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Abstract

The emergence of high-speed networks in electric power
systems creates a tight interaction of cyber infrastruc-
ture with the physical infrastructure and makes the power
system susceptible to cyber penetration and attacks. To
address this problem, this paper proposes an innovative
approach to develop a specification-based intrusion detec-
tion framework that leverages available information pro-
vided by components in a contemporary power system. A
Bayesian network is used to graphically encode the causal
relations among the available information to create pat-
terns with temporal state transitions, which are used as
rules in the proposed intrusion detection framework. This
allows the proposed framework to detect cyber attacks
and classify different substation scenarios. A case study
is provided for the non-pilot directional over current relay
protection scheme for a modified 2-bus 2-generator system
taken from a section of the IEEE 9-bus 3-generator sys-
tem. Nine power system scenarios were developed and
implemented as part of the case study. Each scenario was
implemented on a test bed and all scenarios were correctly
classified by the IDS built using the proposed methodol-
ogy.

Keywords: Bayesian network, cyber-physical, electric
power system, intrusion detection system, relay protection
scheme, synchrophasor

1 Introduction

The next generation electric power grid will rely on many
advanced technologies such as synchrophasor systems, in-
dustrial automation control systems and advance meter-
ing infrastructure in order to meet the increasing de-
mand on reliable energy. Due to the critical role that
the electric power system plays in our society, there is
a common agreement among different organizations that

the electric power grid needs to be better secured to en-
sure continually available power being provided to the na-
tion [35]. The North American Electric Reliability Cor-
poration Critical Infrastructure Protection (NERC-CIP)
program defines critical infrastructure and provides rec-
ommendations regarding to cyber security for electric util-
ities to better protect their critical infrastructures [38].
The National Institute of Standards and Technology In-
teragency Report (NISTIR) 7628 also documents the
guidelines and requirements for industry to better secure
their facilities [15]. However, the United States Govern-
ment Accountability Office (GAO) has realized that cur-
rent guidelines from these organizations are not sufficient
to securely implement the modern electricity grid and it
calls for the retrofit research and development to current
security mechanisms [12].

1.1 Background and Problem Statements

The cyber-physical security issues of electric power sys-
tems have been discussed for a long time. In the past the
electric power system was often isolated and used pro-
prietary devices and software. The contemporary and
future power grid uses advanced technologies which rely
on the commercial off-the-shelf (COTS) components e.g.
Personal Computers (PCs), Windows Operating System,
and standardized communications such as IEC 61850 and
IEEE C37.118. Many COTS components were designed
for consumer or enterprise use and not for use in criti-
cal infrastructures such as the electric power system [10].
Power system cyber components have certain security fea-
tures (password authentication) built in, however, pene-
tration tests conducted in [30, 33] have shown that cyber
attacks targeted towards substation computers and de-
vices can interrupt the electric power system communica-
tions, prevent real time monitoring of the power system,
induce physical side effects. Hence there is a need to de-
velop security countermeasures that can be deployed to
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protect the critical infrastructures in the electric power
system. However, a barrier for developing cyber secu-
rity countermeasures is a lack of algorithms based on the
unique characteristics of electric power system where high
interactions between the physical process and the cyber
infrastructures are present [44]. The cyber infrastruc-
tures provide the communication media that is used be-
tween the physical automation control system and other
systems such as enterprise software where control algo-
rithms or system analysis algorithms are implemented.
Since most of the cyber infrastructures use open stan-
dards without security features, once they are compro-
mised, the attackers are able to launch attacks targeting
the physical process by modifying the control algorithm.
An example is the resonance attacks where an attacker
who compromised the sensors or controllers causes the
physical system to oscillate at its resonant frequency [7].
Another example is demonstrated in [27] where an attack
can inject false data to compromise meters to bypass the
existing bad data detection algorithms. An example of
attacks from physical devices in real world is the Stuxnet
in July 2010 where the malware targeting control sys-
tem physical devices spread by USB drives [11]. Some re-
cent works investigating the security issues in the modern
electric power grid suggest that new security mechanisms
should focus on the unique characteristics of the power
grid to achieve comprehensive protection [32, 47].

Since attacks are always unpredictable and cannot be
eliminated, it is necessary to deploy an intrusion detec-
tion system to alert operators or automated response al-
gorithms when an attack is discovered. Traditional intru-
sion detection systems that only examine network traffic
cannot provide enough detection abilities to the cyber-
physical system where the physical process is also of con-
cern [7]. In this paper, a new methodology that extends
the ability of traditional anomaly-based intrusion detec-
tion system is proposed to design an intrusion detection
system suitable for cyber-physical system by taking the
system’s physical process into account. The proposed in-
trusion detection system is able to provide a ”defense-in-
depth” protection by considering the following two con-
cerns [6]: The consequences of the attacks on the cyber-
physical system should be understood when planning the
protection; and novel attack-detection algorithms should
be developed based on how the physical process should
behave so that intrusion detection systems can identify
whether the control command or sensor data has been
altered.

In addition, another concern from utility operators is
that cyber security solutions should make minimum modi-
fication to the current facilities in the grid. This is because
any changes to be made require strict recertification and
evaluation to be adapted to the grid, which can be quite
costly [17]. Therefore, the security solution proposed here
is designed to be built upon current resources in the grid
minimizing changes to its components.

1.2 Contributions of This Paper

This paper addresses the security challenges of the mod-
ern cyber-physical electric power system by proposing
an intrusion detection framework that covers the afore-
mentioned three concerns. This framework provides a
specification-based intrusion detection system that com-
plements current anomaly intrusion detection systems
by leveraging time-synchronized data from synchropha-
sor devices as well as observable events from audit logs
of network devices including protection relays, network
monitoring software, and control room computers. De-
pending on different control schemes, this information un-
derlines causal relations between the system behaviors in
the cyber-physical system. One of the contributions of
this work is to provide a methodology to map such infor-
mation to the probabilistic network - Bayesian network
to derive the rules for the IDS. The Bayesian network
is recognized for its powerful intuitive method of model-
ing interdependencies between variables and its ability to
graphically represent causal relations from data and work-
flow logs. Based on a specific control scheme, namely the
over current relay protection scheme, this paper demon-
strates the procedure to construct such a Bayesian net-
work and derive the temporal-state transition patterns for
different system scenarios. These patterns are used in the
IDS as rules for classifying legible system scenarios and
detecting intrusions that aim to interrupt the protection
scheme. A model to implement the proposed IDS is also
provided based on a specific power system transmission
system test bed. The IDS monitors the status of one re-
lay and the transmission line where the relay is located to
provide an extension to power system situation awareness
such that the operator can be informed of whether distur-
bances in the power grid (e.g. faults in transmission line
or relay operations) are caused by system faults or cyber
attacks.

