approach and it does not

involve any randomness. Figure 11 confirms this matter
for S2. Although this relation is not deterministic for S4

and S6, with regard to Figure 11 we can roughly conclude
that 2 and 3 process level recoveries are performed per
system level recovery in S4 and S6 respectively. Obvi-
ously, S6 shows less system level recovery cost in this case
(more number of process level recoveries per system level
recovery).

S2 S4 S6
0

10

20

30

40

50

60

70

80

90

100

110

Scenario

N
um

be
r

of
 R

ej
uv

en
at

io
ns

Process Level
System Level

Figure 11: Average performed process level
rejuvenations compared to system level rejuvenations

International Journal of Network Security, Vol.17, No.4, PP.365-382, July 2015 379

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

10

20

30

40

50

60

70

80

False Positive Rate

U
nd

es
ir

ed
 R

ea
ct

iv
e

R
ej

uv
en

at
io

n
C

os
t

S3
S4
S5
S6

Figure 12: The impact of false positive rate on the
undesired reactive recovery overhead

Undesired reactive rejuvenation cost: The false
positive rate of the underlying detection mechanisms is
an important factor that affects the reactive rejuvenation
overhead. With respect to false positive and true pos-
itives, we can divide the reactive rejuvenation cost into
two parts, namely desired reactive rejuvenation cost re-
sulting from true positives and undesired reactive rejuve-
nation cost because of false positives. Therefore, as it is
shown in Figure 12, the less the false positive rate is, the
less the undesired rejuvenation cost would be in scenar-
ios S3-S6. S1 and S2 are not shown in this figure since
they only contain proactive recovery. S4 and S5 show al-
most the same behaviour since proactive rejuvenation in
S5 has minor impact on decreasing the number of sys-
tem level reactive recoveries in this simulation; however,
as mentioned earlier the security has been enhanced in
S5. Moreover, because the number of performed reactive
recoveries in S3-S5 are more than S6, the undesired reac-
tive rejuvenation cost is increased sharply when the false
positive rate rises. Thus, a fool-proof ITS is expected to
have intrusion detection method with low false positive
rate which subsequently result in less undesired reactive
rejuvenation cost.

Redundancy cost: The average redundancy level at
the end of simulation in different scenarios shows the effect
of recovery mechanisms on the redundancy level (when
the system is under attack). As shown in Figure 13, while
the redundancy levels have the values of 5 and 4 for S1 and
S2 respectively, the other four scenarios end up with level
6 which is the maximum value. Thus, in this simulation
the effect of reactive recovery and hybrid recovery mecha-
nisms on the redundancy level is more than the proactive

S1 S2 S3 S4 S5 S6
0

1

2

3

4

5

6

R
ed

un
da

nc
y

C
os

t

Scenario

Figure 13: Average redundancy level at the end of
simulation in each scenario

recovery mechanism. When the system is armed with de-
tection capabilities and reactive rejuvenation as well as
proactive recovery, the possibility of increase in redun-
dancy level is more (more attacks can be handled suc-
cessful by the ITS). This follows from the fact that the
ITS tries to adapt itself to the situation to maintain the
desired availability. Thus, it increases the number of si-
multaneous rejuvenations which will have direct impact
on the redundancy level.

0 2,000 4,000 6,000 8,000 10,000 12,000 14,000 16,000 18,000 20,000 22,000
3

4

5

6
S1 (Rejuvenation Period < Rejuvenation Time)

0 2,000 4,000 6,000 8,000 10,000 12,000 14,000 16,000 18,000 20,000 22,000
3

4

5

6
S1 (Rejuvenation Period = Rejuvenation Time)

0 2,000 4,000 6,000 8,000 10,000 12,000 14,000 16,000 18,000 20,000 22,000
3

4

5

6
S1 (Rejuvenation Period > Rejuvenation Time)

Time (s)

R
ed

un
da

nc
y

L
ev

el

Figure 14: Proactive rejuvenation frequency impact on
the redundancy level (S1)

As a proof of concept, the impact of proactive recov-
ery (S1 and S2) on the redundancy level changes can be

International Journal of Network Security, Vol.17, No.4, PP.365-382, July 2015 380

