
International Journal of Network Security, Vol.17, No.3, PP.272-289, May 2015 272

A Survey on Botnet Architectures, Detection

and Defences

Muhammad Mahmoud1, Manjinder Nir2, and Ashraf Matrawy2

(Corresponding author: Muhammad Mahmoud)

Computer Engineering Department, King Fahd University of Petroleum & Minerals1

Dhahran 31261, Saudi Arabia

(Email: mimam@kfupm.edu.sa)

Department of Systems and Computer Engineering, Carleton University2

Ottawa, ON, K1S 5B6, Canada

(Received Sep. 7, 2012; revised and accepted Nov. 15, 2013)

Abstract

Botnets are known to be one of the most serious Internet
security threats. In this survey, we review botnet architec-
tures and their controlling mechanisms. Botnet infection
behavior is explained. Then, known botnet models are
outlined to study botnet design. Furthermore, Fast-Flux
Service Networks (FFSN) are discussed in great details as
they play an important role in facilitating botnet traffic.
We classify botnets based on their architecture. Our clas-
sification criterion relies on the underlying C&C (Com-
mand and Control) protocol and thus botnets are clas-
sified as IRC (Internet Relay Chat), HTTP (HyperText
Transfer Protocol), P2P (Peer-to-Peer), and POP3 (Post
Office Protocol 3) botnets. In addition, newly emerging
types of botnets are surveyed. This includes SMS & MMS
mobile botnet and the botnets that abuse the online so-
cial networks. In term of detection methods, we catego-
rize detection methods into three main groups, namely:
(1) traffic behavior detection -in which we classify botnet
traffic into; C&C traffic, bot generated traffic, and DNS
traffic, (2) botmaster traceback detection, and (3) botnet
detection using virtual machines. Finally, we summarize
botnet defence measures that should be taken after de-
tecting a botnet.

Keywords: Botnet, command and control, distributed de-
nial of service attack (DDoS), fast-flux service networks

1 Introduction

A “botnet” is a term used to describe a network of in-
fected hosts (Bots) which are running software robots
and are being controlled by a human (botherder), via
one or more controllers (botmasters). The botmaster’s
communication with its bots is called Command and Con-
trol (C&C) traffic [38, 46]. Botnets are a serious security
threat. They are responsible for most of the email spam,

identity theft, online phishing, online fraud, adware, spy-
ware, and DDoS attacks [12]. It is estimated that about
15 percent of the computers connected to the Internet are
infected and are used by botnets [3]. It has been docu-
mented that one botnet has infected and had more than
400,000 computers under its control [57]. Botnets have a
very manipulative behavior, which makes their detection
a challenging task. They can stay inactive for a very long
time, and may generate a very low traffic volume [43, 57].

According to Bacher et al. [7], the attackers often tar-
get class B (/16) or smaller network ranges. Once these
attackers compromise a machine, they install a botnet
code (called bot in short) on it. The bot joins a specific
communication server and listen to the C&C channel for
further commands from its botmaster. This allows the
attacker to remotely control this bot. Grizzard et al. [30]
described the primary goals of botnets as follows: (1) In-
formation dispersion; sending SPAM, Denial of Ser-
vice (DoS) attack, providing false information from ille-
gally controlled source. (2) Information harvesting;
obtaining identity, financial data, password and relation-
ship data. (3) Information processing; processing data
to crack password for access to additional hosts.

Botnets are difficult to detect for many reasons; bot-
net’s C&C traffic is usually low in volume, hidden in ex-
isting application traffic -which makes it look like normal
traffic. The number of bots in a given network might
be very low, or the botnet may use unusual destination
port and/or encrypt its C&C traffic to avoid being de-
tected [33, 45].

To demonstrate the potential of botnets Rajab et
al. [56] provided multifaceted observations gathered from
real world IRC botnets. To extract IRC specific feature,
they used a binary analysis testing tool on gathered bot-
net traffic by using two independent means namely; IRC
tracking and DNS cache probing, across the globe. They
observed that to resolve IP addresses of their IRC server,
most bots issue DNS queries. By tracking the botnet



International Journal of Network Security, Vol.17, No.3, PP.272-289, May 2015 273

traffic, they reported the following findings; (1) Botnet
Traffic Share: The amount of botnet traffic is greater
than 27% of all unwanted Internet traffic. They also
observed that out of the 800,000 probed servers, 11%
(85,000) were involved in at least one botnet activity.
(2) Botnet Spreading Behavior: Like Worms, botnets
continuously scan certain ports by following a specific tar-
get selection algorithm. After receiving a command over
a C&C channel, botnets with variable scanning behavior
start scanning for variabilities and this spreading behav-
ior is more prevalent. (3) Botnet Structure: About
60% of all botnet traffic were IRC bots and only small
percentage used HTTP for C&C. (4) Effective Botnet
Sizes: Maximum size of online population is significantly
smaller than the botnet footprint (number of hosts in-
fected with the botnet). Moreover, they found that the
botnet population depends on different time zones.

Botnets have been surveyed from different perspectives
in the literature. Short overviews have been presented
in workshops and conferences’ surveys [8, 26, 40, 69].
Bailey et al. [8] focused on botnet detection and data
sources. Their survey did not focus on botnet architec-
ture or classification and no defence methods were sur-
veyed. However, they surveyed botnet detection by coop-
erative behavior, attack behavior and signature based de-
tection. Feily et al. [26] focused on botnet detection meth-
ods, but neither on botnets’ architecture nor their classi-
fication, and no defence methods were surveyed. They
[26] explained four botnet detection methods, namely;
signature-based, anomaly-based, DNS-based and mining-
based. Zhu et al. [69] put most of the focus on under-
standing botnet architecture anatomy where botnets were
divided into IRC, HTTP, P2P botnets and fast-flux net-
works. Detection of botnets by honeynets and by traffic
monitoring were mentioned. They [69] referenced a de-
fence against spam and suggested a commercial security
service for enterprises. In [40], Chao Li et al. presented
a short survey on botnets and their evolution. They out-
lined botnets’ infection mechanism, malicious behavior,
C&C methods, communication protocols and they sug-
gested some directions for botnet defence. In [63], Thing
et al.’s survey focused on botnets that are used for DDoS
attacks, and analyzed four DDoS attack botnets, and the
way they launch their attacks. The article by J. Liu et
al. [42] surveyed specific known botnets with their mali-
cious activities and some detection methods. They high-
lighted IRC-based and P2P-based botnets. The majority
of their survey focuses on some of the most popular bot-
net and their malicious activities. Their survey outlined
four detection methods based on honeynets, IRC traffic
analysis, IRC anomaly activities and DNS. They also ref-
erenced countermeasures for the public, home users and
system administrators. Shin and Im [59] surveyed the
threats and challenges of botnets. They classified bot-
net detection into C&C-based and P2P-based detection.
They also outlined some defences against DDoS attacks.
In a short survey [41], Lin and Peng focused on the detec-
tion methodologies and detection techniques of botnets.

Among the various kinds of botnet attacks, they discussed
three types of botnet attacks. Further, they described de-
tection methodologies of botnet and surveyed two detec-
tion techniques. In [51], IBM published a report on bot-
nets’ risks and prevention. This report lists the security
risks of botnets (such as DDoS, privacy, SPAM, phish-
ing, etc.). Then, it focuses on IRC botnets and how they
work. Finally, the report suggests some prevention mea-
sures against botnets and their risks. In 2011, the Euro-
pean Network and Information Security Agency (ENISA)
published a report on botnet threats from industrial per-
spectives with focus on practical issues [53].

Our Contribution. Besides presenting an extensive
survey on botnets and their detection mechanisms, we
classified botnets based on underlying (C&C) infrastruc-
ture as well. Our survey has elaborated description of
Fast-Flux service network and C&C rallying mechanism
as both play very important roles in botnets’ activities.
To the best of our knowledge, this is the first survey that
includes new emerging types of botnets like mobile and
online social networks botnets. It also gives a comparison
between current detection techniques as shown in Table 1
and explains the different attempts to create botnet be-
havior models.

Objective. The objective of this survey is to shed light
on botnets threat by providing a clear background and
classification on botnets architectures and their behavior,
and to describe some security measures that are used to
detect and mitigate botnets threats.

Survey Outline. This survey is outlined as follows:
Section 2 lays some background on botnets architectures
and mechanisms that botnets use to control other hosts.
It analyzes botnets behavior and summarizes botnets
models. Furthermore, it outlines some botnets facilitation
features. Section 3 classifies botnets based on their under-
lying communication infrastructure, and surveys mobile
botnets and online social networks botnets. In Section 4
we provide detail on botnets detection algorithms and
classify them into; behavior-based, botmaster traceback-
based, and virtual machine-based detections. We briefly
illustrate some post-botnet detection measures. Finally,
Section 5 concludes the survey.

2 Botnet Architectural Elements

In this section, we start by explaining what C&C is. Then,
botnets infection behaviors and known botnets models are
described. After that, we explained how fast-flux service
networks work and surveyed botnets’ C&C rallying mech-
anisms.

As Barford et al. [11] described, botnets usually have
some of the following architecture features; They use ex-
isting protocols for their C&C communication (i.e. IRC,
P2P, etc.). They may have the ability to exploit large



International Journal of Network Security, Vol.17, No.3, PP.272-289, May 2015 274

Figure 1: (IRC, HTTP, POP3) C&C architectures are
usually centralized

number of targets, launch different types of DoS attacks,
spy for passwords, fool the defence mechanisms, frustrate
disassembly software, hide themselves from the local sys-
tem, scan ports for vulnerabilities. Furthermore, botnets
may encrypt their C&C traffic and/or may come with the
C&C only and download other functionalities later on, as
needed.

A victim host could be infected by targeting known
vulnerability or by infected programs (like viruses). Once
the host is infected, the bot can use any of the following
mechanisms to control the infected host [11, 32, 52]; (1)
secure the system (e.g. close NetBIOS shares, RPCD-
COM), (2) spy or steal identity, (3) send SPAM emails,
(4) host illegal sites, (5) redirect traffic for the botnet
(e.g. fast-flux), (6) kill unwanted process running on the
system (e.g. anti-virus, taskmanager, etc.), (7) test for
virtual machines and/or debugger software, (8) add or
delete autostart applications, (9) run or terminate pro-
grams, (10) download and execute files, (11) perform ad-
dress and port scan, (12) rename files, (13) simulate key
presses, (14) run DDoS attacks.