1.3 Paper Organization

The rest of the paper is organized as follows. First, related
works are discussed in Section 2. Section 3 provides an
overview of a reference electric transmission system, the
non-pilot over current protection scheme, and a hardware-
in-the-loop test bed implementation of the transmission
system and protection scheme. This system is used later
in the paper for case study to demonstrate the effective-
ness of the proposed IDS methodology. Section 3 also
provides a threat model which describes 9 power system
disturbances and cyber attacks which threaten the refer-
ence transmission system and protection scheme. Section
4 provides a mathematical description of the Bayesian
network and discusses a procedure for creating a Bayesian
network for a cyber physical system. Section 5 provides
results an analysis of the IDS built for the case study.
Conclusions and future work are discussed in Section VII.
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2 Related Works

2.1 Wide Area Monitoring Systems

The need of electric market regulation and the connection
of neighboring grids motivate the Wide Area Monitoring
System (WAMS) where multiple organizations cooperate
to allow real-time monitoring of the electric power sys-
tem. The WAMS is a measurement system that uses
information communication technology (ICT) to trans-
mit digital and/or analogue information. The WAMS is
now adopting time-synchronized data that provides mi-
crosecond time accuracy [29]. The time-stamping data
in WAMS includes not only the measurements such as
phasors of voltage, current (i.e. synchrophasor system)
but also the status of some IEDs such as relays, breakers
etc. [2]. Such accurate redundant information nowadays
can be collected from PMUs, smart meters and protec-
tion relays etc. The redundant information contributed
by the time-synchronized data provides benefit for reli-
ability, efficiency, and economics in power system mon-
itoring and control. The extreme low latency brought
by time-synchronized data allows various real-time wide
area control algorithms and special protection schemes to
be developed to increase power grid reliability and stabil-
ity [2, 18, 21, 28, 34]. This paper takes advantage of this
fast and accurate information provided by synchrophasor
system to build a novel intrusion detection system for the
electric power system.

2.2 Specification-based Intrusion Detec-
tion System

The idea of intrusion detection systems was originally in-
troduced to the IT system to detecting activities that
violate security policy [37]. There are two types of in-
trusion detection systems (IDS): Misuse-based Intrusion
Detection Systems and Anomaly-based Intrusion Detec-
tion Systems. Misuse-based IDS and signature-based IDS
look for well-defined patterns of known attacks or vul-
nerabilities, and, therefore, suffer from the fact that any
undefined attacks will be ignored [49]. Anomaly-based
IDS consider the normal behaviors of a system [13, 54].
Any derivation from the normal system behaviors will
be defined as an intrusion. The anomaly-based IDS is
widely used for its ability to detect zero-day intrusions
however, it has high false positive rate where some nor-
mal behaviors of the system that do not match the de-
fined normal behaviors will be mistaken as intrusions.
The specification-based IDS was introduced by Ko in
1996 [24] as a complement to the anomaly-based IDS
to improve its accuracy. Specification-based IDS moni-
tor the system according to policies specified by valid se-
quences of system behaviors. Any sequence of behaviors
outside the predefined specifications will be regarded as
a violation. Various methodologies have been applied by
scientists to specify such behavior/event sequences, for
example, the parallel environment grammar [24], regu-

lar expressions for events [50], or abstract state machine
language [43]. The specification-based intrusion detec-
tion has also been widely applied in software engineering.
Most recently specification-based intrusion detection is
also used in the area of network protocol of critical infras-
tructures e.g. ANSI C12 protocol for advanced metering
infrastructure [3], DNP3 protocol [26], IEEE C37.118 pro-
tocol [46], Modbus protocol [9]. The specification-based
IDS is popular in this area because network protocols usu-
ally have standard message formats from which the spec-
ifications of the IDS can be derived. The applications
of specification-based IDS also extend to more complex
systems such as networked SCADA systems [5], medi-
cal cyber-physical systems [31] and real-time embedded
systems [55] where intrusion detection rules are defined
from system behaviors. The system behaviors in these
works are represented by a sequence of system states. By
keeping tracking the system state the intrusion detection
techniques of these works discover the malicious activities
that drive the system state from safe to unsafe. This pa-
per puts emphasis on cyber-physical electric power grid.
In addition to define a finite state machine for the elec-
tric power system, this paper uses a probabilistic network
to extract knowledge about the specifications of different
system behaviors from the causal relationship underlined
by the transitions of these system states. Such knowledge
is used to derive the rules used by the proposed IDS to
classify system behaviors.

2.3 Why Bayesian Network?

Probabilistic networks provide clear semantics to allow
them to be processed for extracting knowledge of a certain
domain. They are able to represent the dependencies or
interdependencies between variables; therefore they can
be used for diagnosis, learning, explanation, and many
other inference related tasks necessary for intelligent sys-
tems [4]. Among the probabilistic networks, the Bayesian
network is prevalent for its explicit graphical represen-
tation of cause-effect reasoning with uncertainty. De-
pending on different interpretations, it can also represent
causality. One of the applications of Bayesian networks is
in network vulnerability assessment where ”attack graph”
is developed using a Bayesian network [52]. In an attack
graph, two directly connected nodes represent the causal
relation in which the compromise of one node will lead to
the compromise of the other node. In addition, Bayesian
networks have also been applied to interdependency mod-
eling and analysis for critical infrastructure [14, 16] and
for fault diagnosis in power systems [36, 53]. In the area
of health care, Bayesian networks are also used to discover
patterns for Hemodialysis to help medical professionals re-
act to exceptions [25]. Tutorials about Bayesian networks
can be found in [8, 23, 40]. In the cyber-physical environ-
ment, a sequence of system actions and events raised by
a specific system scenario (e.g. a short circuit fault in a
transmission line) imply the causal relations between sys-
tem states. The causal relations are represented as tempo-
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Figure 1: Structure of electric transmission system with
integration of synchrophasor Technology

ral transitions between different system states. Therefore,
the system states are nodes in the Bayesian network.

