
International Journal of Network Security, Vol.17, No.2, PP.189-198, Mar. 2015 189

An Auto-tuning Sanitizing System for Mitigating
Injection Flaws

Jan-Min Chen
(Corresponding author: Jan-Min Chen)

Department of Information Management, Yu Da University of Science and Technology

No. 168, Hsueh-fu Rd., Tanwen Village, Chaochiao Township, Miaoli County 361, Taiwan, R.O.C.

(Email: ydjames@ydu.edu.tw)

(Received July 8, 2013; revised and accepted May 20, 2014)

Abstract

Injection attacks are dangerous and ubiquitous, con-
tributing enormously to some of the most elaborate Web
hacks. Enforcing proper input validation is an effective
countermeasure to improve injection flaws. Unless a web
application has a strong, centralized mechanism for vali-
dating all input from HTTP requests, injection flaws are
very likely to exist. However, improper constraining rules
may induce some detection error. False negatives may
render security risks and false positives will cause im-
proper limits of input characters. In this paper, we design
an auto-tuning system to help validating input for each
vulnerable injection point. A proper validation rule can
be automatically generated through an auto-tuning mech-
anism. The experimental results show that the system
can effectively protect against injection attacks and lower
false positives while compared with traditional methods.

Keywords: Constraining rule, content filtering, detection
accuracy, injection flaws, input validation

1 Introduction

Injection attacks can be very easy to discover and exploit.
Hackers take advantage of a weakness in the Web applica-
tion design to intentionally insert some extra characters
in input data to bypass or modify the originally intended
functionality of the program. The consequences can run
the entire range of severity, from trivial to complete sys-
tem compromise or destruction. Many application’s se-
curity vulnerabilities result from generic injection prob-
lems. Examples of such vulnerabilities are SQL injection,
Shell injection and Cross site scripting (XSS). Enforcing
input validation is an effective countermeasure to protect
against injection attacks. Traditional methods usually use
a generic constraining rule to strictly sanitize all input. It
may cause improper limits of input characters because of
some false positives.

There are numbers of the researches related to protect
Web site against injection attacks: Huang et al. had de-
veloped a WebSSARI and a WAVES [8]. The Open Web
Application Security Project (OWASP) had launched a
WebScarab project [16]. The other available commercial
scanners also included IBM Rational’s AppScan and SPI
Dynamics’ WebInspect [9, 23]. Above-mentioned tools
just focus on finding Web application flaws. Once web
application vulnerabilities have been identified, the ul-
timate solution is to fix the vulnerabilities in the web
application source code itself. However, this can render
intrusion risks because proper vulnerability fixing often
requires doing something else such as testing, supports
coming from third parties and vendors of multiple soft-
ware components. Thus, some solutions had been pro-
posed to protect against attacks before fixing flaws. Sanc-
tum Inc. provided an AppShield adopting Security Gate-
way to prevent application-level attacks [22]. Some ad-
vanced firewalls also incorporated deep packet inspection
technologies for filtering application-level traffic [3]. We
had proposed a fixing tool that can be used to improve
injection flaws [11]. It can produce proper input valida-
tion functions related to the source codes of applications.
Next an enhanced prototype adopting a security gateway
in front of web server to sanitize malicious input had been
proposed solving the problem as source code may not be
modified [13]. The above two methods both use a generic
constraining rule to validate input, so false positive will be
troublesome. Recently, Web application firewalls (WAF)
is a popular solution to be used to create an external secu-
rity layer to improve security, detection, and prevention of
attacks before they hit web applications [10, 15, 17]. For
WAF, the sanitizing mechanism is a critical technique.
However traditional validating methods are susceptible to
error because of using single constraining rules to sanitize
all input. Lately, we had proposed a heuristic mechanism
that can automatically generate proper validation rules
based on each vulnerable injection point. The method
had been primarily proved both guarantee security (false
negatives) and convenience (false positives) [2].

International Journal of Network Security, Vol.17, No.2, PP.189-198, Mar. 2015 190

In this paper, we create a sanitizing system to help
validating input. For each vulnerable injection point, a
proper validation rule can be automatically generated and
adjusted itself to new injection attacks through an auto-
tuning mechanism. Thus the system can both guarantee
better detection accuracy compared with other constrain-
ing strategies and better effectiveness to protect against
new injection attacks.

The main contributions of this paper are summarized
below:

1) It has good “scalability” when applied to Web site
growth or new attack patterns because it integrates
an injection vulnerability analyzer (finding target),
an injection pattern generator (exploitation), and a
constraining rule generator (prevention) into an auto-
tuning bastion.

2) It proposes an auto-tuning mechanism to effectively
improve the detection accuracy of the signature-
based content filtering techniques.

3) It designs a system to automatically protect against
new injection flaws through the seamless delivery of
new constraining rule.