Furthermore, botnet propagation could be through
horizontal or vertical scans. The horizontal propagation
scan is done on a single port access for some address range.
On the other hand, vertical scan is done on a single IP
address across a range of ports [11, 32].

Figure 2: P2P C&C architectures are usually decentral-
ized

2.1 Command and Control

A botmaster’s communication with the botnet is carried
out via C&C. The C&C is the main feature that distin-
guishes botnets from other malwares [29]. It allows the
botmaster to communicate with the botnet and give com-
mands. Theoretically, the botmaster can command the
botnet to do any task including; performing DDoS at-
tacks, spamming, spying, identity theft, etc. [31, 36, 62].

To avoid detection, botnet designers tend to use widely
used protocols for their C&C. Most botnets use IRC com-
mands for their C&C communication [23, 51]. However,
some botnets use the HTTP, POP3 or P2P protocols for
their C&C communication. Newly emerging types of bot-
nets use SMS, MMS, or online social networks for C&C
communication.

The IRC, HTTP and POP3 botnets are usually cen-
tralized in the sense that their C&C channels depend on
specific servers and if they are disabled, botnet will cease
to exist. Figure 1 shows an architecture of botnets with
centralized C&C server(s). On the other hand, P2P bot-
nets are usually decentralized, as shown in Figure 2. In
Section 3, we discuss botnets C&C in more detail as it is
the main criterion of our botnets architecture classifica-
tion.

2.2 Botnet Infection Behavior

Most botnets run in four phases [69]. A node’s transi-
tion from a clean host to a zombie host, and reacting
to its botmaster’s commands, goes through four steps.



International Journal of Network Security, Vol.17, No.3, PP.272-289, May 2015 275

First, the initial infection starts when botnet nodes scan
the network looking for vulnerabilities. They scan for
back doors [69], known buffer overflows, known vulnerable
network administrator tools. They may run brute force
password scanning for some services (e.g. SQL servers,
NetBIOS shares, etc.) [11]. Second, the secondary injec-
tion starts when a vulnerability is exploited and the vic-
tim host downloads and runs the bot’s binary code [32].
Then, the bot establishes a connection to the botnet’s
C&C server, and starts to control the host (e.g. disable
anti-virus, change NetBIOS shares, etc.). Finally, the ma-
licious activities begin when the bot starts to act on bot-
master’s commands (e.g. run DoS attack, send SPAM,
etc.) and then the botnet maintains and upgrades itself
periodically [11].

In the case of P2P botnet, the first two steps are similar
to other botnets. After the initial infection and injection,
the P2P botnet uses an initial peer list to contact the ini-
tial peers. Once it finds a live peer, phase one starts where
botnet updates its peer list and download any available
updates. After that the node goes to phase two when it
starts its malicious activities [27]. The aforementioned
P2P botnet behavior is based on the STORM malware
behavior. Other P2P malwares should -to some extend-
have similar behavior [61].

2.3 Modeling Botnet Architectures

There has been different attempts at creating models for
botnet behavior either to help understand botnets or to
give the researchers a head start of possible future botnet
designs. The following are examples of these models.

• Diurnal Propagation Model: A model by D.
Dagon et al. [25] shows propagation dynamics in bot-
nets and describes that time zones and geographi-
cal locations play a critical role in malware propaga-
tion. All the botnets studies use DNS to locate their
C&C servers. However, through binary analysis, this
model has confirmed that most botnets do not use
hard coded IP addresses. In this model, an approach
is used to predict botnet dynamics prior to an at-
tack, and focuses on capturing any network cloud of
coordinated attackers rather than tracking individual
bots.

• Super-Botnet Model: Vogt et al. [67] stated
that traditional botnets are easily detectable through
their C&C. Therefore, they proposed a possibility of
super-botnet, which is a network of independent bot-
nets that can be co-ordinated for large scale attacks.
To establish a super-botnet a two phase process is
explained. The authors suggest that a super-botnet
protects itself from defenders by not allowing indi-
vidual botnets to have complete information about
the super-botnet rather each botnet can have partial
routing information to contact a small finite set of its
neighbours.

• Stochastic Peer-to-Peer Model: Van et al. [58]

presented a botnet stochastic model for the creation
of a P2P botnet. The model was constructed in the
Möbius [4] software tool. In this model, authors ex-
amine the growth of botnet size based on different
parameters and suggest the development of future
anti-malware systems against P2P botnets.

• Advance P2P hybrid Model: Keeping in view
weaknesses of P2P botnet architecture, Wang et
al. [68] proposed a design of an advanced hybrid P2P
botnet architecture. The architecture is harder to be
shut down or monitored by defenders. In this model,
each bot has its individual encryption design and ro-
bust connectivity to other bots. The botnet can dis-
perse communication traffic to different service ports
in a way that the botnet will not be exposed if one of
its bots is captured. Furthermore, the authors alarm
us of advanced botnet attack techniques that could
be developed by botmasters in the near future and
propose honeypot to defend against such advanced
botnets.

2.4 Botnet Facilitators

Botnets usually use some techniques to alleviate their ac-
tivities. In this section, some of these techniques are sur-
veyed.

2.4.1 Fast-Flux Service Networks

DNS is an Internet service which translates names of sites
into their numeric IP addresses. Usually DNS do not re-
spond to DNS requests with unique ‘A’1 record. For every
host, DNS has a list of A records each with a given Time-
to-Live (TTL) value (normally from 1 to 5 days). DNS re-
turns these A records in round-robin way [35]. This imple-
mentation of DNS is called Round-Robin DNS (RRDNS).
Furthermore, in Content Distribution Networks (CDN)2,
the DNS is implemented in a sophisticated way that it
finds out the nearest edge router and returns it to the
client. CDN uses a much lower TTL value than RRDNS
to enable them to react quickly to link changes. On the
other hand, a Fast-Flux Service Network (FFSN) is a dis-
tributed proxy network -built on compromised machines
(flux-agents)- that direct incoming DNS requests to the
botnet’s desired address on the fly [35].

Nazario et al. [49] and the Honeynet Project [7] dis-
cussed fast flux networks that are used as botnet C&C
networks. Botnets use fast-flux DNS techniques to host
unauthorized or illegal content within a botnet. This is
done to allow the botnet’s domain name to have multiple
IP addresses. In the meantime, involved DNS records are
constantly changing every few minutes using a combina-

1
‘A’ record is a mapping between host name and IP address

2Also called content delivery network. It is a system in which

many copies of data is placed in different location in the network.

The purpose is to maximize the bandwidth, so when a user node

tries to access some data, it will be directed to the server closest to

it, rather than allowing all users access data on centralized server.



International Journal of Network Security, Vol.17, No.3, PP.272-289, May 2015 276

Figure 3: Normal content retrieval process

tion of round robin IP addresses and a very short TTL
from any given particular DNS resource record (RR).

In FFSN, the victim client first sends an address query
to DNS. Then, the DNS returns the IPs of a subset of
active flux-agents. After that, the flux-agent relays the
client’s request to the mothership3. The key factor in
FFSN is the combination of a very short TTL and the
round-robin answer from a large pool of active agents.
Because the TTL is short, the following DNS request will
result in a totally different flux-agent. FFSN have high
availability because the mothership continuously updates
the pool of active agents. To have good understanding of
fast-flux we need to learn all the steps for normal DNS
query and ignoring steps that are unrelated to the fast-
flux concept. The following steps describe the process of
content retrieval -for web address “Pg.Dmn.sa”- in nor-
mal DNS queries. As Figure 3 shows, the web address is
traversed from right to left. (1) The user host asks the
“.sa” root name server for the IP address of the DNS re-
sponsible of the domain “Dmn.sa”. (2) The “.sa” root
name server replies with an IP address (30.60.10.10 in
this case). (3) The user host then uses this IP address
to contact to the DNS and ask it for the IP address of
“Pg.Dmn.sa”. (4) The DNS replies with an IP address
(114.60.30.19 in this case). (5) The user host then uses
this IP address to contact to the web server for the HTTP
content of “Pg.Dmn.sa”. (6) The web server responses
with the requested contents [7, 35].

3a secret controlling element of the botnet.

As the botmaster tries to hide the IP address of unau-
thorized or illegal website(s), it tends to fast-flux their
IP address(es). Figure 4 illustrates the steps of retrieving
the content of fluxed web address “FlxPg.Dmn.sa”. Steps
(1) to (5) are identical to normal content retrieval steps,
except that when the IP address of “FlxPg.Dmn.sa” is
requested, the DNS response comes with a short TTL.
Therefore, any subsequent DNS query would probably
get a different IP address response. After the user host
uses the IP address (114.60.30.19 in this case) to con-
tact the “alleged webserver” requesting the contents of
“FlxPg.Dmn.sa”, this “alleged webserver” will carry out
two more hidden steps. (5a) The “alleged webserver” will
request the content of “FlxPg.Dmn.sa” from the mother-
ship. (5b) The mothership responses with the requested
contents. (6) The “alleged webserver’ redirects the re-
sponse from the mothership to the user host.

Sometimes, botmasters take one more step to make it
more difficult to locate them by fluxing the IP address
of the DNS too. Figure 5 illustrates the steps of retriev-
ing the content of fluxed web address with fluxed DNS
“FlxPg.FlxDmn.sa”. (1) The user host asks the “.sa” root
name server for the IP address of the DNS responsible of
the domain “FlxDmn.sa”. (2) The “.sa” root name server
replies with an IP address (30.60.10.10 in this case) with
short TTL. (3) The user host then uses this IP address to
contact to the “alleged DNS” and ask it for the IP address
of “FlxPg.FlxDmn.sa”. (3a) The “alleged DNS” passes
this request to the mothership. (3b) The mothership re-
sponses with an IP address (114.60.30.19 in this case) (4)



International Journal of Network Security, Vol.17, No.3, PP.272-289, May 2015 277

Figure 4: Single-Flux content retrieval process

The “alleged DNS” redirects the mothership’s response to
the user host. (5) The user host then uses this IP address
to contact to an “alleged webserver” for the HTTP con-
tent of “FlxPg.FlxDmn.sa”. (5a) The “alleged webserver”
will request the content of “FlxPg.FlxDmn.sa” from the
mothership. (5b) The mothership responses with the re-
quested contents. (6) The “alleged webserver’ redirects
the response from the mothership to the user host.