3 System Model and Threads

In this section, a brief introduction of the electric trans-
mission system integrated with synchrophasor technology
will be given. The potential attacks and their conse-
quences to the transmission line protection scheme will
be discussed on the basis of a 2-generator 3-bus elec-
tric transmission system. Nevertheless, all discussions are
based on the assumption that the attacks are launched af-
ter the attackers compromise the substation communica-
tion network or physically penetrate the substation such
as through an insider attack by a disgruntled employee
authorized to access power grid facilities and or its com-
munication network.

3.1 Cyber-Physical Environment of
Synchrophasor-based Electric Trans-
mission System

A typical power system is divided into four functional
parts: generation, transmission, distribution and con-
sumers. The electric transmission system is the backbone
of the power system transmitting the electric power from
generators to the load centers over a long distance. The
structure of a cyber-physical environment for the elec-
tric transmission system augmented with synchrophasor
technology is shown in Figure 1. The transmission system
devices are mainly composed of transmission lines, break-
ers, and transformers that are monitored by field sensors.
In the case of a synchrophasor system these field sensors
are Phasor Measurement Units (PMUs). The PMUs at-
tached to transmission lines provide synchronized data
that is time-stamped to the Coordinated Universal Time
(UTC) via Global Positioning System (GPS) signals for
continuous real-time monitoring. Phasor Data Concen-
trators (PDCs) collect synchrophasor measurements from
PMUs that are located in different locations and send the
measurements to the control center through the wide-area
network (WAN). PMUs in different locations and PDCs

are key components in the synchrophasor based wide area
monitoring system (WAMS). Compared to the traditional
supervisory control and data acquisition (SCADA) sys-
tem where the field sensors measure the system once per
several seconds, the emergence of WAMS leveraging syn-
chrophasor technology allows much faster measuring for
the transmission system at the rates ranging from 30 sam-
ples per second to 120 samples per second. The control
center that utilizes the high resolution measurement data
aggregated by PDCs is able to evaluate the system sta-
tus and perform advanced algorithms to make different
real-time control decisions to control components in the
field. The information flow described above is shown as
the dotted line in Figure 1 and is often recognized as a
control loop. All devices in this system are synchronized
to UTC time via GPS signals. However, in the case of a
distributed control, the protection components in the sys-
tem sense the disturbance and react to it by themselves.
The bi-directed-arrow lines in between control compo-
nents and WAN indicates not only the command data
sent from control center but also the time-synchronized
audit information reported from intelligent electronic de-
vices (IDEs) to the control center.

The system can be considered as a finite state machine.
If, for example, a tripping operation is sent from control
center, this will cause system state transitions because a
signal-sending operation has been recorded in the control
panel which is one component of the system. In general,
the changes of the behaviors in different system compo-
nents such as a breaker, relay, and transmission lines in
a given period of time or at a definite point of time will
cause the system state to transit from certain state to an-
other. Theses changes are reflected by the transmission
line sensor readings or device logs. If the system state is
represented as a set of observations (from logs of different
components) and measurement data (from measurement
devices) inside the system, such changes along with time
can be regarded as temporal state transitions.

3.2 Reference Electric Transmission Sys-
tem and Non-pilot Over current Pro-
tection

Non-pilot transmission system protection is chosen as a
demonstration vehicle for the proposed IDS because this
type of protection is fundamental to all other electrical
equipment [19]. The non-pilot directional over current
relay protection scheme is examined in the context of a
multiple source circuit shown in Figure 2 to provide pro-
tection against short circuit faults which are the primary
disturbances found in transmission lines. This paper fo-
cuses on multiple source circuits. Although there may be
other types of circuits such as loop circuit and radial cir-
cuit, multiple source circuits make up the majority of the
electric transmission system. The IDS proposed here is
suitable only to the multiple sources circuits where our
assumption that when one line is taken off the load can
still get supplied from generators via other route can be
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Figure 2: Single line diagram for over current protection
scheme for a transmission system

true.

In a multiple sources transmission system, the relays
are directional to provide relay coordination between all
of the relays that can see a given fault. In this paper,
instantaneous and time-delay over current relays are ap-
plied to the transmission system to provide a directional
over current protection scheme for a maximum of 2 zones.
Readers can refer to [19] for a complete introduction of
non-pilot over current protection of transmission lines.

The single-line electric transmission diagram depicted
in Figure 2 is a modified 2-bus 2-generator system taken
from a section of the IEEE 9-bus 3-generator system [45].
In the non-pilot system, relays decisions solely depend
on the measurement of electrical quantities at the near
end of the protected line section. Generators G1 and G2
supply power to load L at bus B2 via the transmission
line L1 and L2. Line L1 and L2 are symmetric. The
load can be changed from 200 MW to 240 MW in this
study. Four relays R1, R2, R3 and R4 with integrated
PMU functionality reside at each end of each transmis-
sion line that control the breakers BR1, BR2, BR3 and
BR4. Take line L1 for example, the relays R1 and R2
provide instantaneous over current protection for trans-
mission line L1 while R1 also provides time-delayed over
current protection for transmission line L2 in the case that
the relay R3 fails for faults in L2. It is the similar case
to the relays in line L2 where R3 and R4 take care of the
faults in L2 and R4 provides backup protection for faults
in L1 in case R2 failed tripping for the fault. For the
four relays, there are two settings that should be prop-
erly configured to achieve the over current protection and
relay coordination: the instantaneous over current pickup
and the time-delayed over current pickup (abbreviated as
IOC and TOC). The IOC specifies the threshold so that
the relay will operate for all short circuits which cause
the current magnitude to exceed the threshold in the line
it is to provide protection for. As for the two-zone over
current protection a TOC specifies the threshold accord-
ing to which the relay provides backup protection for an
adjacent line. In this case, the relay wait for a period
of time called ”delay time” if the current magnitude is
in the ”warning level” (magnitude in between TOC and
IOC) in the local line, which indicates a short circuit fault
in the adjacent line. Theoretically relay trips simultane-
ously when PMU displays overcurrent for instantaneous
over current protection, but the simulation in this paper
will insert one cycle delay between them, which is more

Figure 3: Test bed topology

likely in the real situation.
The four PMUs constantly monitor the power flow

in the two transmission lines at the locations where the
relays sit. They transmit time-stamped synchrophasor
data in the IEEE C37.118 data frames [48] to a PDC in
the substation via Ethernet in a frequency at 120 sam-
ples/second. The data frames including information of
angles and magnitudes of line current and voltage, namely
phasors, will be finally stored in a historian located in
the control room. Usually, an Energy Management Sys-
tem (EMS) with an integrated software PDC (e.g. Open-
PDC [20]) is installed in the control room for applications
such as system visualizations, system situation awareness
etc. [56]. The software PDC is a higher level PDC that
collects synchrophasor data frames from physical PDC
devices in different locations and processes them. The
operator who monitors the system status through a soft-
ware PDC will be kept informed to react to a contingency
in the monitored system.