The rest of this article is organized as follows: The sec-
ond section surveys a number of works relevant to improve
injection flaws. In third section, we describe our technical
details of auto-tuning sanitizing agent. The system imple-
mentation is shown in fourth section and its effectiveness
is evaluated in fifth section. The last section concludes
the whole paper.

2 The Works Relevant to Improve
Injection Flaws

2.1 Injection Flaws

Injection flaws allow attackers to relay malicious code
through a web application to another system. The at-
tacker can inject special (meta) characters, malicious
commands, or command modifiers into the information
and the web application will blindly pass these on to the
external system for execution. These attacks include calls
to the operating system via system calls, the use of ex-
ternal programs via shell commands, as well as calls to
backend databases via SQL [18].

SQL injection is a type of security exploit in which
the attacker adds SQL statements through a web appli-
cation’s input fields or hidden parameters to gain access
to resources or make changes to data. It is a particularly
widespread and dangerous form of injection. It is an at-
tack technique used to exploit web sites that construct
SQL statements from user-supply input. SQL injection is
a serious vulnerability, which can be found in any envi-
ronment with an SQL back-end database (Microsoft SQL
Server, Oracle, Access, and so on) and used to steal in-
formation from a database from which the data would

normally not be available and to gain access to host com-
puters through the database engine. As with SQL injec-
tion, XSS is also associated with undesired data flow. XSS
exploit vulnerabilities in Web page validation by injecting
client-side script code. The script code embeds itself in
response data, which is sent back to an unsuspecting user.
The user’s browser then runs the script code. Because the
browser downloads the script code from a trusted site,
the browser has no way of recognizing that the code is
not legitimate. One of the most serious examples of a
XSS attack occurs when an attacker writes script to re-
trieve the authentication cookie that provides access to a
trusted site and then posts the cookie to a Web address
known to the attacker. This enables the attacker to spoof
the legitimate user’s identity and gain illicit access to the
Web site.

2.2 Content Filtering

There are two strategies are typically employed in con-
tent filtering: signature-based and heuristic-based. Sim-
ple signature-based detection is an effective and compu-
tationally efficient method to detect viruses, but it does
have a couple of shortcomings. Signature-based detection
involves searching for known patterns of data within ex-
ecutable code. However, it is possible for a computer to
be infected with new malware for which no signature is
yet known. One type of heuristic approach is intended
to overcome the shortcoming. Heuristic-based detection,
like malicious activity detection, can be used to identify
unknown viruses. Because viruses tend to perform cer-
tain actions that legitimate programs do not, they can
usually be identified by those actions. If heuristic de-
tection was employed, success depends on achieving the
right balance between false positives and false negatives.
Due to the existence of the possibility of false positives
and false negatives, the identification process is subject
to human assistance which may include user decisions,
but also analysis from an expert of the antivirus software
company [1].

Signature-based intrusion detection system such as the
popular Snort program is typically configured with a set of
rules to detect popular attack patterns. These rules look
almost exactly like firewall rule sets in that patterns can
be specified on packet header fields using the usual flex-
ibility of specifying prefixes, wildcarded fields, and port
ranges [5]. However, signature detection systems go one
step beyond packet filters in complexity by also allow-
ing an arbitrary string that can appear anywhere in the
packet payload. String matching in packet content, is
also of interest to many applications that make use of
content-based forwarding. Radwan et al. show a new
implementation of a gateway capable of applying content-
based security on attachments of messages, where a single
gateway serves several web servers in a web farm [24].

International Journal of Network Security, Vol.17, No.2, PP.189-198, Mar. 2015 191

2.3 Constraining Input

Input validation is a secure input handling way for veri-
fying user input to ensure that input is safe prior to use.
In general, it checks the user input through constraining
rule based on two types of security model (a whitelist
and a blacklist). Validation based on whitelist can ensure
that all requests are denied unless specifically allowed. A
whitelist is a set of all allowed items. The list may involve
setting character sets, type, length, format, and range.
On the other hand, a blacklist defines what is disallowed,
while implicitly allowing everything else.

The benefit of using a whitelist is that new attacks, not
anticipated by the developer, will be prevented. A generic
solution may not be easily implemented but we can know
that is acceptable input data for application program in a
localized way. It is much easier to validate data for known
valid patterns but it may induce more false positives. On
the other hand, a blacklist can clearly dictates that you
should specify the characteristics of input that will be
denied. Ultimately, however, you’ll never be quite sure
that you’ve addressed everything through the blacklist.
That is to say, it is an unrealistic idea assuming that
all the variations of malicious injection had been known.
The blacklist may be quite tempting when you’re trying
to prevent an attack on your site. However, it allows
more abundant input data than a whitelist. In summary,
a blacklist often can guarantee fewer false positives than
a whitelist but it may induce more false negatives.

2.4 Improving Injection Flaws

Once injection flaws have been identified, the ultimate
solution is to fix the vulnerabilities in the web applica-
tion source code itself. However, this can’t be reachable
immediately because proper vulnerability fixing often re-
quires doing something else such as supports coming from
third parties and vendors of multiple software compo-
nents. Thus, some solutions had been proposed instead to
improve injection flaws before fixing the vulnerabilities.