To summarize, there are three types of fast-flux. (1)
Single-Flux: when IP address of an unauthorized or ille-
gal webpage is fluxed. (2) Name Server (NS)-Flux: when
IP address of DNS is fluxed. (3) Double-Flux: when both
IP addresses of the webpage and the DNS are fluxed [16].
Figures 3, 4, 5 illustrate the difference in content retrieval
process between normal, Single-Flux and Double-Flux
Service Networks.

Holz et al. [35] lists some features of FFSN that might
help in detecting them. First, legitimate domains return 1
to 3 A records, but FFSN return 5 or more A records. Sec-
ond, legitimate domains return a small number of name-
server (NS), but FFSN returns several NS records and
several A records for the NS records. Third, legitimate do-
mains return a small A records only from one autonomous
system (AS), but FFSN tends to be located in more ASs.
Furthermore, FFSN does not have the freedom to choose
hardware and IP address. Therefore, the range of their
IP addresses is diverse. Finally, since there is no phys-

ical agent control, therefore, there is no guaranteed up
time [35, 52].

2.4.2 Command and Control Rallying Mecha-
nisms

According to Choi et al. [20], botmasters want their bots
to be invisible but portable, therefore they use different
methods for bots rallying. They stated that not all bots
can have mobility and invisibility at the same time. They
described three rallying methods, namely; hard-coded IP
address, dynamic DNS, and distributed DNS.

In hard-coded IP address method; the bot binary has a
hard-coded IP address of its C&C server, the server can be
detected through reverse engineering, and the botmaster
can be quarantined or the botnet can be suspended. As
hard-coded IP address cannot be changed, this method
cannot provide mobility and does not make the botnet
invisible as well. On the other hand, in dynamic DNS
botnets migrate their C&C server frequently, upon the
instruction of botmaster. Using a list of servers provided
in the bot binary, a botmaster uses several C&C servers.
It uses dynamic DNS in order not to be detected or sus-
pended, and to keep the botnet portable. When connec-
tion to the C&C server fails or shutdown, the bots will
perform DNS queries and will be redirected to a new C&C
server [2]. This redirection behavior of botnets is known



International Journal of Network Security, Vol.17, No.3, PP.272-289, May 2015 278

Figure 5: Double-Flux content retrieval process

as “herding”. This method provides mobility and some
invisibility to the botnets. Finally, with distributed DNS,
botnets run their own distributed DNS service at loca-
tions that are out of the reach of law enforcement. Bots
include the addresses of these DNS servers and contact
these servers to resolve the IP address of C&C servers [2].
This method provides both mobility and invisibility to
their botnets.

In summary, while the hard-coded IP botnet makes
very easy for the newly infected nodes to join the bot-
net, it also makes easy for law enforcement to track and
shutdown the botnet. On the other hand, using DNS to
migrate C&C servers make it harder for the newly infected
nodes to join the botnet. Some infected nodes might never
be able to join the botnet -in case they stay offline long
enough for all the addresses in the initial communication
list to be obsolete, however, it gives the botnet the flexi-
bility to hide its C&C severs.

3 Botnet Architecture Classifica-

tion Based on C&C

In this section, we give a classification of botnets. Botnets
can be classified based on their C&C traffic protocol.

3.1 IRC Botnets

The IRC [50] protocol was designed to facilitate a chatting
environment. Its simplicity and distributed structure en-
ables the earliest and most common botnets to use it for
their C&C communication [23, 45]. IRC has many prop-
erties, which make it attractive for an attacker, such as,
its redundancy, scalability and versatility. Furthermore,
due to its long term and wide spread use, there is a large
base of knowledge and source code to develop IRC-based
bots [30].

As described by Cooke et al. [23], IRC is a well-known
public exchange point and enables virtually instant com-
munication, which provides a common, simple, low la-
tency, wide availability and anonymity command and con-
trol protocol for bot communication. An IRC network is
composed of one or more IRC servers. According to the
botnet design, each bot connects to a public IRC network
or a hidden IRC server. The bot receives commands from
the controller (botmaster) and can be instructed to at-
tack. The simplicity and multicast delivery mechanism of
the IRC protocol fascinate attackers to use this protocol
to send instructions and commands to bots.

Wang et al. [68] and Gizzard et al. [30] observed that
most easily detected botnets use IRC for their C&C com-
munication. They pointed out the weaknesses of IRC bot-
net because of its centralized server architecture. More-



International Journal of Network Security, Vol.17, No.3, PP.272-289, May 2015 279

over, IRC traffic is usually un-encrypted and once the
centralized IRC C&C channel is detected by the defender
the whole botnet could be disabled by shutting down the
centralized server.

3.2 HTTP Botnets

In this botnet architecture, HTTP servers are used to
distribute bot commands. Botnet members poll HTTP
server(s) from time to time to get new commands [36].

Chiang et al. [19] have described botnets using HTTP
as C&C mechanism. According to them, an HTTP bot
is setup to communicate with certain webserver(s) using
an HTTP post, which contains unique identifiers for the
botnet, and in return the webserver will send the HTTP
commands that it has been setup with. Afterwards, the
bot could download malware files, spam information, or
even DDoS instructions. The connection in HTTP bot-
net cannot be initiated from botmaster(s) as it does with
the IRC botnets because botmasters and the bots are not
constantly present on the HTTP channel. Compared to
IRC, Nazario in [47] mentions that botnet designer could
have two benefits of using HTTP for C&C communica-
tion. First, HTTP C&C is harder to detect as it blends
into majority of traffic. Second, existing firewall policies
block IRC C&C botnets, but HTTP based botnets can
pass firewall policies. On the other hand, once the bot’s
HTTP server is identified, it can be isolated and shut-
down [36].

3.3 POP3 Botnets

Singh et al. [60] have developed a prototype bot that
demonstrates the feasibility of email-based botnet C&C.
Jennifer Chandler [17] studied a bot that uses POP3 pro-
tocol for C&C communications. In a POP3 C&C archi-
tecture, the bot connects to a predefined mail server to
retrieve an email message, which contains commands as
email attachments and can respond to commands through
the same channel. Chandler also mentioned that this
traffic will be less detectable than a connection to IRC
server. Similarly, Singh et al. [60], demonstrated that
botnet commands can remain hidden in spam due to its
enormous volume. If email service providers deploy spe-
cialized detection of spam-based botnets, botmasters can
alternatively communicate with bots via non-spam email
that cannot be safely discarded.

3.4 Peer-to-Peer Botnets

Holz et al. [36] explains a new decentralized architecture
of botnets that is based on P2P protocols. P2P botnets
are relatively new generation of botnets that do not use
a central server to send C&C commands to botnet mem-
bers. P2P botnets usually use publish/subscribe systems
to communicate [36]. Unlike IRC botnets, the attacker
in P2P botnets cannot send commands directly to bots,

instead, a set of commands (C ) is defined in the P2P sys-
tem, and all bots subscribe to this set. When an attacker
(any bot) wishes to launch an attack, it publishes a com-
mand (ci) on the P2P system. All bots subscribed to the
set will be able to see the command.

Barford et al. [11] have anticipated that future botnet
development will include the use of encrypted C&C com-
munication. As stated by Grizzard et al. [30], in a P2P
architecture, there is no centralized point for C&C and
bots communicate with other peer bots instead of a cen-
tral server. Nodes in a P2P network act as both servers
and clients. Therefore, there is no centralized coordina-
tion point that can be incapacitated. The authors ana-
lyzed the case study of the “Trojan.Peacomm” bot and
observed that the P2P protocol is essentially being used
as a name resolution server to upgrade the bot.

Wang et al. [68] pointed out some weaknesses of known
P2P bots and proposed a new P2P bot architecture. Ac-
cording to them, botnets such as Sinit, Phatbot, Nugache
and Slapper have implemented different kinds of P2P con-
trol architectures. A Sinit bot host finds other Sinit bot
hosts by using random probing. The extensive probing
traffic will make it easy to detect the botnet. Phatbot uses
Gnutella cache servers for its bootstrap process. This also
makes the botnet easy to be shut down. Nugache relies
on a seed list of C&C IP addresses during its bootstrap
process. This makes it weak. Slapper does not have en-
cryption and its command authentication enables others
to easily hijack it. Keeping in view these weaknesses of
P2P botnet architecture Wang et al. propose the design of
advanced hybrid P2P botnet architecture, which is much
harder to be shut down or monitored. Their hybrid P2P
botnet architecture provides robust network connectiv-
ity, individualized encryption, controlled traffic dispersion
and easy monitoring and recovery by its botmaster. Fur-
thermore, if a bot is captured, the botnet exposure will
be limited.

Figure 2 shows an architecture diagram for P2P bot-
nets. Unlike IRC or HTTP botnets, any bot in a P2P
botnet can publish a command. Therefore, if one is able
to identify a botmaster and bring it down, the P2P botnet
will still be functional because any bot can issue botnet
commands (i.e. be a botmaster).

3.5 Other Botnet Emerging Types

3.5.1 SMS & MMS Mobile Botnets

In this section, we are going to discuss botnets that spread
on mobile devices and could use SMS or MMS for C&C
communication.

Challenges. Mobile devices/smartphones pose some
challenges which make them unattractive to botnet de-
velopers [24, 28]. They usually use the cellular network
for communication. Thus they are not continuously avail-
able on the Internet. Even when smartphones access the
Internet, they are usually either behind firewalls or using



International Journal of Network Security, Vol.17, No.3, PP.272-289, May 2015 280

dynamic private IP addresses that are not available on the
Internet. This makes difficult to mobile bots to be visible
to the botmaster. Therefore, botmasters will not be able
to send direct commands to their bots. Furthermore, cel-
lular networks do not use DNS to find mobile nodes. This
will make botmaster invisible to botnets to make use of
DNS services like Fast-Flux (see Section 2.4.1).

Compared to PCs, smartphones have limited power.
Therefore, any abnormal consumption could lead to in-
vestigation that might detect the bot. Furthermore, data
traffic or messaging cost is very noticeable in cellular net-
works. Therefore, if abnormal network traffic is generated
because of the botnet, it can be easily noticed. Frequent
IP change and not having long lived public IPs makes it
impractical to deploy P2P-based C&C infrastructure [24].
In mobile botnets, botmaster could use traditional C&C
methods (like IRC or HTTP) to communicates with its
bots. However, cellular network architecture may limit
the bots connectivity [65].