3.3 Test Bed Configurations

A test bed was implemented to simulate the electric trans-
mission system shown in Figure 2. The test bed in-
cludes the real-time power system simulator (RTDS) with
a hardware-in-the-loop design using commercial PMUs,
PDCs and protective relays [1]. The topology of test bed
is depicted in Figure 3.

The test bed is separated by the Ethernet bar into
two parts. In the substation site, the RTDS is used
to model the 2-bus 2-generator transmission system dis-
cussed shown in Figure 2. There are four commercial dig-
ital relays with integrated PMU functionality connected
to breakers simulated in the RTDS. The RTDS provides
simulated high AC voltages at buses and line currents
through transmission lines for the PMU and relays to
measure. The relays and PMUs are drawn as two sepa-
rate components in Figure 3. In some cases the PMU and
relay are integrated in the same chassis. In other cases the
PMU and relay are separate devices. The RTDS simulates
single line to ground and the phase to ground short circuit
faults on transmission lines L1 and L2. The hardware-
in-the-loop design allows the relays to react to the fault
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to open the breaker. The four PMUs reside at the two
ends of line L1 and line L2 constantly measure current
and voltage phasors. There is one hardware PDC in the
substation that aggregates IEEE C37.118 synchrophasor
measurements from the four PMUs through the substa-
tion network switch and forwards the concentrated syn-
chrophasor measurement data frames to the control room
where OpenPDC is installed. OpenPDC displays and
stores the synchrophasor data and serves as a data his-
torian for the system. The substation is also equipped
with Snort to monitor the substation network traffic. In
our experiment Snort [51] is configured to capture Tel-
net frames that contains tripping commands to the relay.
The content of the tripping commands varies by the relay
brand and model. However, whenever the Snort rule cap-
tures remote tripping commands, it logs them with their
source IP address and destination IP address (relay IP
address). The content in the Snort log file is forwarded
to a syslog server in the control room. In the control
room, the control panel is a Microsoft Windows PC with
vendor-provided configuration clients for the relays and
PMUs. Relay and PMU configuration can be performed
either remotely over the communications network or from
the devices’ faceplate.

Relays in the test bed are specifically configured to
implement the directional over current protection scheme
for the 2-bus 2-generator transmission system. Two rel-
evant parameters in the relay configurations are of con-
cern to the IDS: IOC, TOC. The PMUs and PDC are
configured to stream in the data rate of 120 samples per
second. Each relay is operated independently according
to configurations and opens its corresponding breaker in
the transmission lines. Breaker failure is also simulated in
this work, in which the relay trips but the corresponding
break does not open. There are four situations that relay
will be tripped: (1) Relay detects fault occurring in the
direction it faces; (2) Attackers send tripping command
to relay via Telnet from their PCs; (3) Attackers trip the
relay via its faceplate; (4) The operator sends tripping
command to relay via Telnet from control panel. The test
bed also provides time-synchronized audit data from logs
of multiple components. In addition to Snort log which is
used to record time stamped remote trip command, PMU
measurements are used as a redundant source of line cur-
rent measurements. Relay logs are used to record time
stamped relay operations. The control panel log records
time stamped commands to the energy management sys-
tem to trip a relay. This information is aggregated in
the syslog server and used to track series of causal events
related to different system scenarios.

3.4 Scenarios for Over Current Protec-
tion Scheme in Line L1

This threat model consists of a set of scenarios which rep-
resent normal power system disturbances, normal super-
visory control actions, and cyber attacks against the non-
pilot directional over current protection scheme. Each

scenario has been implemented using the test bed de-
scribed in the previous section. A comprehensive under-
standing of these scenarios is important for the domain ex-
pert to identify which information is required from which
resources to construct the IDS.

For this work it is assumed attackers attack only one re-
lay or PMU at a time. There are two legitimate scenarios
for over current protection scheme for line L1. Scenario
Q1 is an over current fault on line 1 which causes R1 and
R2 to instantaneously trip. Scenario Q2 is the removal
of a line L1 for maintenance. In scenario Q2 an operator
initiates a remote trip of R1 and R2 via the energy man-
agement system. The operator initiated remote trip com-
mands will be recorded in the control panel log with the
timestamps showing when the commands were sent. The
remote trip events are also logged by the network traffic
monitor, Snort. The trip commands cause the relays to
open the breakers isolating line L1 from the power system.
The operator observes the success of breaker-opening ac-
tion by observing zero current in L1 from synchrophasor
data frames collected by OpenPDC.

The attacks considered for this work focus on changing
the control logic. To achieve this goal, attacks attempt
to interrupt the over current protection scheme on line
L1 by causing relays to not trip during a valid fault or by
causing relays to trip when there is no fault. The operator
in the control center may be aware of the implications of
the aforementioned attacks via the collected synchropha-
sor data however he/she will still lack information on the
primary cause of these failures. In this paper, we will
analyze such failures from security perspective.

Scenario Q3 is a cyber command injection attack which
mimics scenario Q2. For scenario Q3 the remote trip com-
mand does not originate from the control panel. Instead
the remote trip command originates from another node
(i.e. attacker’s PC) on the communications network. As
such, the control panel log will not include a trip com-
mand entry, but, the network traffic monitor will detect
the remote trip command. Scenario Q4 is a physical at-
tack in which an attacker trips the relay from the face-
plate. In Scenario Q5 a valid fault occurs, but, the relay
does not trip. This may occur due to hard ware error
or incorrect relay setting. Scenarios Q6, Q7, and Q8 are
data injection attacks which provide false current mea-
surements to the operator by modifying synchrophasor
measurements. In scenario Q6 current magnitudes above
the relay pickup are injected to the PDC and transmitted
to the control room. This scenario attempts to cause the
operator to believe a set of relays has failed to operate and
therefore cause the operator to manually trip the relay. In
scenario Q7 the injected current magnitudes are less than
the relay pickup. This scenario may be used to mask a
fault which has been handled by relay which has been
tampered with. In scenario Q8 the injected current mag-
nitudes are 0 amperes. This scenario attempts to mimic
the situation immediately after a properly handled fault.
Scenario Q9 is for scenarios which target other relays. A
separate instance of the IDS monitors each relay. Scenario
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Q9 simulates breaker failure where the relay tripped but
the current in the line remains high due to the breaker
failure. According to the assumption that only one mali-
cious activity takes place at a time, the breaker failure is
simulated only when there is a fault in the line. Scenario
Q10 is for scenarios which target other relays. A separate
instance of the IDS monitors each relay. Scenarios Q1-Q9
are used to classify local events and scenario Q10 classifies
events at other relays.