The Open Web Application Security Project recom-
mends that a thorough validation of any input data needs
to be made in order to ensure that the data does not con-
tain any malicious content [16]. SPI Dynamics also sug-
gest using regular expressions for sanitizing data before
it is executed by a back-end database [23]. There has
been other research into improving injection flaws. Salem
et al. had outlined an intercepting filter approach aimed
at increasing the security and reliability of web applica-
tions by eliminating injection flaw exploitations. The use
of filter components, in conjunction with the Intercepting
Filter design pattern, can be used to sanitize HTTP Re-
quest information before it is ever processed by the web
application and had been carried out on Java and .NET
based platforms [21]. DOME uses a filter that looks for
and marks the locations of system calls and then watches
the result of the execution of the actual code [19]. Hal-
fond et al. had proposed a technique that uses a program

to automatically build a model of the legitimate queries
that could be generated by the application [6].

3 Protecting Against Injection
Attacks

An injection flaw is the result of an invalidated input and
thus, proper input validation is an effective countermea-
sure for protecting against injection attacks. In particu-
lar, some input validation programs are poorly written,
lacking even the most basic security procedures for sani-
tizing input. Furthermore, some legacy applications may
not be able to modify the source of such components.
Currently, a WAF is a common solution that can be used
in addition to the protected Web site to prevent an im-
mediate injection attack. Although a WAF is language
independent and requires no modification to the applica-
tion source code, it may induce false recognition due to
the use of a generic constraining rule.

3.1 Sanitizing Agent

To help performing proper input validation is an effective
countermeasure for mitigating injection flaws. It can be
achieved by a two steps approach: first, to find all vul-
nerable injection points and second, to automatically and
accurately validate input.

Injection flaws can be found via the Input Validation
Testing (IVT). Here the IVT is defined as choosing proper
test case that attempt to show the presence or absence
of specific errors pertaining to input data [7]. A Web
application vulnerability scanner is a common IVT tool.
We also had proposed a feasible method for performing
IVT. The method not only uncovers vulnerability but also
ensures the location where the vulnerability occurs [12].
Upon completion of processes of Web crawling and anal-
ysis, an injection point list can be created and filled in
the fields of URL and parameter with the result of analy-
sis. And then, IVT will be launched to uncover different
vulnerabilities according to the injection point list. The
completion of IVT allows us to fill in flaw type field of an
injection point list with flaw name to enable the recording
of flaws of each injection point.

Next, the task to automatically assist on validating in-
put for each vulnerable injection point is achieved by a
sanitizing agent. The sanitizing agent can help validat-
ing input via meta-programs. The meta-programs can
be translated by a code generator. Each parameter of the
same URL in the vulnerable injection point table can gen-
erate a meta-program to constrain inputs. For example, if
there are some records having the content of a URL field
as ‘verify.php’ in the vulnerable injection point table, our
mechanism can automatically generate a meta-program
named ‘verify.php’ to help sanitizing the http requests
which surfing destination is ‘verify.php’. The Algorithm1
is used for generating a meta-program and the code snip-
pet of the meta-program is presented in Table 1. It needs

International Journal of Network Security, Vol.17, No.2, PP.189-198, Mar. 2015 192

to be noted that the italic words should be replaced by a
parameter field in the vulnerable injection point table and
the constraining rule while generating a meta-program.
The constraining rule can be gotten through looking up
the constraining rule table according to the flaw type field
in the vulnerable injection point list. The meta-program
can perform input validation instead of the Web applica-
tions having injection flaws. However the meta-program
only embodies a sanitizing functionality and so it can’t
replace the initial program. Thus, after completing the
sanitizing procedure, the http request needs to be redi-
rected to original program to obtain prime service.

Algorithm 1 Generating a meta-program

//A algorithm for generating a meta-program named
as url

1: OPEN a vulnerable injection point table
2: GET url
3: FOR EACH distinct url in a vulnerable injection

point table
4: FOR EACH parameter having same url

//To generate a program segment of validating input
for each vulnerable injection point

5: GET constraining rule, parameter’s value
6: STORE parameter’s value to parameterValue

// input data
//To search the parameterValue for the number of
times of match to the regular expression given in con-
straining rule

7: FOR EACH parameterValue // validation logic
begin

8: COUNT the number of times of match to the
regular expression given in con-straining rule

9: STORE the number of times of match to Counter
10: END FOR
11: IF (Counter > legalSpecialCharCount)
12: ECHO error message
13: EXIT
14: END IF
15: SESSION parameter’s value // validation logic end
16: FILEWRITER url // append the validation logic
17: END FOR
18: REDIRECT url
19: END FOR