Effect. To overcome the challenge that mobile devices
couldn’t be reached directly by their botmasters, botmas-
ters could use web servers to post their commands and
updates [28]. Then, bots could access these web servers
-when the mobile device is available on the Internet- to
pull these commands [28]. Some botmaster could rely on
the fact that most mobile devices have access to wireless
LANs. This enables the botmaster to launch attacks on
both, the Internet and the cellular network [64]. Mobile
devices could send SMS and MMS to connect to their
C&C proxy servers. In such case, these proxy servers
would have access to the Internet and would be able to
understand and read these SMS and MMS [28].

On the other hand, once a bot has control of a mobile
device, it will be able to exploit services in the mobile
network. It could monitor incoming messages and delete
them before they appear in the inbox. Furthermore, as
business users are using their mobile devices to access
their banking information, store their sensitive informa-
tion, order credit reports, and much more, which makes
bot spying more threatening.

History. Botnets on mobile phones were almost un-
heard of until 2009 [24, 28]. In July 2009, Symantec [6]
reported a mobile phone botnet that uses a “good old-
fashioned social engineering mixed with SMS spam” to
propagate. A phone will be infected when the user down-
loads from the external URL provided in an SMS. The
bot hides itself in a process that has a name similar to a
legitimate application. To defend itself, the bot is capable
of ending applications that could allow the user to man-
ually terminate the bot process. It connects to its server,
using HTTP, to update itself and send spy information to
the botmaster.

SRI international published a technical report [54] on
“iKee.B”, an iPhone bot that was captured on 25 Novem-
ber 2009. This bot is capable of checking its C&C server
every five minutes to pull additional instructions and run

their scripts on the hacked iPhone. It could also run scans
on WiFi or some IP address range to infect other vulner-
able iPhones. This is a very simple botnet that took very
little memory of the iPhone. It has all the functionality
that is expected of PC botnets, yet it has a flexible code
base, which makes it very dangerous.

During RSA Conference 2010 in San Francisco, Derek
Brown and Daniel Tijerina [34] demonstrated how they
were able to develop a weather application that provides
mobile users with weather forecast. However, to down-
load this application, user had to approve some permis-
sion. According to [34], within an hour, there was 126
downloads of this application, then 702 downloads after
eight hours. In few days, the number of smartphones run-
ning this application was about 8000. To show the danger
of botnets on mobile phones, they wrote a malicious ver-
sion of this application that can send spam, get user’s
physical addresses and contact information. It could also
steal user’s files, email, passwords, and access Facebook
and Twitter accounts.

Xiang et al. [24] proposed a stealthy, resilient, low cost,
Android-based botnet. They called it Andbot. They sug-
gested a new centralized C&C topology called URL Flux.
In URL Flux, there are a fixed number of C&C servers
that can be accessed by the bot. This list of servers is built
using Username Generation Algorithm (UGA). Therefore,
the bot connects to a hardcoded Web 2.0 server (one of
many) then traverse through a list of users generated by
the UGA. Once a life user is found, Andbot commands
can be deployed. This provides resilience to the mobile
botnet since there are more than one centralized C&C
server. To reduce the cost, Andbot avoids using SMS or
Bluetooth for C&C. Instead it relies only on IP communi-
cation. Andbot uses RSS and GZIP to reduce its traffic.

In [64], Traynor et al. demonstrated how -by attacking
the Home Locator Register (HLR) - a relatively small cel-
lular botnet could cause a nation-wide outage in cellular
network services. By launching network services requests
(like insert call forwarding), the mobile botnet could
cause serious degradation in the service without raising
the attention of the bot-infected device owner [64].

3.5.2 Social Networks Botnets

In this section, we describe two types of online social net-
works (OSNs) botnets. The first type is the botnets that
use existing (OSNs) for C&C communication (OSNs C&C
Botnets). The other type is the botnets that are actually
comprised of OSNs accounts (Socialbots)

OSNs C&C Botnets. In 2009, the first actual bot-
net that used social networks for C&C was reported by
Jose Nazario [48]. The botmaster used accounts on Twit-
ter.com and Jaiku.com to command bots to download and
run malicious activities. In [39], Kartaltepe et al. stud-
ied this bot and found that it works as follows: The bot
sends HTTP GET request to the botmaster’s RSS. The
return RSS feed has encoded message, which is decoded



International Journal of Network Security, Vol.17, No.3, PP.272-289, May 2015 281

by the bot to get one or more URLs. These URLs direct
to a site with longer URLs each pointing to a malicious
zip file. After downloading the zip file, the bot unzips
and runs the malicious program. The malicious program
collects user information and send it to the botmaster.

In 2009, Trend Micro published a technical report ex-
plaining the largest Web 2.0 botnet (KOOBFACE) [10].
KOOBFACE bot is comprised of many components.
These components could be as follows: (1) KOOBFACE
downloader: finds out the victims’ social network, con-
nects to C&C channel, and download other components.
(2) Social network propagation components: this
is the KOOBFACE worm that sends out the infection
SPAM. (3) Web server component: makes the victim a
web server for the KOOBFACE botnet. (4) Ads pusher
and rogue antivirus (AV) installer: installs fake an-
tivirus on the victim’s machine and opens an ads window.
(5) CAPTCHA4 breaker: gets the victim to challenge-
response tests. (6) Data stealer: steals product IDs,
profiles, credentials, etc., and sends them in encrypted
form to the C&C server. (7) Web search hijackers:
intercepts the victim’s search queries and redirects them
to suspicious sites that returns result with some agenda.
(8) Rogue DNS changer: modifies the victim’s DNS
to a fake one. This fake DNS intercepts the victim’s web
requests, delivers malware, and/or prevents the victim
from accessing antivirus websites. KOOBFACE infection
starts with a SPAM asking the user to watch a video.
By clicking on the video’s URL, the user will be directed
to YuoTube (not YouTube) and will be asked to down-
load an executable to watch the video. This executable is
the aforemention KOOBFACE components downloader.
KOOBFACE has an update capability that make it diffi-
cult to shutdown [10].

In [46], Nagaraja et al. designed a botnet that uses
images shared by OSNs users for C&C communication.
Bots in this botnets can communicate if they are hosted
on computers for people using an OSN. When the bot-
master issues a command, it uses images and post them
on Facebook. When users of infected computers log into
Facebook and view these images, the bot code on their
computers intercepts these images and extracts the re-
quired information from them. On the other hand, to
send stolen information to the botmaster, the bot waits
for the user to post an image. It intercepts the the image
and injects the data into it [46].

Socialbots. Socialbot is defined as “an automation
software that controls an adversary-owned or hijacked ac-
count on a particular OSN, and has the ability to perform
basic activities such as posting a message and sending a
connection request” [13]. It is predicted that about 10%
of social network individuals will be robots by 2015 [37].
The main character of the socialbot networks (SbN) is
that instead of financial means, they focus on having sub-

4CAPTCHA: an automated challenge-response tests to ensure

that the response is generated by a human

stantial relationships with human users. They can cause
peer effect to promote for a product or social engage-
ments. Therefore, they have the potential for a great
future opportunity [37]. For instance, to determine influ-
ences, some services score user’s activity and their effect
in the network. SbN can hijack and change these scores.
SbN can learn the social graph, analyze people posts, de-
cide what to say and to whom. They do that by posting
and following. The digital space gives the SbN a “near-
perfect” world to apply artificial intelligence theories. In
Twitter, rate of friendship between user can be greatly
changed using SbN [37].

For example, the Realboy Project compilation [22] is
about designing a Twitter botnet that imitates human
users with three main goals; (1) to repost external users
tweets, (2) to follow other users, (3) to get 25% follow-
back rate. In addition, Boshmaf et al. [13] designed and
analyzed a socialbot. Their Facebook botnet had one
botmaster, 102 bots, and they ran it for eight weeks.
During this period, the socialbot sent 8570 friendship re-
quests. 3055 out of these requests were accepted. They
recorded related data and all accessible profile informa-
tion. Boshmaf et al. [14] concluded that online social
networks (OSN) are vulnerable to large scale infiltration
and that SN defence systems do not try to prevent against
infiltration campaigns. Furthermore, they [14] concluded
that socialbots could be profitable and could cause seri-
ous privacy breaches. Therefore, socially-aware software
security could be at risk.

Threats. As socialbots infiltrate social campaigns, they
could pose some security threats [15]. By polluting the so-
cial relationship in OSN, the polluted OSN can no longer
be trusted. Socialbots could be used to spread rumors,
spread malware, influence trading by giving fake high
rates to online products. Furthermore, they could per-
form online surveillance and harvest users private data to
use them for targeted SPAM or phishing campaigns.

Detection. As botnets on OSNs are relatively new,
their detection mechanisms are not mature enough.
Therefore, some OSN mechanisms are mentioned here in-
stead of Section 4.

Kartaltepe et al. [39] proposed a mechanism to de-
tect botnets that use OSNs for C&C. Their proposal has
server-side and client-side countermeasure. The server-
side detections is based on the fact that posts are expected
to be in plain test. It looks for text attributes and uses
a light-weight machine learning algorithm for real-time
detection. It also follows any URL in the post to make
sure it is from trusted sources. Furthermore, to deter-
mine if a process is a bot, the client-side looks for three
attributes, namely; self-concealing, dubious network traf-
fic, and unreliable provenance. To determine if a process
is self-concealing, they check if it was started without hu-
man interaction and it does not have a graphical user in-
terface. Dubious network traffic processes can be detected
if they have exclusive requests to social network, encode



International Journal of Network Security, Vol.17, No.3, PP.272-289, May 2015 282

their text, or download suspicious files (executable, com-
pressed, library). Unreliable provenance processes are
processes that do not have reliable origins. These pro-
cesses can be determined if they are self-reference replica-
tion, have dynamic code injection feature, or do not have
digital signature.

In [21], Chu et al. proposed a classification system to
determine whether tweets on Twitter belong to a human,
bot, or cyborg5. They studied over 500,000 accounts to
find the difference between human, bots, and cyborg in
tweeting content and behavior. Their classifier is com-
prised of the following four components. (1) Entropy
Component: to detect the regularity and periods of
users’ tweets. (2) Machine Learning Component: to
detect spam tweets. (3) Account Properties Compo-
nent: to help identify bots by checking external URL ra-
tio in the tweets. Checking the tweet device (web, mobile,
or API) helps in detection bots. (4) Decision Maker
Component: uses the input of the previous three com-
ponents to determine if the user is human, bot, or cyborg.