4 Constructing Bayesian Network
for System Scenarios

In this section a set of terms are introduced. These terms
are defined to mathematically describe Bayesian networks
used to model the 10 scenarios from the threat model.
Next the procedure to construct the Bayesian network
with temporal state transitions for relay R1 is demon-
strated. Patterns for the 10 scenarios are derived from
the Bayesian network. These patterns are then used as
detection rules for the IDS which monitors R2.

4.1 Definitions

A state represents system status at a point in time. A
state is defined as a set of variable, each of which is a mea-
surement. A state is denoted as S = {v1, · · ·, vn}. Each
state variable in state S i.e. v1 ∈ S may have a unique
range called its own domain donated as Dj . The number
of possible distinct values, ‖Dj‖, varies by components.
Domains should be quantized to finite ranges to avoid in-
finite state space. Dj is hence denoted as a set of distinct
values {dj1, · · ·, dj‖Dj‖} with each of its elements speci-
fying valid event or measurement values observed from a
component .

An observation is a proposition in the form of vij =
djk which means the variable vij attains the k-th value
djk in its domain Dj . Based on these concepts a sys-
tem state can be uniquely specified by assigning different
combinations of observations to all variables and write the
state as S := (v1i = d1) ∨ · · · ∨ (vni = dn). There are,

hence, ‖Ds‖ =
n∏

i=1

‖Di‖ = 0 possible states.

An action is single system behavior, the occurrence of
which triggers the system state to change from one state
to another. Such behavior could be system inherent be-
havior, operator actions, attacks, or a clock timeout. An
action is denoted as Al : Si → Sj , where Al causes the
transition from Si to Sj . Note that Si and Sj can rep-
resent the same system state. This occurs when the ex-
pected response to an action does not occur. This would
typically be an error condition.

An event, Ek, is a subset of state variables. The
changes in the observations in these state variables are
due to the corresponding action(s). An event alone with
its corresponding actions is notated as AlEk : Si → Sj .

The temporaldistance specifies the period of time be-
tween two states of a state transition. Temporal distance
may be defined as a specific value or as a range such as
D = Ti − Ti−1. Temporal distance may be defined as a
specific value or as a range such as D = Ti − Ti−1 > 0.
Temporal distance from the root node is always 0 since
the root node is system stable state and the second state
is always the first evidence of a disturbance or attack.

The path is a sequence of signatures that describe a
specific scenario. A signature contains a system state,
its start time, actions and events, and temporal distance
to the previous signature. A signature is formally rep-
resented as {S, T,Action

⋂
Event,D}. Once the path

with temporal state transitions for the corresponding sce-
nario ID is determined, the information in all signatures
involved in the path is used to create the rule for our
intrusion detection framework. We denote a path as
path = (Qi, V, E, η) where Qi is the path name which
is the scenario name, V is a finite nonempty set of ver-
tices/nodes, and E = V ×V is a set of direct edges in the
Bayesian network, and the function η is in the form of
assigning observations to state variables, marking labels
to each vertex. In this function, S is the name of this ver-
tex, T is the start time of this vertex, (Action

⋂
Event)

is the label of this vertex and D is the temporal distance
to previous vertex/vertecis.

The Bayesiannetwork is composed of a number
of paths. Therefore, it has the same composition
as a path. We hence denote the Bayesian net-
work as

⋃
pathi = (Qi, V, E, ηB), where ηB(V ) =

〈S, T, (Action
⋂
Event), P r,D〉. Note that the extra pa-

rameter Pr represents the conditional probability of the
vertex. The construction of Bayesian network starts from
the construction of a path. A path starts from an initial
vertex standing for the system stable state. The expertise
about the system under study e.g. knowledge about legit-
imate scenarios and threads is required when specifying
the conditional probabilities. If the external impacts to
our system are not considered, for example transmission
errors in the telecommunication channel, it is reasonable
to assign either 0 or 1 to each conditional probability so
that all causal relationships become deterministic. And
the action and event pair with its conditional probability
of 1 will be used to mark the newly decided vertex. Paths
propagate along with time until they distinct with each
other

4.2 The Process of Constructing
Bayesian Network for Over Cur-
rent Protection Scheme

This section provides an overview of the process used to
develop a Bayesian network for a set of scenarios (power
system disturbances and cyber threats) which can occur
for a given system. First, for a given system, a set of
measurable variables are identified. Measured variables
are system specific and are used to provide information
about the system state. The list of measured variables
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is created by examining available data sources and com-
paring this with data needed to detect symptoms of set
of scenarios. Quantized ranges are created for each mea-
sure variable to limit the state space. Domain expertise
is required to list a set of possible actions which occur in
the system. For each action a corresponding measurable
event is identified. The actions are arcs in the Bayesian
network which cause a state transition and the measurable
events are evidence that the system has changed states.
A Bayesian network is built by drawing a path through
a set of system states which when connected describe a
scenario. The goal of this process is to create a Bayesian
network with a unique path for each scenario. When first
drawn the Bayesian network paths may not be unique
and overlapping occurs in the process in which the do-
main expert searches addition actions and events which
when added allow each path to become unique. Once each
scenario has a unique path the Bayesian construction pro-
cess is complete and the paths for each scenario represent
a measurable signature for each scenario.

4.2.1 Step 1 Identifies Measurable Variables or
Events

The variables measured for the over current protection
case study are relay operation state, presence of a remote
command to trip the relay at the control room, presence
of a remote command to trip the relay on the substation
network as detected by Snort, and PMU current measure-
ments from the bus connected to the relay.