3.2 Generating Ideal Constraining Rules

In general, the constraining rule was based on a generic
whitelist or blacklist. A generic whitelist usually only
allows case-sensitive alphanumeric characters. A generic
blacklist always does its best to include all possible ma-
licious characters to guarantee same false negative. A
blacklist allows more abundant input data than a whitelist
so validation based on a blacklist can cause fewer false
positives than a whitelist. However, it may induce more
false negatives. In general case, a configurable set of mali-
cious characters is used to reject the input but it is an un-

Table 1: Example of a simple meta-program

<? // a simple meta-program

$id0=$_POST[’myusername’];

$pattern0="/[=;_’>%<\(@:&\\-\|!\.\+\/]/";

$i = 0;

while((preg_match($pattern0, $id0, $matches))

&& $i < 2)

{

$i++;

$temp = preg_split("/[$matches[0]]/",

$id0);

$id0 = implode($temp);

}

if ($i >= 2)

{

echo "illegal character detected";

exit;

}

$_SESSION["myusername"] =$id0;

redirect ($url);

?>

realistic idea assuming that all the variations of malicious
injection had been known. Therefore a validation based
on a blacklist should guarantee acceptable false negative,
and then do everything possible to reduce false positive.
The generic constraining rule can guarantee security, but
it may cause more false positives, causing inconvenient
because of improper limitation of input characters. Thus,
we need an intelligent method for gathering necessary
characters in a blacklist to generate an ideal constraining
rule according to the actual situation. While inspecting
some injection attack strings, we find that most special
(not case-sensitive alphanumeric) characters in the strings
don’t appear alone. For the special characters appearing
in an injection string, just only one of them is required
to be added in a blacklist. Thus we think that a bet-
ter method is only put necessary special characters in a
blacklist.

We think that the necessary special character is which
having most appearing rate in comparison with other spe-
cial characters in an injection string. According to the
clue, we propose the Algorithm2 for choosing the spe-
cial characters really having to be added in the blacklist.
The algorithm can be used to generate an ideal constrain-
ing rule according to various types of injection patterns.
Thus the ideal constraining rule can be used in the meta-
program to not only guarantee same false negative but
also reduce more false positives in comparison with using
a generic blacklist while performing input validation.

International Journal of Network Security, Vol.17, No.2, PP.189-198, Mar. 2015 193

Algorithm 2 Generating a ideal constraining rule

1: FOR EACH injectionString(i)
2: Let candidateString(i) = all specialCharacters in an

injection string
//specialCharacter i.e. not case-sensitive alphanu-
meric

3: Remove same characters from candidateString(i)
4: Let specialCharacter (i, j) = the specialCharacter

had appeared in candidateString(i)
5: For EACH specialCharacter (i, j)
6: Count the amount of the specialCharacter appear-

ing in all candidateStrings and STORE to appear-
Rate(i, j)

7: END FOR
8: END FOR
9: FOR EACH candidateString(i)

10: SORT the specialCharacter(i, j) in the candidat-
eString by appearRate (i, j) into descending order

11: IF (the first character in the candidateString can’t
be found in a blackList)

12: ADD the character to the blackList
13: END IF
14: END FOR

3.3 An Auto-tuning Mechanism

Generating an ideal constraining rule is a critical tech-
nique for mitigating injection flaws. Ideal sanitizing input
depends on achieving the right balance between false posi-
tives and false negatives. Traditional methods usually use
a comprehensive constraining rule to strictly sanitize in-
put. It may cause improper limits of input characters be-
cause of some false positives. A looser rule may lower false
positives than a generic rule but it may induce false neg-
atives. False negatives may render security risks. Thus,
from a security defense viewpoint, the least false nega-
tives should have a higher priority than the false positive
and it follows that, in general, the false negative is zero.
Due to the existence of the possibility of false positives
and false negatives, the identification process is subject
to human assistance which may include user decisions.

Although a blacklist is likely to support more elastic
input data than a whitelist, it may induce more false neg-
atives. The blacklist may be quite tempting so it is an
unrealistic idea assuming that all the variations of mali-
cious injection had been known. Thus a validation based
on blacklist should prefer assuring of acceptable false neg-
ative, and do everything possible to reduce false positive.
Our auto-tuning approach is intended to automatically
achieve the right balance between false positives and false
negatives. It guarantees same number of false negatives
as well as reduces more false positives while sanitizing
inputs.

False positives may cause improper limits of input
characters. There are some normal input including spe-
cial characters such as compound name (jan-min includ-
ing “−”) and domain name (www.ydu.edu.tw including

“.”). Adding these special characters in the blacklist
must induce many false positives, on the contrary, remov-
ing these special characters must render many false neg-
atives. While inspecting some malicious injection strings,
we find that most special characters in the strings don’t
appear alone. Thus we can pretend that it is a normal
string if only one type of special character appearing in
an injection string. In the algorithm1, generating a meta-
program, we can let the legalSpecialCharCount equal to
1 for effectively lowering false positives.