0 2,000 4,000 6,000 8,000 10,000 12,000 14,000 16,000 18,000 20,000 22,000
3

4

5

6
S2 (Rejuvenation Period < Rejuvenation Time)

0 2,000 4,000 6,000 8,000 10,000 12,000 14,000 16,000 18,000 20,000 22,000
3

4

5

6
S2 (Rejuvenation Period = Rejuvenation Time)

0 2,000 4,000 6,000 8,000 10,000 12,000 14,000 16,000 18,000 20,000 22,000
3

4

5

6
S2 (Rejuvenation Period > Rejuvenation Time)

Time (s)

R
ed

un
da

nc
y

L
ev

el

Figure 15: Proactive rejuvenation frequency impact on
the redundancy level (S2)

shown. As it has been depicted in Figures 14 and 15, the
frequency of proactive rejuvenation has a direct impact
on the redundancy level and subsequently on the number
of concurrent system level rejuvenations. Three cases can
be considered as follows:

1) Rejuvenation period < rejuvenation time: if this con-
dition is met, then the probability of redundancy
level changes is increased. This is due to the fact
that most of the time the number of concurrent re-
juvenations (i.e., k) is more than 1. That is, while
one or more rejuvenations are in progress, another
rejuvenation is triggered. In Figure 14, the number
of redundancy level changes is more than its peer in
Figure 15. This follows from the adoption of hierar-
chical proactive recovery in S2 compared to S1 that
decreases the number of system level rejuvenations
and the possibility of having more than one simulta-
neous rejuvenation. This also affects the maximum
redundancy level during simulation time which is 6
for S1 and 5 almost all the time for S2. With regard
to the aforementioned issues, the conclusion can be
drawn that the redundancy cost has been declined in
S2.

2) Rejuvenation period = rejuvenation time: In this
situation, the maximum redundancy level is 5 for
both S1 and S2. Also, the shifts in redundancy level
have been reduced for both scenarios. However, it
is more tangible in S2 which involves hierarchical
rejuvenation. Obviously, S2 shows less redundancy
overhead compared to S1. Concerning the incurred
redundancy cost, this condition can be considered
as a moderate situation. Nevertheless, if the time
needed by an adversary to break into the system is
less than the time between two successive recoveries

(between two process level or system level recoveries
or between a process level and a system level recov-
ery) and the maximum redundancy level (i.e., 6) is
reached, the required security level of the system will
not be satisfied.

3) Rejuvenation period > rejuvenation time: Figures 14
and 15 illustrate no redundancy level change for S1

and S2 in this situation. So, the redundancy cost is
minimum (the maximum redundancy level is 4 and
the value of k is always 1). In spite of this advan-
tage, as mentioned before, the security requirements
may not be satisfied (the intrinsic trade-off between
security and cost).

5 Conclusion

Cyber security of critical infrastructures is a hot research
area due to the fact that these systems are tightly coupled
with ICT. The security incidents in cyber domain may
affect the physical world and may subsequently lead to
nationwide and disastrous consequences such as cascaded
failures in the whole system. The possible ramifications
would be financial loss or even loss of lives. Thus, this
paper provided an in-depth research on the significance
of using intrusion tolerance as a security approach to im-
prove the security of critical infrastructures’ control sys-
tems. An ITS architecture was proposed to be adopted
in control centers’ critical components. Using different
intrusion tolerance techniques such as replication and di-
versity (along with dynamic redundancy level), hybrid
and hierarchical recovery made the proposed ITS out-
perform two of well-known architectures, namely SITAR
and SCIT. To investigate the effectiveness of the afore-
mentioned features, analytical modelling and cost analy-
sis were conducted. The acquired results demonstrated
decrease in the incurred cost by intrusion tolerance tech-
niques enhancement while maintaining an appropriate
level of security.

References

[1] N. Al Ebri, J. Baek, and C. Y. Yeun, “Study on
secret sharing schemes (SSS) and their applications,”
in International Conference for Internet Technology
and Secured Transactions (ICITST’11), pp. 40–45,
2011.

[2] M. Badra and S. Zeadally, “An improved privacy so-
lution for the smart grid,” International Journal of
Network Security, vol. 17, no. 4, pp. 1–8, 2015.

[3] A. K. Bangalore and A. K. Sood, “Securing
Web servers using self cleansing intrusion tolerance
(SCIT),” in Second International Conference on De-
pendability (DEPEND’09), pp. 60–65, 2009.