Table 1: Component ranges

Component Name Range

Line Current Magnitude
[High, Warning,
Normal, Zero]

Snort log [True, False]
Relay log [True, False]

Control log [True, False]

Operators need the ability to remotely trip a relay to
remove a transmission line from the power system. Trans-
mission lines are taken out of service to allow for mainte-
nance. The presence of the trip command in the control
room is either true or false as stated in Table 1. This mea-
surement can be extracted from the human machine in-
terface tool used by an operator to remotely trip the relay.
For this work, this value was simulated. If the remote trip
command was intended to be legitimate this value was set
to true. If the remote trip command was illegitimate this
value was set to false. Because a relay can be remotely
tripped it is possible for an attacker to direct a spuri-
ous command to the relay to trip the relay without the
knowledge or approval of system operators. In this case,
the remote trip command will be seen on the substation
network as it travels to the relay. For this work, a Snort
signature was used to detect the presence of a remote trip

command. This signature alerts for both legitimate and
illegitimate remote trip commands and therefore is not
enough information by itself to declare the presence of an
attack. If the Snort signature detects a remote trip com-
mand this measurement is True and if a remote trip is not
detected this measurement is false.

Relays which have operated open or close a contact
connected to the breaker. This contact state is stored in
the relay log file and the state of this contact can be read
to learn the intended breaker status. This is the intended
breaker status due to the possibility of breaker failure.
We call this variable the relay status. Relay status is true
if the relay has operated and false if the relay has not
operated.

PMU can be used to measure a power system bus’s
voltage and current at rates up to 120 times per second.
For this work a PMU was used to provide a measurement
of current at the transmission line as a redundant indi-
cation of the transmission line status as well as whether
the relay is opened or closed. The PMU measurement
is a real number which can take a continuous set of val-
ues and therefore introduces an infinite number of states
in the system state space. Such continuous measurements
need to be quantized to a finite set of ranges. The current
magnitude can range from zero to infinity. However, for
the 2-generator 3-bus transmission system and the non-
pilot directional over current protection scheme described
previously, the PMU current can be broken into 4 ranges.
The first range is over current which covers the case that
the current exceeds the pickup of the relay. The instan-
taneous over current pickup for relay R2 in Figure 2 is
set to 800 Amperes. The over current range is defined
as [800 Ampere, Infinity) and denoted as ”High”. The
second range is a warning range to allow for the case in
which a fault occurs on an adjacent line which it is not
cleared due to relay(s) failures. The warning range is
hence below instantaneous over current pickup and above
certain value. The minimum warning level current must
be above a normal operating current when the system
has maximum operating load. The current was measured
within RSCAD by setting to operate at maximum load.
Short circuit analysis was used to predict the short circuit
current for a fault on adjacent lines. From these experi-
ments in the test bed, we conclude the warning range is
(600 Ampere, 800 Ampere).

The third range is the zero-magnitude range where cur-
rent magnitude is relatively small. The zero current is not
necessarily zero but is a relatively small value. For exam-
ple, when relays R1 and R4 trip due to a fault on line L2,
the current magnitude measured by the PMU at R2 is ap-
proximately 50 Amperes. Therefore, the zero-magnitude
range for this test bed is defined as [0 Ampere, 60 Am-
pere). The fourth range is the normal range. The normal
range is for current magnitudes above the zero range and
below the warning range. For this case study the normal
range is set to [60 Ampere, 600 Ampere). Table 2 shows
the list of the permissible ranges of all measured variables
in the test bed.
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4.2.2 Step 2 Specifies Actions and Events which
Describe System State Transitions

Table 2: Actions and event space

Action
ID

Action
Event

ID
Event

A0 Normal E0

PMU = N,
Relay log = F,
Snort log =F,
Control panel

log = F

A1
Control panel

sending
tripping command

E1 PMU = H

A2 Fault in the line E2
Control panel

log = T

A3
Snort detecting

tripping command
E3 Snort log = T

A4 Relay tripping E4 Relay log = T

A5
Relay operating

time out
E5 Relay log = F

A6
Injecting false data
beyond the pickup

E1 PMU = H

A7
Injecting false data
in permissible range

E6 PMU = N

A8
Injecting false data
of zero magnitude

E7 PMU = Z

A9 Breaker opened E7 PMU = Z

A10 Breaker failed E8 PMU = H

A11
Fault in

adjacent line
E9 PMU = W

The 10 scenarios previously described in the threat
model section can be broken into series of actions and
corresponding measurable events for each action. For the
case study 12 actions and 10 corresponding events are
identified. Identification of the actions and correspond-
ing events requires domain expertise. Actions are actions
which occur as part of a larger scenario. Actions cause
system state to change. Measurable events are sensor
measurements are values from log files which are indica-
tive of a power system state. Measurable events are evi-
dence of the system state. The concatenated action iden-
tifier and corresponding event identifier is unique to a
system state and is therefore used to mark the states in
the Bayesian network.

To create the action and corresponding events list the
domain expert attempts to describe a set of actions which
occur during a given scenario. For each action, the do-
main expert searches for a unique corresponding measur-
able event. It may not always be possible to identify a
measurable event. It also may not be possible to identify
a unique measurable event as seen by multiple actions in
Table 2 which share the same event.

The action A10 represents a fault in an adjacent line.
This action is used to allow scenarios from other lines to
be classified and therefore to allow differentiation between
scenarios occurring at the local relay and scenarios which
occur at remote relays.

4.2.3 Step 3 Determines Paths for the Set of Sys-
tem Scenarios

A path is a set of system states arranged in temporal
order. Each scenario is described by a path. All paths
start from an initial state, the system stable state. For
this case study the system stable state is the case in which
the current magnitude, measured by the PMU, at line L1
is normal, the relay has not operated, the operator has
not sent a remote trip command from the control room,
and Snort has not detected a remote trip command on
the substation network. This state is marked as action
A0, event E0 or A0E0. The paths for system scenarios
are described below as examples.

Scenario Q1 is an over current fault on line L1. The
first action which occurs is the fault. The fault will be
reflected by the current magnitude changing to the high
state. This is measured by the PMU. This action and
event pair is A1E1. The second action for scenario Q1
is the over current relay tripping. This is measured by
reading the relay state from the relay log. This action and
event pair is A4E4. The final action for scenario Q1 is the
breaker is opened. This is evidenced by the event current
magnitude changing to 0 Amperes which is measured by
the PMU. This action and event pair is A9E7.