The known malicious injection string must be detected
and removed by the sanitizing agent. That is to say, there
are normal data and new malicious injection strings will
be kept in the Web access log of the protected Web server.
The new malicious injection strings can be quickly filtered
and categorized according to attack types and then add
to the testing pattern table. Finally, new constraining
rules can be generated to protect against new injection
attack. Thus, the auto-tuning mechanism can help gener-
ating ideal constraining rules to achieve the right balance
between false positives and false negatives.

4 System Implementation

To verify the effectiveness of our scheme, we implement
an auto-tuning sanitizing system and present its architec-
ture diagram and interactions between each component in
Figure 1. The system consists of three main components:
sanitizing agent, injection vulnerability analyzer and in-
jection pattern generator. The injection vulnerability an-
alyzer is responsible for finding injection flaws and gener-
ating a vulnerable injection point table [13]. The injection
pattern generator is dedicated to organizing new injection
patterns by analyzing the navigational information kept
in the Web access log. The sanitizing agent is capable of
help validating input. The sanitizing agent is allocated in
front of the protected Web servers. All HTTP\HTTPS
requests to the protected Web servers are routed through
the sanitizer that can either deal with the request itself or
pass the request partially to Web servers. After passing all
check, the requests are forwarded to the Web server. The
sanitizing agent deals with both the requests coming from
client and the response pages coming from the Web server
and then forward to server\clients. It can help validating
input via meta-programs. Any malicious injections must
be blocked by the sanitizing agent. The meta-programs
can be translated by a code generator named translator.
Each parameter of the same URL in the vulnerable injec-
tion point table can generate a meta-program to constrain
inputs. Furthermore, the meta-program only has sani-
tizing functionality so it can’t replace original Web ap-
plication. Thus after completing constraining work, the
http request needs to be redirected to original program
to obtain prime service. In general, the known malicious
injection string must be detected and removed by the san-
itizing agent. That is to say, there are only normal data
and new malicious injection strings will be kept in the

International Journal of Network Security, Vol.17, No.2, PP.189-198, Mar. 2015 194

Figure 1: A architecture diagram of the auto-tuning sanitizing system

Web access log of the protected Web server. The injec-
tion pattern generator can analyze the Web access log and
generate various injection patterns. These patterns can be
categorized according to attack types and then kept in the
testing pattern table. The constraining rule generator is
capable of generating various ideal constraining rules ac-
cording to testing pattern table. The detection accuracy
of a sanitizing agent is dependent on constraining rules.
The constraining rule generator may automatically orga-
nize new constraining rules while new injection patterns
added in the testing pattern table. Thus the sanitizing
rule can automatically adjust itself to constrain new ma-
licious injection.

In Figure 1, the solid lines show the process of the auto-
tuning mechanism. The sanitizing system can achieve the
right balance between false positives and false negatives
through auto-tuning mechanism. A false positive occurs
when the normal input data is mistakenly blocked by a
sanitizer, while a false negative occurs when the sanitizer
cannot constrain a malicious injection. From a security
defense viewpoint, the least false negative should have a
higher priority than the false positive and it follows that,
in general, the false negative is zero. A looser constraining
rule may induce more false negatives. Thus some mali-
cious injection strings will pass sanitizer and are kept in
Web access log. These injection strings will be translate to
new injection patterns by the injection pattern generator
and then sent to testing pattern table. Next the constrain-
ing rule generator will organize stricter constraining rule
to lower false negatives. Above processes will recursively
go on until none of false negative. Therefore the auto-
tuning sanitizing system can automatically adjust itself
to effectively protect against new injection attacks.

We created an experimental website having SQL-
injection and XSS vulnerabilities. The experimental web-
site included 13 Web pages, 47 injection points, and 11
vulnerable injection points. We used the experimental
website to assist in fine-tuning the detection accuracy of
the injection vulnerability analyzer. To emphasize the im-

portance of individual constraining rules, some injection
points have been designated as special cases having only
one specific flaw. For example, after the vulnerability as-
sessment, we discovered that the third injection point of
the experimental Web site only has XSS injection vulner-
ability and the fourth injection point has SQL vulnera-
bility. This is then considered as a false positive if some
pattern designed to locate SQL injection is filtered on the
third injection point. We also chose six web applications
from the National Vulnerability Database to enrich the
evaluation of the injection vulnerability analyzer and the
auto-tuning system [14]. After the injection vulnerabil-
ity analyzer finishes the process, the detailed information
about all the programs used in protected the Web site is
presented in Table 2.

All primary tests were performed on an experimental
Website including some client-side Web pages and vul-
nerable Web applications. The tests relevant to verifying
the effectiveness of the sanitizer were divided into two
phases. In the first phase, the injection vulnerability an-
alyzer began to directly inspect vulnerability to create a
vulnerable injection point table. In the second phase, at
first the meta-program in the sanitizing agent adopted
a looser constraining rule to verify the effectiveness of
the auto-tuning mechanism. All known injection attack
patterns were used as input. After completing the auto-
tuning process, the false negative of the system is zero
and the false positive is at strict minimum.