[4] A. N. Bessani, “From Byzantine fault tolerance to in-
trusion tolerance (a position paper),” in IEEE/IFIP

International Journal of Network Security, Vol.17, No.4, PP.365-382, July 2015 381

41st International Conference on Dependable Sys-
tems and Networks Workshops (DSN-W’11), pp. 15–
18, 2011.

[5] A. N. Bessani, P. Sousa, M. Correia, N. F. Neves, and
P. Verissimo, “The crutial way of critical infrastruc-
ture protection,” IEEE Security & Privacy, vol. 6,
no. 6, pp. 44–51, 2008.

[6] T. Y. Chang, M. S. Hwang, W. P. Yang, “An im-
proved multi-stage secret sharing scheme based on
the factorization problem,” Information Technology
and Control, vol. 40, no. 3, pp. 246–251, 2011.

[7] Y. Deswarte and D. Powell, “Internet security: An
intrusion-tolerance approach,” Proceedings of the
IEEE, vol. 94, no. 2, pp. 432–441, 2006.

[8] S. Distefano, F. Longo, and K. S. Trivedi, “Investi-
gating dynamic reliability and availability through
state–space models,” Computers & Mathematics
with Applications, vol. 64, no. 12, pp. 3701–3716,
2012.

[9] T. Dohi and T. Uemura, “An adaptive mode con-
trol algorithm of a scalable intrusion tolerant archi-
tecture,” Journal of Computer and System Sciences,
vol. 78, no. 6, pp. 1751–1774, 2012.

[10] M. Garcia, A. Bessani, I. Gashi, N. Neves, and R.
Obelheiro, “Analysis of operating system diversity
for intrusion tolerance,” Software: Practice and Ex-
perience, 2013.

[11] D. Ghosh, R. Sharman, H. R. Rao, and S. Upad-
hyaya, “Self-healing systems survey and synthesis,”
Decision Support Systems, vol. 42, no. 4, pp. 2164–
2185, 2007.

[12] C. Griffin, B. Madan, and T. Trivedi, “State space
approach to security quantification,” in 29th Annual
International Computer Software and Applications
Conference (COMPSAC’05), vol. 2, pp. 83–88, 2005.

[13] B. E. Helvik, K. Sallhammar, and S. J. Knapskog,
“8 Chapter - Integrated Dependability and Security
Evaluation Using Game Theory and Markov Mod-
els,” in Information Assurance, pp. 209–245, Morgan
Kaufmann, Burlington, 2008.

[14] J. H. Huang and F.-F. Wang, “The strategy of
proactive-reactive intrusion tolerance recovery based
on hierarchical model,” in Web Information Systems
and Mining, vol. 6987 of Lecture Notes in Computer
Science, pp. 283–293, 2011.

[15] P. Kabiri and A. A. Ghorbani, “Research on in-
trusion detection and response: A survey,” Inter-
national Journal of Network Security, vol. 1, no. 2,
pp. 84–102, 2005.

[16] S. Karnouskos, “Stuxnet worm impact on indus-
trial cyber-physical system security,” in 37th Annual
Conference on IEEE Industrial Electronics Society
(IECON’11), pp. 4490–4494, 2011.

[17] J. C. Knight, J. Hill, P. Varner, A. L. Wolf, D. Heim-
bigner, and P. Devanbu, “Willow system demonstra-
tion,” in Proceedings of DARPA Information Sur-
vivability Conference and Exposition (DISCEX’03),
vol. 2, pp. 123–125, 2003.

[18] X. Li, X. Liang, R. Lu, X. Shen, X. Lin, and H. Zhu,
“Securing smart grid: Cyber attacks, countermea-
sures, and challenges,” IEEE Communications Mag-
azine, vol. 50, no. 8, pp. 38–45, 2012.

[19] B. B. Madan, K. Goševa-Popstojanova,
K. Vaidyanathan, and K. S. Trivedi, “A method
for modeling and quantifying the security at-
tributes of intrusion tolerant systems,” Performance
Evaluation, vol. 56, no. 1-4, pp. 167–186, 2004.

[20] A. Nagarajan and A. Sood, “SCIT and IDS archi-
tectures for reduced data ex-filtration,” in Interna-
tional Conference on Dependable Systems and Net-
works Workshops (DSN-W’10), pp. 164–169, 2010.