Scenario Q2 is transmission line L1 taken out of the
power system for maintenance. The first action which oc-
curs for this scenario is operator sends a remote command
to trip the relay. This command is detected by reading
the operators human machine interface log. This action
and event pair is A2E2. The second action which occurs
is the presence of the remote trip command in the sub-
station communications network. This is detected by a
Snort alert. This action and event pair is A3E3. The
third action is the over current relay tripping. This is
measured by reading the relay state from the relay log.
This action and event pair is A4E4. The final action for
scenario Q1 is the breaker is opened. This is evidenced
by the event current magnitude changing to 0 Amperes
which is measured by the PMU. This action and event
pair is A9E7.

Scenario Q3 is a command injection attack which re-
motely trips the relay. The first action which occurs for
this scenario is the presence of the remote trip command
in the substation communications network. This is de-
tected by a Snort alert. This action and event pair is
A3E3. The third action is the over current relay tripping.
This is measured by reading the relay state from the re-
lay log. This action and event pair is A4E4. The final
action for scenario Q1 is the breaker is opened. This is
evidenced by the event current magnitude changing to 0
Amperes which is measured by the PMU. This action and
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event pair is A9E7.

The actions and events for a given path may occur
simultaneously or may occur over a temporal distance.
The temporal distance is defined as the time between ac-
tion and event pairs or system states. Some paths have
minimum or maximum temporal distance requirements.
For example, if a fault occurs in line L1, relay R1 should
trip in one cycle, then the breaker should open within the
specified breaker operating time. Paths may have order
requirements. This is specified by a temporal distance
between an action and event pair or two states which is
greater than 0.

4.2.4 Step 4 is Construction of the Bayesian Net-
work with Temporal-state Transitions

A typical Bayesian network is represented as an acyclic
directed graph (DAG) with a set of vertices and edges.
The Bayesian network in this paper is distinct from tra-
ditional Bayesian networks in that its vertices contain a
set of state variables, time, actions and events. An ac-
tion and corresponding event pair (i.e. A#E#) is used to
mark the vertices. The Bayesian network is constructed
by graphing each path in temporal order. System states
are represented on the Y-axis. As such a row on the graph
will always have the same action and event pairs. The X-
axis indicates time. Temporal distance between states or
action and event pairs is shown by a path traveling from
left to right on the graph. The X-axis unit is unlabeled
because the different paths may have large temporal dis-
tance disparity. Therefore unit time is used to show order.
The complete Bayesian network for all scenarios for relay
R2 is shown in Figure 4.

In some cases the same action and event pair will lead
to two different system states. For example, action and
event pair A4E4 is show on two rows of the Bayesian
network graph. In 3 cases the A4E4 action and event pair
leads to system state S5 and on 1 case the same action
and event pair leads to system state S4. The action and
event pair represents a relay tripping and the resulting
indication of such in the relay log. For state S5 this has
occurred due to an over current fault. For state S5 this
has occurred due to a command injection attack. The
difference between these 2 states is that S5 has a high
PMU current measurement and S4 has a normal PMU
current measurement. Each path in the Bayesian network
starts from the initial vertex T0S0 with label A0E0, which
represents the system stable state.

The path includes all information needed for to build
signatures for each scenario. The path can be used to
describe the corresponding scenario by the sequences of
actions and actions that cause the state transitions along
with time. This Bayesian network consists 9 paths for 10
scenarios. Note that, scenarios Q5, Q6 and Q8, Q10 have
the same paths. These paths contain leaf nodes, each of
which has two possible actions. The two actions are mu-
tually exclusive such that they cannot happen at the same
time. However, at this stage there is not enough informa-

Figure 4: Complete Bayesian network for relay R2

tion to differentiate them. The extra information needed
is the log from opposite relay on the same transmission
line. For the scenario Q5 and Q6, if the over current is
due to a fault in line L1 (A1E1), R1 will trip (R1 log =
True) and open the breaker BR1 then the path will lead
to scenario Q5. While in scenario Q6, the data injection
(A5E5) does not cause relay R1 to trip therefore R1 log =
False. Note that, this is also the case when distinguishing
Q8 and Q9. The log information from relay R1 is needed
again because the PMU in relay R2 reading zero current
could implies two scenarios: one is due to a zero-value
data injection attach (A8E7); the other results from the
breaker being opened (A9E7) by the opposite relay R1.
This second scenario belongs to the IDS monitoring the
opposite relay, R1, and therefore is categorized as ”Other”
by the IDS monitoring relay R2. The path Q10 represents
scenarios which have occurred on an adjacent line or on
the opposite relay on the same line. All paths in Figure 4
represent all possible scenarios that could happen in the
test bed.

4.3 Result and Discussion

An IDS was implemented from the Bayesian network
shown in Figure 4. The IDS reads PMU current mea-
surements, relay trip status, the snort log, and the control
panel log and uses this information to track system states.
The IDS monitors transitions from state to state to detect
paths which match those shown in the Bayesian diagram.
The result of the IDS was classification of the 10 scenarios.
An experiment was conducted using the test bed shown
in Figure 3. Scenarios Q1 to Q9 were simulated on a sin-
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gle transmission line of the 2-generator 3-bus transmission
system. Line L1 and relay R2 were the target of all power
system disturbances and or cyber attacks. Each scenario
was reproduced 5 times; each time with a different load.
Table 3 presents the results from the experiment. Each
relay in the test bed included an embedded PMU. Time
stamped PMU current, relay logs, Snort logs, and control
panel logs were stored separately for each relay in the test
bed. The IDS built from the Bayesian network graph in
Figure 4 was used to post process data collected for each
relay in the system and provide classification results.

Table 3 lists classification results from the experiment
for each relay. The first column of Table 3 shows the
scenario simulated. The next four columns show the clas-
sification result seen from the IDS when processing data
associated with relays R1 to R4 respectively. Each sce-
nario was run 5 times. The values in the cells of table III
indicate the classified scenario or are labeled with a ”-” if
no classification result was generated for that scenario.