4 Botnet Detection and Defence

Early botnet detection methods were designed to detect
botnets using their signatures [1]. Such systems cannot
detect unknown botnets. Therefore, signature-based de-
tections become available too late, after a botnet has done
its initial damage. However, these detection methods are
useful to avoid infection by the same old malware. Daniel
et al. [53] classified botnet detection methods into passive
and active detections while Trend Micro’s report [2] sug-
gests that observing the botnet behavior is an important
stage in detecting botnets. It [2] divided botnets’ observ-
able behavior into three types, which are as follows:

• Network Based Behavior: Botmasters, while
communicating with their bots (using IRC, P2P or
HTTP C&C), generate observable network traffic.
This traffic can be used to detect individual bots and
their C&C servers. Many botnet use dynamic DNS to
locate their C&C server. Therefore, abnormal DNS
queries may be used to detect botnets.

• Host Based Behavior: While compromising com-
puters, botnets make sequence of system/library calls
(e.g. modifying system registries and/or files, creat-
ing network connections and/or disabling antivirus
programs). The sequences of system/library calls
made by botnets are observable for their detection.

• Global Correlated Behavior: The fundamen-
tal structures and mechanisms of botnets give a
global behavioral characteristics, which are unlikely
to change until fundamental structure and mecha-
nism of botnets is not changed. Therefore these
global observable behaviors are most valuable to de-
tect botnets.

5Cyborg: is either bot-assisted human or human-assisted bot.

In this section, we discuss botnet detection methods
available in the literature which do not require signatures
and are capable of detecting unknown botnets. These
methods are categorized into the following three main cat-
egories, provided from the most common to the least com-
mon detection methods; (1) Botnet behavior-based detec-
tion (Section 4.1): This is the most common technique
used to detect botnets based on their abnormal traffic be-
havior, whether bot generated traffic, or bot DNS queries.
The bulk of the surveyed detection methods fall under this
section. (2) Botmaster traceback detection (Section 4.2):
This is a less common detection method based on tracing
botmasters during botnet attacks or when bots report to
their botmasters. (3) Detection using virtual machines
(Section 4.3): This is an expensive approach based on
running virtual machines on hosts in order to detect bot-
nets.

The reader can refer to Table 1 for comparison be-
tween various botnet detection methods. This table (will
be discussed later) highlights important features of differ-
ent botnet detections like; the ability to detect encrypted
bots, protocol and structure independency, real-time de-
tection ability, computational cost, etc.

4.1 Botnet Behavior Detection

Detecting botnets based on their traffic behavior is further
classified into three subsections: (1) C&C Traffic Behav-
ior: to detect abnormality in C&C traffic (C&C commu-
nication channel). (2) Bot Generated Traffic: to detect
abnormality in the traffic generated because of the bot-
net (e.g. SPAM, scan, DDoSA, etc). (3) DNS Traffic: to
detect abnormality in DNS traffic caused by the botnet.

4.1.1 C&C Traffic

Based on few IRC attributes, Mazzariello [45] modelled
IRC user behavior. The author’s target was to separate
human user generated traffic from automated IRC traf-
fic using language complexity, vocabulary and response
times. Support Vector Machine (SVM) [66] and J48 [55]
decision trees were used in the experiment. Though the
experiment was a success, it was not clear if this was due
to the algorithm or the dataset used.

Strayer et al. [62] used filters in pipeline manner to
separate botnet traffic. The filtered botnet traffic flows
are classified into IRC and non-IRC flows. Then, the al-
gorithm looks for relationships between these flows in the
correlation stage. Finally, the Topological Analysis stage
takes place in three steps. First, looking for common end-
points by examining clusters IP addresses. Second, cor-
relating traffic clusters by locating traffic in other flows
that share the same endpoint. Third, flows are examined
to find out which one is between the botmaster and the
endpoint.

The authors in [44] propose a Machine Learning (ML)
technique to detect IRC-based botnet C&C traffic. After
filtering out non-IRC traffic, they tried to identify C&C



International Journal of Network Security, Vol.17, No.3, PP.272-289, May 2015 283

hosts by isolating the flows that likely contain C&C traf-
fic, and by correlating them to group flows that belong to
the same botnet. To reduce the flow size all port scan-
ning traffic (i.e. TCP Syn or TCP Rst) is eliminated. To
avoid software update and rich web page transfer traffic,
high bandwidth traffic flows are eliminated too. Further-
more, all short lived flows (few packets or seconds) are
eliminated because they can not belong to botnets. This
method could result in high false positive rates and could
impose considerable computational overhead.

Balram and Wilscy [9] propose a bot detection system
for a single host such as PCs, which are vulnerable to
phishing, data stealing and data exfiltration. The system
filters out the normal traffic generated on the host and
analyses the remaining suspicious traffic. Their results
suggest that their real time detections system can achieve
high detection rate and low false positive rate.

4.1.2 Bot Generated Traffic

Binkley et al. [12] tried to detect IRC botnets based on
traffic anomaly. They considered an IRC channel to be
malicious if most of its hosts are performing TCP SYN
scanning. They collected three tuples for their analysis;
(1) TCP SYN scanner to determine types of scanning on
the network, (2) IRC channel list to determine IRC chan-
nel name and IRC hosts in the channel, (3) IRC node
list to determine any IP address that belongs to any IRC
channel. Using these tuples, they were able to generate
reports of malicious channels, sort IRC channels by max-
imum number of messages, analyze host statistics of IRC
channels, record IRC servers, etc. This algorithm is not
signature-based and should work with unknown IRC bot-
nets, but it cannot detect encrypted botnets.

Akiyama et al. [5] suggested that bots of the same bot-
net have regularities in relationship, response and syn-
chronization and used these measures for botnet detec-
tion. Since all bots take commands from the botmas-
ter, there is a one-to-many relationship -between the bots
and their botmaster- even if there is no direct connection
over a single layer. In addition, when bots receive com-
mand from the botmaster, they respond automatically
and without mistakes. This is very different from human
responses while chatting. Furthermore, when bots re-
ceive a command, they take the same action almost at the
same time. For example, when the botmaster sends com-
mands for DDoS attack, all participating bots start the
attack at the same time. This synchronization is used as
a detection metric measure. This detection method could
falsely identify high-demand legitimate nodes as botmas-
ters. Furthermore, in order to avoid detection, botnets
could adjust their response time to something similar to
human response.

4.1.3 DNS Traffic

Botmaster use DNS rallying to make their botnets invisi-
ble and portable. Choi et al. [20] proposed botnet detec-

tion mechanism by monitoring their DNS traffic. Accord-
ing to the authors, bots use DNS queries either to connect
or to migrate to another C&C server. The DNS traffic
has a unique feature that they define as group activity.
Bots can be detected by using the group activity property
of botnet DNS traffic while bots are connecting to their
server or migrating to another server. There are three fac-
tors that help in distinguishing botnet DNS queries from
legitimate DNS queries [20]; (1) queries to C&C servers
come only from botnet members (fixed IP address space
size), (2) botnet members migrate and act at the same
time, which leads to temporary and synchronized DNS
queries, (3) botnets usually use DDNS for C&C servers.

For a botmaster to keep its bot hidden and portable,
it relies on DNS to rally infected hosts. In botnets, DNS
queries can appear for many reasons. They appear during
rallying process after infection, during malicious activi-
ties like spam or DoS attacks, during C&C server migra-
tion, during C&C server IP address change, or after C&C
server or network link failure. Based on the aforemen-
tioned five situations of DNS query used in botnets, the
authors have developed a Botnet DNS Q Detection
algorithms, which distinguishes the botnet. This algo-
rithm starts by building a database for DNS queries com-
prised of the source IP address, domain name and times-
tamp. Then, they group DNS query data using the do-
main name and timestamp field. After that, they remove
redundant DNS queries. Finally, botnet DNS queries are
detected using a numerically computed some similarity
factor [20] This algorithm cannot detect botnets migrat-
ing to another C&C server. Therefore, they developed a
Migrating Botnet Detection algorithm by modifying
the botnet DNS query detection algorithm. Similarly, this
algorithm starts by building a database for DNS queries
comprised of the source IP address, domain name and
timestamp. Then, it groups DNS query data using the
domain name and timestamp field. After that, it removes
redundant DNS queries. The next step will be to com-
pare IP lists of different domain name with same size of
IP list, because bots use two different domain names for
the C&C server during migration [20].

These algorithms are protocol and structure indepen-
dent and are capable of detecting unknown and encrypted
botnets. However, these are not for real-time detections
and have low accuracy for small networks. Furthermore,
they are very sensitive to threshold values which need to
be chosen very carefully to balance false positives and
false negative rates.