[21] Q. Nguyen and A. Sood, “Quantitative approach to
tuning of a time-based intrusion-tolerant system ar-
chitecture,” in 3rd Workshop Recent Advances on
Intrusion-Tolerant Systems (WRAITS’09), pp. 132–
139, 2009.

[22] Q. L. Nguyen and A. Sood, “A comparison of
intrusion-tolerant system architectures,” IEEE Se-
curity and Privacy, vol. 9, no. 4, pp. 24–31, 2011.

[23] A. Nicholson, S. Webber, S. Dyer, T. Patel, and
H. Janicke, “SCADA security in the light of cyber-
warfare,” Computers & Security, vol. 31, no. 4,
pp. 418–436, 2012.

[24] D. Niyato, P. Wang, and E. Hossain, “Reliability
analysis and redundancy design of smart grid wire-
less communications system for demand side man-
agement,” IEEE Wireless Communications, vol. 19,
no. 3, pp. 38–46, 2012.

[25] J. Pieprzyk and X. M. Zhang, “Ideal secret sharing
schemes from permutations,” International Journal
of Network Security, vol. 2, no. 3, pp. 238–244, 2006.

[26] S. B. E. Raj and G. Varghese, “Analysis of intrusion-
tolerant architectures for web servers,” in Interna-
tional Conference on Emerging Trends in Electrical
and Computer Technology (ICETECT’11), pp. 998–
1003, 2011.

[27] A. Saidane, V. Nicomette, and Y. Deswarte, “The
design of a generic intrusion-tolerant architecture for
web servers,” IEEE Transactions on Dependable and
Secure Computing, vol. 6, no. 1, pp. 45–58, 2009.

[28] J. T. Seo and C. Lee, “The green defenders,” IEEE
Power and Energy Magazine, vol. 9, no. 1, pp. 82–90,
2011.

[29] sKyWIper Analysis Team, “sKyWlper (a.k.a. Flame
a.k.a. Flamer): A complex malware for targeted at-
tacks,” tech. rep., Laboratory of Cryptography and
System Security (CrySyS Lab), 2012.

[30] P. Sousa, A. N. Bessani, and R. R. Obelheiro, “The
FOREVER service for fault/intrusion removal,” in
Proceedings of the 2nd workshop on Recent advances
on intrusiton-tolerant systems (WRAITS;08), pp. 1–
6, New York, USA, 2008.

[31] P. Sousa, A. N. Bessani, M. Correia, and N. F.
Neves, “Highly available intrusion-tolerant services
with proactive-reactive recovery,” IEEE Transac-
tions on Parallel and Distributed Systems, vol. 21,
no. 4, pp. 452–465, 2010.

International Journal of Network Security, Vol.17, No.4, PP.365-382, July 2015 382

[32] S. Sridhar, A. Hahn, and M. Govindarasu, “Cyber
physical system security for the electric power grid,”
Proceedings of the IEEE, vol. 100, pp. 210–224, Jan.
2012.

[33] J. P. G. Sterbenz, D. Hutchison, E. K. Çetinkaya,
A. Jabbar, J. P. Rohrer, M. Schöller, and P. Smith,
“Resilience and survivability in communication net-
works: Strategies, principles, and survey of disci-
plines,” Computer Networks, vol. 54, no. 8, pp. 1245–
1265, 2010.

[34] R. Stroud, I. Welch, J. Warne, and P. Ryan, “A
qualitative analysis of the intrusion-tolerance capa-
bilities of the MAFTIA architecture,” in Interna-
tional Conference on Dependable Systems and Net-
works (DSN’04), pp. 453–461, 2004.

[35] M. Tanha and F. Hashim, “An intrusion tolerant sys-
tem for improving availability in smart grid control
centers,” in 2012 18th IEEE International Confer-
ence on Networks (ICON’12), pp. 434–440, 2012.

[36] M. Tanha and F. Hashim, “Towards a secure and
available smart grid using intrusion tolerance,” in In-
ternet and Distributed Computing Systems, Lecture
Notes in Computer Science, pp. 188–201, 2012.

[37] C. W. Ten, G. Manimaran, and C. C. Liu, “Cyberse-
curity for critical infrastructures: Attack and defense
modeling,” IEEE Transactions on Systems, Man and
Cybernetics, Part A: Systems and Humans, vol. 40,
no. 4, pp. 853–865, 2010.