The results can be analyzed in 3 groups. First, IDS at
the target relay, R2, always classified the scenarios cor-
rectly. The classification results for the IDS for R1 re-
quire explanation. First, scenario Q1 is an over current
fault. Since the over current fault is seen by both relays
on the line and both relays are programmed to respond
to the fault instantaneously, the IDS classified this fault
as Q1. This result is correct. Scenario Q2 simulates an
operator taking line L1 out of service for maintenance.
In this case the operator will remotely trip the relays R1
and R2 simultaneously. As such the IDS at R1 correctly
classified these actions as scenario Q2. Scenarios Q3 and
Q4 were classified as scenario Q10. Scenario Q10 is in-
tended as a class which represents actions which occur at
another relay. The intent of this work is to develop an
IDS which monitors an atomic unit, a single relay, but
ignores actions at other relays since these relays will have
their own IDS. Scenario Q10 includes cases when the cur-
rent at the relay, as measured by the PMU, enters the
warning range, below the pickup current but above the
normal range. Scenario Q10 also includes when the op-
posite breaker opens and the local PMU current drops
to 0 Amperes without a previous current measurement
greater than the pickup current setting. This second case
occurs to one relay when its opposite relay trips. Scenario
Q3 is a cyber attack in which a remote command is used
to trip relay R2. In this case there is no longer a path
for current from generator G1 to the load. This causes
the current at relay R1 to drop to 0 Amperes without R1
first tripping which in turn causes the Q10 classification.
Scenario Q4 is a physical attack in which a substation
intruder or insider uses relay R2’s face to trip relay R2
without permission. Again in this case there is not path
for current to flow from generator G1 to the load and this
leads to a Q10 classification. For scenarios Q3 and Q4
the Q10 classification is consider correct. Scenario Q5 is
an over current fault in which relay R2 fails to operate.
This missed operation may be due to relay failure or in-
correct setting. In this case relay R1 operates correctly

and trips due to the same over current fault on line L1.
This is correctly classified as scenario Q1. Scenario Q6
and Q8 are not classified by the IDS at relay R1. This
occurs because scenario Q6 and Q8 are two data injec-
tion attacks targeting the PMU at R2. Since this is a
false PMU measurement the actual line current measured
at relay R2 remains normal and the IDS at relay R1 sees
no signature of a scenario. Scenario Q7 is a data injection
attack which is attempting to mask an over current fault
which causes relay R2 to trip. In this case there is a valid
over current fault on the line and this fault is seen by relay
R1. Since the data injection attack is limited to relay R2,
relay R1’s IDS correctly classifies this as scenario Q1. Fi-
nally, Q9 is an over current fault on line L1 with breaker
failure at BR2. In this case there is a valid over current
fault on the line and this fault is seen by relay R1. Since
the breaker failure is limited to relay R2, relay R1’s IDS
correctly classifies this as scenario Q1.

The IDS(s) at relays R3 and R4 always classified sce-
narios as either Q10 or did not provide a classification
at all. Scenarios Q1, Q5, Q7 and Q9 were all classified
as scenario Q10. Each of these scenarios involve an over
current fault on line L1. This fault on the neighboring
line will cause the PMU current at relays R3 and R4 to
read in the warning range which leads to this scenario Q10
classification. Scenarios Q2, Q3, and Q4 all involve relay
R2 tripping without a prior fault. These cases may lead
to a drop in current at R3 and R4. However, since there
is another source in the power system, as is expected due
to N-1 generator redundancy requirements, the current
at R3 and R4 does not drop to 0 Amperes and there-
fore no signature of a Bayesian network path is available
for classification. Scenarios Q6 and Q8 are data injec-
tion attacks which alter the PMU current measurement
from relay R2. This has no effect on relays R3 and R4
and therefore there is no signature of a Bayesian network
path classify. All of the classification results for relays R3
and R4 are considered correct.

4.4 Conclusion and Future Work

This paper introduces a methodology for developing spec-
ification based intrusion detection systems (IDS) for
cyber-physical systems. The methodology involves first
developing a threat model for the system to be monitored
which includes relevant cyber attacks and any expected
disturbances which may occur normally in the system.
The threat model is grouped into a set of scenarios to be
classified by the IDS. Next, a set of actions and measur-
able events is created for the system. The actions and
events pair to move the system from state to state. A
Bayesian network graph is constructed which shows each
scenario as a path which describes system state transi-
tions and temporal order for each path. In order to pro-
vide a unique classification for each scenario the Bayesian
network graph must include a separate path for each sce-
nario. IDS designers search for actions and measurable
events in a loop until separate paths exist for each sce-
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Table 3: Actions and event space

Scenario Simulated
Scenario Detected

IDS@R1
Scenario Detected

IDS@R2
Scenario Detected

IDS@R3
Scenario Detected

IDS@R4
Q1: Over current fault@L1 Q1 Q1 Q10 Q10

Q2: L1 removed for maintenance Q2 Q2 - -

Q3: command injection attack;
remotely trip R2

Q10 Q3 - -

Q4: physical attack;
trip R2 at faceplate

Q10 Q4 - -

Q5: fault@L1;
relay does not trip

Q1 Q5 Q10 Q10

Q6: data injection attack
IL1 > pickup

- Q6 - -

Q7: data injection attack;
IL1<pickup; fault@L1

Q1 Q7 Q10 Q10

Q8: data injection attack; IL1=0 - Q8 - -

Q9: fault@L1;
BR2 breaker failure

Q1 Q9 Q10 Q10

nario. Once the Bayesian event graph is complete an IDS
can be built.

The proposed method for developing specification
based IDS requires system expertise. This can be a bur-
densome requirement. A separate version of the IDS is
deployed for each relay meaning the IDS does not need to
consider attacks and disturbances which occur on a sep-
arate line. For this work the non-pilot directional over
current relay protection scheme was specified. Other re-
laying schemes would also need to be specified. Each relay
requires an instance of the IDS. IDS instances may be de-
ployed in the substation at the relay location or a single
server at a central location may run multiple instances
of IDS to monitor multiple relays. The computing and
networking resource requirements of both deployment op-
tions should be considered in future work. Other future
work will the use of clustering algorithms [39, 41, 42] and
game theory approaches to learn rules from observed be-
havior and game theory to better model interactions be-
tween system components before learning rules. Finally,
the best approach to feature selection will be researched
for various target systems [22].

For this work, a case study was used to demonstrate the
effectiveness of the IDS development methodology. The
case study was applied to the non-pilot directional over
current relay protection scheme for a modified 2-bus 2-
generator system taken from a section of the IEEE 9-
bus 3-generator system. Nine scenarios were developed.
The scenarios include 4 power system disturbance cases
and 5 cyber attacks. A Bayesian network graph for the
9 scenarios was developed and data logs were captured
for each scenario from the perspective of each relay in
the test bed power system. The resulting IDS was used
to post process data collected from perspective of each

relay separately. All case study scenarios were correctly
classified.
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