4.2 Botmaster Traceback Detection

Most of the research on botnets focuses on detection and
removal of C&C servers and bots in a network [57]. De-
tection of botmasters is not addressed as often because
it is a more challenging task. Botmasters do not need to
stay online for long periods of time. As soon as they give
their command(s), they can go offline and leave the hard-
work to their bots. Therefore, traceback of botmasters



International Journal of Network Security, Vol.17, No.3, PP.272-289, May 2015 284

Table 1: Botnet detection methods comparison

Encrypted Protocol Structure Real Low False Active Low
No. Reference Category Note Bot Independent Independent Time +ve/-ve System Cost

1 [45] Behavior (CCT) Mining (IRC) ✓ ✓

2 [62] Behavior (CCT) Honeynets (IRC) ✓ ✓
3 [44] Behavior (CCT) ML (IRC)
4 [9] Behavior (CCT) ML (HTTP) ✓ ✓ ∼

5 [12] Behavior (BGT) Anomaly ∼ ∼

6 [5] Behavior (BGT) Anomaly ✓

7 [20] Behavior (DNS) Anomaly ✓ ✓ ✓ ∼

8 [57] Trace-back ∼ ✓ ✓ ✓ ✓ ✓ ✓
9 [18] Trace-back ∼ ✓ ✓ ✓ ✓

10 [43] Virtual Machine BotTracer ✓ ✓ ✓ ✓ ✓
11 [29] System Example Rishi ✓

12 [32] System Example BotHunter ✓ ✓ ✓ ✓ ∼

13 [33] System Example BotSniffer ✓ ✓ ∼

14 [31] System Example BotMiner ✓ ✓ ✓ ✓

∼: Comment or Data are Not Available ✓: The Algorithm Has This Advantage Bhv: Behavior
CCT: C&C Traffic BGT: Bot Generated Traffic TB: Trace-back

ML: Machine Learning VM: Virtual Machine SysEx: System Example

need to be carried out in real-time. Furthermore, bot-
master usually connect to their bots via stepping stones
in order to hide themselves. Botmaster’s C&C traffic is
always low-volume and botmaster may hide it even more
using encryption [57]. Ramsbrock et al. [57] proposed a
unique real-time watermarking botmaster traceback tech-
nique that is resilient to encryption and stepping stones.
They assumed that their tracer is in control of a bot which
is capable of responding to the botmaster. Their approach
depends on this bot node injecting watermark when it re-
sponses to the botmaster. The watermarking is applied
as follows: (1) Random packet pairs are selected. (2) The
length of these packets are adjusted by padding in a way
that the length difference in each packet pair falls into a
predefined range. (3) For encrypted botnet traffic, they
developed a hybrid length-timing watermarking method
in which the watermarking packet need to be sent at spe-
cific time. For their hybrid length-timing watermarking
method to work, the assumption that network jitter is
limited and knowledge of the availability time of each wa-
termarking packet must hold.

According to Chi et al. [18], once bots receive an attack
command, they attack the victim at the same time. So,
they proposed a method to detect the botmaster during
an attack starting from the victim and working backwards
through network nodes. During this detection process,
the malicious traffic is blocked router by router. Their
work is based on the assumption that routers from the
botmaster to the victim are fixed during a given time-
frame. It is also assumed that these routers are not com-
promised. When the IDS that is installed on the victim
detects an attack, it sends diagnose request to its edge
router setting the TTL to 255. The router starts a mark-
ing mode on its interfaces and notifies the victim that
it has started the marking mode. As a result, all pack-
ets coming to the victim will have their hop-count equals
to zero and ID equals the ID of the router’s interface
that processed the packet. Now the victim sends spe-

cific diagnose request to the router’s interface that pro-
cessed the suspicious packets. This process is repeated
till the botmaster’s router is reached, and the botmaster
is detected [18]. This is a real-time detection algorithm
that should be capable of detecting unknown botnets. It
has low computational power and low false negative rates.
However, this algorithm cannot detect encrypted botnets
and is designed for IRC-based botnets.

4.3 Detection Using Virtual Machine

Liu et al. [43] proposed BotTracer, a detection technique
that is based on virtual machine analysis of program ex-
ecutions. This technique is based on the assumption that
bots should have three main features; (1) the bot pro-
gram starts automatically without user intervention, (2)
the bot must start C&C communication, (3) the bot must
launch an attack. The BotTracer begins by starting a vir-
tual machine (on the same host) that has identical image
of the host system when it starts. This virtual machine
will have all autostart processes on the original host but it
will be free from any human interaction. Then, the Bot-
Tracer will monitor all these processes’ automatic commu-
nications to detect C&C communications. Finally, Bot-
Tracer monitors the processes -that initiated suspected
C&C communication- for all system-level activities and
traffic patterns. Therefore, once a bot starts malicious
activity, it will be detected. This is a real-time technique
that is capable of detecting unknown bots regardless of
their protocol, with low false positive rate, even if the
C&C traffic is encrypted. However, BotTracer has high
computational requirement hence virtual machine will de-
grade the user performance. The BotTracer will not pro-
tect against zero day attacks where the bot stay inactive
waiting for a specific date and time. Furthermore, for
many bots that check for virtual machine presence, the
BotTracer will not work.



International Journal of Network Security, Vol.17, No.3, PP.272-289, May 2015 285

4.4 Examples of Botnet Detection Sys-

tems

Botnet detection system usually use more than one de-
tection approach. For example, a detection system could
use signature, C&C and botnet generated traffic to de-
tect botnets. Therefore, it is not feasible to put these
detection systems under one classification.

1) Rishi [29]: this is an IRC-based botnet detection sys-
tem that uses IRC channel names for detection. It
monitors the network traffic for suspicious IRC chan-
nel names. Rishi starts by filtering all TCP packets
containing IRC-related headers. These packets are
identified by any of these keywords; NICK, JOIN,
USER, QUIT and MODE. Then the following in-
formation is extracted from the captured packets;
connection time, source port and IP address, des-
tination port and IP address, IRC channel and IRC
nickname. After that, nicknames are passed to the
analyzer where they are scored. Higher scores reflect
higher probability of botnet connections. Connec-
tions with scores higher than a preset threshold are
marked as suspicious and a warning email is gener-
ated and sent to the network administrator.

2) BotHunter [32]: this is a botnet detection system
that is based on a predefined botnet infection life-
cycle. This system works in real time and can de-
tect bots regardless of the network protocol or C&C
structure as long as the botnet’s behavior follows
a predefined infection cycle dialog model (i.e. tar-
get scanning, infection exploitation, botnet binary
downloading, botnet code execution, C&C communi-
cation and outbound scanning). BotHunter is com-
prised of three engines; Statistical sCan Anomaly
Detection Engine (SCADE), Statistical payLoad
Anomaly Detection Engine (SLADE) and Signature
Engine. SCADE is responsible for the detection of in-
bound and outbound scan activities. SLADE detects
abnormalities in byte-distribution payloads. The sig-
nature engine is capable of detecting dialog warnings
from a predefined botnet infection warning model.
Furthermore, BotHunter uses a correlator to evalu-
ate all messages (dialogs) from the anomaly detection
engines (SCADE and SLADE).

3) BotSniffer [33]: this is a botnet detection system
that is based on traffic anomaly in Local Area Net-
works (LANs). It is based on the assumption that
all the bots respond to a command in crowds and
in the same way. It looks for similarities in bot-
net’s traffic spatial-temporal correlations. The Bot-
Sniffer algorithm is comprised of two main blocks,
monitor engine and correlation engine. The mon-
itor engine is made up of three parts; (1) Prepro-
cessing: to reduce traffic volume using filters and
whitelists. (2) C&C-like protocol matcher: to col-
lect suspicious IRC and HTTP traffic using port-
independent protocol matcher. (3) Response Detec-

tor: to detect abnormally-high scan rates, weighted
failed connection rate, MX DNS query and SMTP
connections. The correlation engine runs in three
phases; (1) Grouping: performing 2-tuple (destina-
tion IP and port number) grouping of the nodes.
(2) Groups analysis: performing Response-Crowd-
Density-Check algorithm, utilizing sequential prob-
ability ratio testing, to check for dense response
crowds within the groups. It also performs Response-
Crowd-Density-Check algorithm looking for crowds
with similar responses. (3) Botnet Alert: to issue
an alert if any suspicious spatial-temporal correlation
C&C is detected.

4) BotMiner [31]: this is a botnet detection sys-
tem that is based on a framework made of three
main phases; monitoring, clustering, and correlating.
First, in the monitoring phase, two monitoring en-
gines -namely C&C communication traffic engine (C-
plane), and activity engine (A-plane)- are used. Each
engine keeps logs of its traffic analysis. The C-plane
monitors both TCP and UDP flows to determine who
is talking to whom. The A-plane monitors network
activities to determine who is doing what (e.g. scan,
spam) by detecting abnormally-high scan rates or
weighted failed connection rate. Second, in the clus-
tering phase, the C-plane clustering is performed by
looking for clusters of hosts that share same commu-
nication patterns. These clusters are victimized by
calculating four random variables, namely; number
of flows per hour, number of packets per hour, av-
erage number of bytes per packet and average num-
ber of bytes per second. In A-plane clustering, hosts
are first clustered based on their malicious activities
(e.g. scanning) then are clustered based on activity
features (e.g. port number). Finally, a cross-plane
correlation is performed to find intersection between
the two clusters in the previous phase. The intersec-
tion means that these hosts are part of a botnet.

To summarize, as Table 1 shows, though Rishi is a low
cost botnet detection system, it is a non-real-time passive
system that can only detect un-encrypted IRC botnets.
The other three detection systems (BotHunter, BotSnif-
fer and BotMiner) are proposed by Gu et al. BotHunter is
a real-time, protocol and structure independent detection
system capable of detecting unknown botnets with few
false positives/negatives. However, it is a passive system
that requires botnet to follow a predefined infection cycle
dialog model to be detected and it is not capable of de-
tecting encrypted botnets. BotSniffer is capable of detect-
ing encrypted botnets with low false positives/negatives
rates, but it is protocol and structure dependent and is
not a real-time system and works for LANs only. Fi-
nally, BotMiner is a passive non-real-time system. It is a
low cost detection system that is capable of detecting en-
crypted botnets regardless of their protocol or structure
with low false positives/negatives rates.



International Journal of Network Security, Vol.17, No.3, PP.272-289, May 2015 286

4.5 Detection Methods Summary

To summarize, in this section, we discussed botnet detec-
tion methods. These methods are categorized into three
categories namely; botnet behavior-based detection, bot-
master traceback detection, and detection using virtual
machines.

As Table 1 shows, most of behavior-based detection
methods (except DNS traffic analysis detections) are pro-
tocol dependent, cannot detect encrypted botnets and are
neither real-time nor active methods. However, most of
them have acceptable false positive/negative rates and ac-
ceptable computational cost. DNS traffic analysis detec-
tions are capable of detecting encrypted bots, regardless
of their protocol.

Traceback detection methods are real-time active tech-
niques that have acceptable false positive/negative rates
and acceptable computational cost, but they are not
structure independent.

Detection using virtual machines seems to be working
for encrypted bots regardless of their protocol or struc-
ture. It is a real-time algorithm with acceptable false
positive/negative rates. However this system is passive
and has high computational overhead.

4.6 Defence and Post-Detection Reac-

tions

According to [36], once a botnet is detected, it needs to
be tracked and brought down. First, a copy of the bot
needs to be analyzed to understand the bot behavior. To
get a copy of the bot, the analyzer needs to use methods
similar to honeypots. After that, the bots code needs to
be studied to find out; how the communication is done
within the botnet, how does new members join the bot-
net, and find the whereabouts of the botmaster. Finally,
the source of the bot is brought down (physically) by the
authorities [36].