5 Experimental Evaluation

The effectiveness of the auto-tuning sanitizing system
should be verified via two phases. One is to evaluate
the detection accuracy of the system and next to show
the auto-tuning mechanism can automatically adjust con-
straining rule to effectively sanitizing new injection pat-
terns. There are none standard experimental data for
verifying the performance of the system. In order to be
sure of specific vulnerability, we need to create a testing

International Journal of Network Security, Vol.17, No.2, PP.189-198, Mar. 2015 195

Table 2: The detail information about all programs used in protected website

Application
Name/CVE#

Web
page

amount

Injection
points

amount

Vulnerable
injection

point amount

Vulnerable
page Name

Flaw type

Experimental program 13 47 11 bbs.php SQL injection/XSS
CVE-2010-0122 72 324 5 add user.php SQL injection
CVE-2009-4669 748 2947 2 Login.php SQL injection
CVE-2009-4595 30 22 2 index.php SQL injection
CVE-2010-1742 13 15 1 projects.php XSS
CVE-2009-4456 9 10 1 news detail.php SQL injection
CVE-2009-3716 7 8 2 admin login.php SQL injection

Table 3: The constraining rule for various testing pattern sub-banks

Name Description
constraining
Rule Name

Rule Expression
String length of
Rule Expression

Testing bank 1 Sql pattern basic Sanitizing Sql Rule 1 =;’ 3
Testing bank 2 Sql pattern rich Sanitizing Sql Rule 2 =%>(-*\’@: 10
Testing bank 3 XSS pattern basic Sanitizing XSS Rule 1 <% 2
Testing bank 4 XSS pattern rich Sanitizing XSS Rule 2 <%&(/=;\ 8

Testing bank 5
Sql pattern rich &
XSS pattern rich

Sanitizing Sql&XSS
Rule

’%>;-,=_/<(@:& 14

Testing bank 6
All malicious

injection patterns
Sanitizing all Rule =;_’>%/<(@:&\-|!.+ 18

pattern bank including various testing patterns, relevant
vulnerability types and comments. Each testing pattern
should be meticulously designed to get expected output
which can be clearly identified. AT first we had collected
1000 experimental data in a testing pattern bank. They
came from access logs of websites which were scanned
by Web vulnerability scanners or Web sites describing
cheat sheet about injection attack [4, 20]. In Table 3,
we present some testing pattern sub-banks for example.
Each sub-bank is a part of the testing pattern bank and
composed of patterns having specific types of vulnerabil-
ity. The purpose of generating various sub-banks is to
generate different constraining rules for specific injection
flaws. For example, the Testing Bank1 only includes some
popular SQL injection strings (10 classic patterns) and
the Testing Bank2 put all SQL injection strings (453 pat-
terns) together. The Testing Bank3 only includes some
popular XSS injection strings (10 classic patterns) and
the Testing Bank2 put all XSS injection strings (350 pat-
terns) together. Others are the other types of malicious
injection strings. In Table 3, we can find that the length
of Rule Expression of the Sanitizing Sql Rule 2 is big-
ger than the length of Rule Expression of the Sanitizing
Sql Rule 1 and the length of Rule Expression of the San-
itizing all Rule is biggest. It implies that the length of
Rule Expression may depend on the quantity and types
of the injection strings.

We try to show that the detection accuracy of the san-

itizer is dependent on the constraining rule. That is to
say, the ideal constraining rules produced by the sani-
tizer can lower errors (false positives and false negatives)
in comparison with the generic rules (generic whitelist or
generic blacklist). From a security defense viewpoint, the
least false negatives should have a higher priority than
the false positive and it follows that, in general, the false
negative is zero. In general, a useful sanitizing method
must ensure that the false negative is zero. Thus the ef-
fectiveness of various sanitizing methods can be simplified
to which having minimum false positive. A false positive
occurs while these normal strings are mistakenly limited
by a constraining rule. In order to be sure of false posi-
tive, we need to add some normal input strings (10 classic
patterns) including at least one special character that ap-
pears only the first time in a testing pattern bank. All
relevant parts of the testing results are presented as fol-
lows.

Table 4 and Table 5 show the amount of false negative
and false positive induced by different constraining rules.
A more flexible rule may induce less false positives than a
generic rule, made apparent by the fact that the injection
point only has single one specific flaw. For example, Table
4 shows that validation of using Sanitizing Sql Rule 1 will
only render less false positives in comparison with using
Sanitizing Sql Rule 2 for the CVE-2009-4456.

From the principle of validating input and the ex-
perimental results we can conclude the following rules.