[38] T. Uemura, T. Dohi, and N. Kaio, “Availability anal-
ysis of an intrusion tolerant distributed server sys-
tem with preventive maintenance,” IEEE Transac-
tions on Reliability, vol. 59, no. 1, pp. 18–29, 2010.

[39] A. Valdes, M. Almgren, S. Cheung, Y. Deswarte,
B. Dutertre, J. Levy, H. Saidi, V. Stavridou, and
T. E. Uribe, “Dependable intrusion tolerance: tech-
nology demo,” in Proceedings of DARPA Informa-
tion Survivability Conference and Exposition (DIS-
CEX’03), vol. 2, pp. 128–130 vol.2, 2003.

[40] P. E. Verissimo, N. F. Neves, C. Cachin, J. Poritz,
D. Powell, Y. Deswarte, R. Stroud, and I. Welch,
“Intrusion-tolerant middleware: the road to auto-
matic security,” IEEE Security & Privacy, vol. 4,
no. 4, pp. 54–62, 2006.

[41] P. Veŕıssimo, N. Neves, and M. Correia, “Intrusion-
tolerant architectures: Concepts and design,” in Ar-
chitecting Dependable Systems, vol. 2677 of Lecture
Notes in Computer Science, pp. 3–36, 2003.

[42] G. S. Veronese, M. Correia, A. N. Bessani,
L. C. Lung, and P. Verissimo, “Efficient Byzantine
fault-tolerance,” IEEE Transactions on Computers,
vol. 62, no. 1, pp. 16–30, 2013.

[43] F. Wang, R. Uppalli, and C. Killian, “Analysis of
techniques for building intrusion tolerant server sys-
tems,” in IEEE Military Communications Confer-
ence (MILCOM’03), vol. 2, pp. 729–734 Vol.2, 2003.

[44] F. Wang, F. Jou, F. Gong, C. Sargor, K. Goseva-
Popstojanova, and K. Trivedi, “SITAR: a scalable

intrusion-tolerant architecture for distributed ser-
vices,” in Foundations of Intrusion Tolerant Sys-
tems [Organically Assured and Survivable Informa-
tion Systems], pp. 359–367, 2003.

[45] R. Wang, F. Wang, and G. T. Byrd, “Design and
implementation of acceptance monitor for building
intrusion tolerant systems,” Software - Practice and
Experience, vol. 33, no. 14, pp. 1399–1417, 2003.

[46] Y. S. Wang and L. Wang, “Secure server switching
system,” in Computer Engineering and Applications
(ICCEA’10), 2010 Second International Conference
on, vol. 1, pp. 224–228, Mar. 2010.

[47] F. Zhao, M. Li, W. Qiang, H. Jin, D. Zou, and Q.
Zhang, “Proactive recovery approach for intrusion
tolerance with dynamic configuration of physical and
virtual replicas,” Security and Communication Net-
works, vol. 5, no. 10, pp. 1169–1180, 2012.

[48] L. Zhou, F. B. Schneider, and R. Van Renesse,
“COCA: A secure distributed online certification au-
thority,” ACM Transactions on Computer Systems,,
vol. 20, pp. 329–368, Nov. 2002.

Maryam Tanha is currently perusing her PhD in the
Department of Computer Science, Faculty of Engineer-
ing, University of Victoria. She received her M.Sc. in
Communication and Network Engineering from Univer-
siti Putra Malaysia in 2013. Her research activities are
focused on Software Defined Networking and survivability
analysis, particularly for critical infrastructures. She is a
member of IEEE.

Fazirulhisyam Hashim holds a M.Sc. degree from
the Universiti Sains Malaysia and a Ph.D. degree from
the University of Sydney, Australia. He is currently a
researcher and senior lecturer at the Wireless and Pho-
tonic Network Research Center of Excellence (WiPNET)
at the Universiti Putra Malaysia. His research interests
include network security and QoS of next generation
mobile networks, green communication systems, and
wireless sensor networks. He is a member of IEEE.

Shamala K. Subramaniam received her B.Sc. degree
in Computer Science from Universiti Putra Malaysia, in
1996, M.S. (UPM), in 1999 and PhD (UPM) in 2002. She
is currently an Associate Professor in the Department of
Communication Technology and Networking, Faculty of
Computer Science, Universiti Putra Malaysia. Her re-
search interests are computer networks, simulation and
modelling, scheduling and real time systems.