Very few papers proposed post-detection procedures
against botnet. Vogt et al. [67] suggested that superbot-
nets must be examined by the research community, so
that defences against this threat can be developed proac-
tively. They pointed out some weak aspects of C&C mech-
anism that are exhibited by traditional botnet and suggest
defenders to target these weaknesses. They concluded
that there are five goals that defenders could take into
account to build a defence mechanism against botnets:

1) Locate or identify the adversary: At the time the ad-
versary issues commands through the botnets’ C&C,
it becomes vulnerable to detection.

2) Reveal all the infected machines: If bots are pool-
ing for botnets’ commands from a known location,
this polling activity can be used to reveal infected
machines.

3) Command the botnet: Once the defender is familiar
with the botnets’ commands, (s)he can send a com-
mand to the botnet to shut it down.

4) Disable the botnet: The botnet could by paralysed
by shutting down its C&C channel.

5) Disrupt Botnet Commands: By changing few bits
in the adversary’s commands is sufficient to disrupt
adversary’s control of the botnet.

5 Conclusion

Despite the fact that our knowledge about botnets is in-
complete; botnets are one of the most serious threats to
network security. This survey was conducted to better
understand botnets and is an attempt to organize the
enormous background available in this area to help re-
searchers who are starting in this area.

In this survey, we explained botnets C&C communi-
cation, infection behaviors and models. This survey dis-
cussed some of the botnets facilitator services. Fast-Flux
service networks were illustrated in great details and bot-
nets’ C&C rallying mechanisms were surveyed.

We classified botnets -based on their underlying C&C
protocol- to IRC, HTTP, POP3, and P2P botnets. As a
new emerging malware, social and mobile botnets’ threats
and potential were discussed in this survey. As mobile
phones with networking capabilities have become more
affordable, the threat of mobile botnets have increased.
Mobile botnets could spread through SMS or MMS ser-
vices. Their effect could be very damaging as the security
measures against mobile botnets may not have been de-
signed for mobile device.

Furthermore, botnet detection methods are surveyed
in detail. Detection methods have been classified into
three classes. First, behavior-based detection where bot-
nets are detected using; C&C traffic behavior, bot gen-
erated traffic behavior, or DNS traffic behavior. Second,
botmaster traceback detection is described. Then, a vir-
tual machine detection method is explained. Finally, ex-
amples of botnets detection systems were explained (i.e.
Rishi, BotHunter, BotSniffer and BotMiner). The sur-
vey is concluded with the botnets defence measures that
should be taken after detecting a botnet.

Acknowledgments

M. Mahmoud acknowledges funding from King Fahd Uni-
versity of Petroleum & Minerals (KFUPM). This work
was done while M. Mahmoud was doing his Ph.D. at Car-
leton University. M. Nir and A. Matrawy acknowledge
funding from Natural Sciences and Engineering Research
Council of Canada (NSERC).

References

[1] “SNORT,” Mar. 2006. (https://www.snort.org/)
[2] “Taxonomy of botnet threats,” white pa-

per, Trend Micro Incorporated, Nov. 2006.
(http://www.cs.ucsb.edu/ kemm/courses/cs595G/TM06.pdf)



International Journal of Network Security, Vol.17, No.3, PP.272-289, May 2015 287

[3] “Emerging cyber threats,” Technical Report, Geor-
gia Tech. Information Security Center, Oct. 2008.
(https://www.gtisc.gatech.edu/pdf/Threats Report 2015.pdf)

[4] “The möbius tool,” Apr. 2011.
(https://www.mobius.illinois.edu/)

[5] M. Akiyama, T. Kawamoto, M. Shimamura,
T. Yokoyama, Y. Kadobayashi, and S. Yamaguchi,
“A proposal of metrics for botnet detection based
on its cooperative behavior,” in International Sym-
posium on Applications and the Internet Workshops,
pp. 82–82, Jan. 2007.

[6] I. Asrar, “Could Sexy Space be the
Birth of the SMS Botnet?”, July 2009.
(http://www.symantec.com/connect/blogs/could-
sexy-space-be-birth-sms-botnet)

[7] P. Bächer, T. Holz, M. Kötter, and G. Wicherski,
“Know your Enemy: Tracking Botnets,” Oct. 2008.
(http://www.honeynet.org/papers/bots)

[8] M. Bailey, E. Cooke, F. Jahanian, Y. Xu, and
M. Karir, “A survey of botnet technology and de-
fenses,” in Cybersecurity Applications Technology
Conference For Homeland Security, pp. 299–304,
Mar. 2009.

[9] S. Balram and M. Wilscy, “User traffic profile for
traffic reduction and effective bot c&c detection,”
International Journal of Network Security, vol. 16,
pp. 46–52, Jan. 2014.

[10] J. Baltazar, J. Costoya, and R. Flores, “The real face
of koobface: The largest web 2.0 botnet explained,”
Technical Report, Trend Micro Incorporated, July
2009.

[11] P. Barford and V. Yegneswaran, “An inside look
at botnets,” in Advances in Information Security,
vol. 27, pp. 171–191, Springer, Mar. 2007.

[12] J. R. Binkley and S. Singh, “An algorithm for
anomaly-based botnet detection,” in Proceedings of
the 2nd conference on Steps to Reducing Unwanted
Traffic on the Internet, pp. 7–7, Berkeley, CA, USA,
2006.

[13] Y. Boshmaf, I. Muslukhov, K. Beznosov, and M. Ri-
peanu, “The socialbot network: When bots socialize
for fame and money,” in Proceedings of the ACM 27th
Annual Computer Security Applications Conference,
pp. 93–102, New York, NY, USA, 2011.

[14] Y. Boshmaf, I. Muslukhov, K. Beznosov, and M. Ri-
peanu, “Design and analysis of a social botnet,”
Computer Networks, vol. 57, no. 2, pp. 556–578, Feb.
2013.

[15] Y. Boshmaf, I. Muslukhov, K. Beznosov, and M. Ri-
peanu, “Key challenges in defending against mali-
cious socialbots,” in Proceedings of the 5th USENIX
conference on Large-Scale Exploits and Emergent
Threats (LEET’12), pp. 12–12, Berkeley, CA, USA,
2012.

[16] A. Caglayan, M. Toothaker, D. Drapeau, D. Burke,
and G. Eaton, “Real-time detection of fast flux ser-
vice networks,” in Proceedings of the IEEE Cyber-
security Applications & Technology Conference for

Homeland Security, pp. 285–292, Washington, DC,
USA, Mar. 2009.

[17] J. A. Chandler, “Liability for Botnet Attack,” Cana-
dian Journal of Law and Technology, vol. 5, pp. 13–
25, Mar. 2006.

[18] Z. Chi and Z. Zhao, “Detecting and blocking ma-
licious traffic caused by IRC protocol based bot-
nets,” in IFIP International Conference on Network
and Parallel Computing, pp. 485–489, Dalian, China,
Sep. 2007.

[19] K. Chiang and L. Lloyd, “A case study of the ru-
stock rootkit and spam bot,” in Proceedings of the
First Conference on First Workshop on Hot Topics
in Understanding Botnets, pp. 10–10, Berkeley, CA,
USA, 2007. Association.

[20] H. Choi, H. Lee, H. Lee, and H. Kim, “Botnet de-
tection by monitoring group activities in dns traffic,”
in The 7th IEEE International Conference on Com-
puter and Information Technology, pp. 715–720, Oct.
2007.

[21] Z. Chu, S. Gianvecchio, H. Wang, and S. Jajodia,
“Who is tweeting on twitter: Human, not, or cy-
borg?” in Proceedings of the ACM 26th Annual
Computer Security Applications Conference (AC-
SAC’10), pp. 21–30, New York, NY, USA, 2010.

[22] Z. Coburn and G. Marra, “Real boy: Believable twit-
ter bots,” July 2012.

[23] E. Cooke, F. Jahanian, and D. McPherson, “The
zombie roundup: Understanding, detecting, and dis-
rupting botnets,” in Proceedings of the Steps to Re-
ducing Unwanted Traffic on the Internet on Steps
to Reducing Unwanted Traffic on the Internet Work-
shop, pp. 6–6, Berkeley, CA, USA, 2005.

[24] X. Cui, B. Fang, L. Yin, X. Liu, and T. Zang, “And-
bot: Towards Advanced Mobile Botnets,” in Proceed-
ings of the 4th USENIX conference on Large-scale
exploits and emergent threats (LEET’11), pp. 11–11,
Berkeley, CA, USA, 2011.

[25] D. Dagon, C. Zou, and W. Lee, “Modeling botnet
propagation using time zones,” in Proceedings of the
13 th Network and Distributed System Security Sym-
posium NDSS, 2006.

[26] M. Feily, A. Shahrestani, and S. Ramadass, “A sur-
vey of botnet and botnet detection,” pp. 268–273,
Los Alamitos, CA, USA, June 2009.

[27] D. Fisher, “Storm, nugache lead dangerous new bot-
net barrage,” Dec. 2007. Online Article.

[28] A. R. Flø and A. Jøsang, “Consequences of Botnets
Spreading to Mobile Devices,” in Proceedings of the
14th Nordic Conference on Secure IT Systems (Nord-
Sec 2009), Oct. 2009.

[29] J. Goebel and T. Holz, “Rishi: identify bot contam-
inated hosts by IRC nickname evaluation,” in Pro-
ceedings of the first Conference on First Workshop on
Hot Topics in Understanding Botnets, pp. 8, Berke-
ley, CA, USA, 2007.

[30] J. B. Grizzard, V. Sharma, C. Nunnery, B. B. Kang,
and D. Dagon, “Peer-to-peer botnets: Overview and



International Journal of Network Security, Vol.17, No.3, PP.272-289, May 2015 288

case study,” in Proceedings of the first conference
on First Workshop on Hot Topics in Understanding
Botnets, pp. 1, Berkeley, CA, USA, 2007.

[31] G. Gu, R. Perdisci, J. Zhang, and W. Lee, “Bot-
Miner: Clustering analysis of network traffic for
protocol- and structure-independent botnet detec-
tion,” in Proceedings of the 17th Conference on Se-
curity Symposium, pp. 139–154, Berkeley, CA, USA,
2008.