International Journal of Network Security, Vol.17, No.2, PP.189-198, Mar. 2015 196

Table 4: The partial results of system training and detection experiment

CVE # Program Name
Threat
type

Sql Rule
1+ #

Sql Rule
1− #

Sql Rule
2+ #

Sql Rule
2− #

Experimental Web site TestingInjection SQL/XSS 1 1 2 1
CVE-2010-0122 timeclocksoftware SQL 1 1 2 0
CVE-2009-4669 RoomPHPlanning SQL 1 1 2 0
CVE-2009-4595 PHP Inventory SQL 1 1 2 0
CVE-2009-1742 Scratcher XSS N/A N/A N/A N/A

CVE-2009-4456 Green Desktiny SQL 1 0 2 0

CVE-2009-3716 MCshoutbox SQL 1 1 2 0
PS:
Sql Rule 1+ #: the false positive amount of rending by the Sanitizing SQL Rule 1
Sql Rule 1− #: the false negative amount of rending by the Sanitizing SQL Rule 1

Table 5: The partial results of system training and detection experiment

CVE # Threat type
Sql&

XSSRule+ #
Sql&

XSS Rule− #
All Rule+ # All Rule− #

Experimental Web site SQL/XSS 2 0 2 0
CVE-2010-0122 SQL injection 2 0 2 0
CVE-2009-4669 SQL injection 2 0 2 0
CVE-2009-4595 SQL injection 2 0 2 0
CVE-2009-1742 XSS 2 0 2 0
CVE-2009-4456 SQL injection 2 0 2 0
CVE-2009-3716 SQL injection 2 0 2 0

Table 6: Summary of system sanitizing effectiveness

CVE #
A: Vulnerable injection

point amount
(before protection)

B: Vulnerable injection
point amount

(after protection)

Protection
effectiveness

(A-B/A)
Experimental Web site 11 0 100%

CVE-2010-0122 5 0 100%
CVE-2009-4669 2 0 100%
CVE-2009-4595 2 0 100%
CVE-2010-1742 1 0 100%
CVE-2009-4456 1 0 100%
CVE-2009-3716 2 0 100%

The maximum amount of the false positives for a generic
blacklist will equal to the amount of all special characters
appearing in the Testing Bank 6 (i.e. greater than 18).
The maximum amount of the false positives for a gen-
eral whitelist will equal to the amount of all normal in-
put strings including special characters (i.e. greater than
18). Table 5 shows that the maximum amount of the
false positives for the sanitizing system equals to 2 while
false negative is zero if the auto-tuning mechanism auto-
matically adjusts the value of legalSpecialCharCount to
1. The results show that the sanitizing system can effec-
tively lower flase positive. That is to say, the sanitizing

system renders fewer false positives, compared to other
systems using general whitelist or blacklist.

In order to show that the auto-tuning mechanism can
automatically adjust constraining rule to effectively san-
itizing new injection patterns, a looser constraining rule,
such as Sanitizing Sql Rule 1, was used in meta-program
at first. And then injection attack tools will launch in-
jection attack to the vulnerable web applications listed in
Table 2.

A looser constraining rule may induce more false neg-
atives. Thus some malicious injection strings will pass
sanitizer and are kept in Web access log. These injec-

International Journal of Network Security, Vol.17, No.2, PP.189-198, Mar. 2015 197

tion strings will be translate to new injection patterns by
the injection pattern generator and then sent to testing
pattern table. Next the constraining rule generator will
organize stricter constraining rule to lower false negatives.

Finally, we need to verify the effectiveness of the sani-
tizing agent for protecting against injection attacks. Ta-
ble 6 presents the amount of vulnerable injection points
before and after the protection of our system. For each
vulnerable website, the amount of vulnerable injection
points after protection is zero. The results prove that our
sanitizer can effectively protect against injection attacks
caused by improper input validation.

6 Conclusion

Vulnerable websites with the injection flaws are being at-
tacked and damaged every day. Injection flaws are in-
creasingly vulnerable and protecting them requires a sys-
tem that can both ensure compliance today and meet the
evolving needs of an organization for tomorrow. To meet
the challenge, organizations should continue to be diligent
by regularly performing vulnerability scanning and pen-
etration testing. Unless a web application has a strong,
centralized mechanism for validating all input from HTTP
requests (and any other sources), injection flaws are very
likely to exist. Therefore, organizations should select and
deploy a system providing rapid protection to close the
vulnerability gap, with minimal impact on operations.
In this paper, we come up with a proposal that can be
used as compensating controls to protect web applica-
tions while vulnerabilities exist and patching is not an
immediate option. To improve the risk of injection flaws
and reduce unnecessary limitation of input characters, we
design an auto-tuning system to help validating input for
each vulnerable injection point. The experimental results
show that the system can effectively protect against in-
jection attacks and lower false positives while compared
with traditional methods.

Acknowledgments

This work was supported by the National Science Coun-
cil of Taiwan under grants NSC 100-2218-E-412-001. I
gratefully acknowledge the anonymous reviewers for their
valuable comments.

References

[1] Antivirus Solutions, http://en.wikipedia.org/wiki/
Antivirus software, accessed on April 7, 2012.