[32] G. Gu, P. Porras, V. Yegneswaran, M. Fong, and
W. Lee, “Bothunter: detecting malware infection
through ids-driven dialog correlation,” in Proceedings
of 16th USENIX Security Symposium on USENIX
Security Symposium, pp. 1–16, Berkeley, CA, USA,
2007.

[33] G. Gu, J. Zhang, and W. Lee, “Botsniffer: Detect-
ing botnet command and control channels in network
traffic,” in Proceedings of 16th Annual Network and
Distributed System Security Symposium (NDSS’08),
Reston, VA, USA, February 2008.

[34] K. J. Higgins, “Smartphone weather app builds a
mobile botnet,” Mar. 2010.

[35] T. Holz, C. Gorecki, K. Rieck, and F. Freiling, “Mea-
suring and detecting fast-flux service networks,” in
The 15th Network and Distributed System Security
Symposium (NDSS’08), Reston, VA, USA, Feb. 2008.

[36] T. Holz, M. Steiner, F. Dahl, E. biersack, and
F. Freiling, “Measurements and mitigation of peer-
to-peer-based botnets: a case study on storm worm,”
in Proceedings of the 1st Usenix Workshop on Large-
Scale Exploits and Emergent Threats, pp. 1–9, Berke-
ley, CA, USA, 2008.

[37] T. Hwang, I. Pearce, and M. Nanis, “Socialbots:
Voices from the fronts,” interactions, vol. 19, pp. 38–
45, Mar. 2012.

[38] A. Karasaridis, B. Rexroad, and D. Hoeflin, “Wide-
scale botnet detection and characterization,” in Pro-
ceedings of the First Conference on First Workshop
on Hot Topics in Understanding Botnets, pp. 7–7,
Berkeley, CA, USA, Apr. 2007.

[39] E. Kartaltepe, J. Morales, S. Xu, and R. Sandhu,
“Social network-based botnet command-and-control:
Emerging threats and countermeasures,” in Applied
Cryptography and Network Security, LNCS 6123,
pp. 511–528, Springer-Verlag, 2010.

[40] C. Li, W. Jiang, and X. Zou, “Botnet: survey
and case study,” in Fourth International Conference
on Innovative Computing, Information and Control,
pp. 1184–1187, Dec. 2009.

[41] C. Y. Liu, C. H. Peng, and I. C. Lin, “A survey
of botnet architecture and botnet detectection tech-
niques,” International Journal of Network Security,
vol. 16, no. 2, pp. 81–89, Mar. 2014.

[42] J. Liu, Y. Xiao, K. Ghaboosi, H. Deng, and J. Zhang,
“Botnet: classification, attacks, detection, trac-
ing, and preventive measures,” EURASIP Jour-
nal on Wireless Communications and Networking,
vol. 2009, pp. 11, 2009.

[43] L. Liu, S. Chen, G. Yan, and Z. Zhang, “Bottracer:
Execution-based bot-like malware detection,” in In-
formation Security, pp. 97–113, 2008.

[44] C. Livadas, R. Walsh, D. Lapsley, and W. T. Strayer,
“Using machine learning technliques to identify bot-
net traffic,” in The 31st IEEE Conference on Local
Computer Networks, pp. 967–974, Nov. 2006.

[45] C. Mazzariello, “IRC traffic analysis for botnet detec-
tion,” in Fourth International Conference on Infor-
mation Assurance and Security (ISIAS’08), pp. 318–
323, Naples, Italy, Sep. 2008.

[46] S. Nagaraja, A. Houmansadr, P. Piyawongwisal,
V. Singh, P. Agarwal, and N. Borisov, “Stegobot: A
covert social network botnet,” in Information Hid-
ing, LNCS 6958, pp. 299–313, Springer-Verlag, 2011.

[47] J. Nazario, “Blackenergy ddos bot analysis,” Tech-
nical Report, Arbor Networks, Oct. 2007.

[48] J. Nazario, “Twitter-based botnet command chan-
nel,” Aug. 2009.

[49] J. Nazario and T. Holz, “As the net churns: Fast-flux
botnet observations,” in The 3rd International Con-
ference on Malicious and Unwanted Software, pp. 24–
31, Oct. 2008.

[50] J. Oikarinen and D. Reed, “Internet relay chat pro-
tocol,” RFC 1459, May 1993.

[51] M. Overton, “Bots and botnets: risks, issues and pre-
vention,” in proceedings of virus bulletin Conference,
Virus Bulletin, Oct. 2005.

[52] E. Passerini, R. Plaeari, L. Martignoni, and D. Br-
uschi, “Fluxor: Detecting and monitoring fast-flux
service networks,” in Detection of Intrusions and
Malware, and Vulnerability Assessment, LNCS 5137,
pp. 186–206, July 2008.

[53] D. Plohmann, E. Gerhards-Padilla, and F. Leder,
“Botnets: measurement, detection, disinfection and
defence,” in ENISA Workshop (Giles Hogben, ed.),
Mar. 2011.

[54] P. Porras, H. Saidi, and V. Yegneswaran, “An anal-
ysis of the ikee.b (duh) iphone botnet,” Technical
Report, SRI International, CA, 94025, USA, Dec.
2009.

[55] J. R. Quinlan, C4.5: Programs for Machine Learn-
ing, Morgan Kaufmann Publishers Inc., 1993.

[56] M. Abu Rajab, J. Zarfoss, F. Monrose, and A. Terzis,
“A multifaceted approach to understanding the bot-
net phenomenon,” in Proceedings of the 6th ACM
SIGCOMM Conference on Internet Measurement
(IMC’06), pp. 41–52, New York, NY, USA, Oct.
2006.

[57] D. Ramsbrock, X. Wang, and X. Jiang, “A first step
towards live botmaster traceback,” in Recent Ad-
vances in Intrusion Detection, LNCS 5230, pp. 59–
77, Springer-Verlag, 2008.

[58] E. Van Ruitenbeek and W. H. Sanders, “Modeling
peer-to-peer botnets,” in Fifth International Confer-
ence on Quantitative Evaluation of Systems, pp. 307–
316, Sep. 2008.



International Journal of Network Security, Vol.17, No.3, PP.272-289, May 2015 289

[59] Y. H. Shin and E. G. Im, “A survey of botnet: con-
sequences, defenses and challenges,” in The fourth
Joint Workshop on Information Security (JWIS’09),
Kaohsiung, Taiwan, Aug. 2009.

[60] K. Singh, A. Srivastava, J. Giffin, and W. Lee,
“Evaluating email’s feasibility for botnet command
and control,” in IEEE International Conference on
Dependable Systems and Networks with FTCS and
DCC, pp. 376–385, June 2008.

[61] S. Stover, D. Dittrich, J. Hernandez, and S. Dietrich,
“Analysis of the storm and nugache trojans: P2p is
here,” The USENIX Magazine, vol. 32, pp. 18–27,
Dec. 2007.

[62] W. T. Strayer, R. Walsh, C. Livadas, and D. Laps-
ley, “Detecting botnets with tight command and con-
trol,” in Proceedings the 31st IEEE Conference on
Local Computer Networks, pp. 195–202, Cambridge,
MA, Nov. 2006.

[63] V. L. Thing, M. Sloman, and N. Dulay, “A sur-
vey of bots used for distributed denial of service at-
tacks,” in New Approaches for Security, Privacy and
Trust in Complex Environments, vol. 232/2007 of
IFIP International Federation for Information Pro-
cessing, pp. 229–240, Boston, USA, Nov. 2007.

[64] P. Traynor, M. Lin, M. Ongtang, v. Rao, T. Jaeger,
P. McDaniel, and T. La Porta, “On Cellular Botnets:
Measuring the Impact of Malicious Devices on a Cel-
lular Network Core,” in Proceedings of the 16th ACM
conference on Computer and Communications Secu-
rity (CCS’09), pp. 223–234, New York, NY, USA,
2009.

[65] P. Traynor, P. McDaniel, and T. La Porta, “On
Attack Causality on Internet-Connected Cellular
Networks,” in Proceedings of 16th USENIX Secu-
rity Symposium on USENIX Security Symposium
(SS’07), pp. 21:1–21:16, Berkeley, CA, USA, 2007.

[66] V. Vapnik, S. E. Golowich, and A. Smola, “Support
vector method for function approximation, regres-
sion estimation, and signal processing,” in Advances
in Neural Information Processing Systems, vol. 9,
pp. 281–287, 1996.

[67] R. Vogt, J. Aycock, and M. J. Jacobson, “Army of
botnets,” in Proceedings of Network and Distributed
System Security Symposium (NDSS’07), pp. 111–
123, Reston, VA, USA, Feb. 2007.

[68] P. Wand, S. Sparks, and C. C. Zou, “An advanced hy-
brid peer-to-peer botnet,” in Proceedings of the first
Conference on First Workshop on Hot Topics in Un-
derstanding Botnets, pp. 2, Berkeley, CA, USA, 2007.

[69] Z. Zhu, G. Lu, Y. Chen, Z. J. Fu, P. Roberts, and
K. Han, “Botnet research survey,” in 32nd Annual
IEEE International Conference on Computer Soft-
ware and Applications, pp. 967–972, Aug. 2008.

Muhammad Mahmoud is an Assistant Professor at
King Fahd University of Petroleum & Minerals, Dhahran,
Saudi Arabia. He received the Ph.D. degree in electrical
and computer engineering from Carleton University,
Ottawa, Canada. His research interests include network
security, and Communication Network Protocols. His
research has been supported by KFUPM.

Manjinder Nir is currently a fourth year Ph.D. can-
didate in the Department of Systems and Computer
Engineering at Carleton University, Ottawa, Canada. He
received B.Tech. and M.Tech. degrees in Electronics
and Communication Engineering from Punjab Technical
University, Punjab, India. His research interests include
computer networking and pervasive computing.

Ashraf Matrawy is an Associate Professor and the As-
sociate Director of the School of Information Technology
at Carleton University. He received the Ph.D. degree in
electrical engineering from Carleton University. He is a se-
nior member of the IEEE, serves on the editorial board of
the IEEE Communications Surveys and Tutorials journal,
and has served as a technical program committee member
of a number of international conferences. His research in-
terests include reliable and secure computer networking.
His research has been supported by CFI/ORF, NSERC,
OCE, Alcatel-Lucent Canada, and Solana Networks.