[2] J. M. Chen, “An improved sanitizing mechanism
based on heuristic constraining method,” Advanced
Research on Electronic Commerce, Web Application,
and Communication, Communications in Computer
and Information Science, vol. 144, pp.153-159, 2011.

[3] S. Dharmapurikar, P. Krishnamurthy, T. Sproull, J.
D. Lockwood, ”Deep packet inspection using parallel
bloom filters”, in Proceedings of the 11th Symposium
for High Performance Interconnect, pp.44-51, 2003.

[4] Ferruh, SQL Injection Cheat Sheet,
http://ferruh.mavituna.com/sql-injection-
cheatsheet-oku/, accessed on June 14, 2010.

[5] M. Fisk and G. Varghese, ”Fast content-based packet
handling for intrusion detection”, UCSD Technical
Report CS2001-0670, 2001.

[6] W. Halfond and A. Orso, “Combining static analy-
sis and runtime monitoring to counter SQL injection
attacks,” in Proceedings of the Third International
ICSE Workshop on Dynamic Analysis (WODA’05),
2005.

[7] J. H. Hayes, A. J. Offutt, ”Increased software re-
liability through input validation analysis and test-
ing software reliability engineering”, in Proceedings
of the 10th International Symposium on Software Re-
liability Engineering, pp.199–209, 1999.

[8] Y. W. Huang, C. H. Tsa, T. P. Lin, S. K. Huang, D.
T. Lee, S. Y. Kuo, “A testing framework for Web ap-
plication security assessment,” Journal of Computer
Networks, vol.48, no.5, pp.739-761, 2005.

[9] IBM Rational Corp., Web Application Se-
curity Testing—App-Scan, http: //www-
01.ibm.com/software/rational/offerings/websecurity/,
accessed on Jan. 10, 2009.

[10] I. M. Kim, “Using Web application firewall to detect
and block common web application attacks,” SAN
Institute Technical Report, 2011.

[11] J. C. Lin, J. M. Chen, “An automatic revised tool for
anti-malicious injection,” in The Sixth IEEE Inter-
national Conference on Computer and Information
Technology, pp.164, 2006.

[12] J. C. Lin, J. M. Chen and C. H. Liu, ”An auto-
matic mechanism for sanitizing malicious injection”,
in Proceedings of the 9th International Conference
for Young Computer Scientists, pp.1470-1475, 2008.

[13] J. C. Lin, J. M. Chen, and H. K. Wong, “An au-
tomatic meta-revised mechanism for anti-malicious
injection,” in Proceedings of Network-Based Informa-
tion Systems, LNCS 4658, pp.98-107, 2007.

[14] NVD (National Vulnerability Database), http:
//nvd.nist.gov/, accessed on June 10, 2010.

[15] Open Source Web Application Firewall: ModSe-
curity, http://www.webresourcesdepot.com/open-
source-we-application-firewall-modsecurity/, ac-
cessed on Jan. 15, 2009.

[16] OWASP, WebScarab Project, http: //www.owasp.
org/webscarab/, accessed on Jan. 18, 2009.

[17] OWASP, http://www.owasp.org/index.php/
Web Application Firewall, accessed on Jan. 11,
2010.

[18] OWASP, https://www.owasp.org/index.php/ Injec-
tion Flaws, accessed on Jan. 11, 2011.

International Journal of Network Security, Vol.17, No.2, PP.189-198, Mar. 2015 198

[19] J. C. Rabek, R. I. Khazan, S. M. Lewandowski, R. K.
CunninghamRabek, “Detection of injected, dynami-
cally generated, and obfuscated malicious code,” De-
fense Advanced Project Agency (DARPA), Copyright
Association for Computing Machinery, ACM, 2003.

[20] RSnake, XSS (Cross Site Scripting) Cheat Sheet,
http://ha.ckers.org/xss.html, accessed on Jun 12,
2010.

[21] A. Salem, “Intercepting filter approach to injection
flaws,” Journal of Information Processing Systems,
vol. 6, no. 4, pp.563–574, 2010.

[22] Sanctum Inc., AppShield white paper, http:
//www.sanctuminc.com/, accessed on Jan. 11, 2009.

[23] SPI Dynamics, Web Application Security As-
sessment, SPI Dynamics Whitepaper, http:
//www.spidynamics.com/, accessed on Jan. 20,
2009.

[24] Z. Radwan, C. Gaspard, A. Kayssi, and A. Chehab,
”Policy-driven and content-based Web services secu-
rity gateway”, International Journal of Network Se-
curity, vol. 8, no. 3, pp. 253–265, May 2009.

Jan-Min Chen received the Ph.D. degree in the De-
partment of Computer Science and Engineer from Tatung
University, Taiwan, in 2010. He is currently an assistant
professor in the Department of Information Management
at Yu Da University, Taiwan. His research interests in-
clude computer network security, computer network man-
agement and web application security. His email is yd-
james@ydu.edu.tw.

