
International Journal of Network Security, Vol.17, No.2, PP.150-159, 150

Firewall Policy Diagram: Structures for Firewall
Behavior Comprehension

Patrick G. Clark and Arvin Agah
(Corresponding author: Patrick G. Clark)

Department of Electrical Engineering and Computer Science

University of Kansas, Lawrence, KS 66045 USA

(Email: patrick.g.clark@gmail.com and agah@ku.edu)

(Received Apr. 9, 2014; revised and accepted Dec. 24, 2014)

Abstract

Communication security and regulatory compliance have
made the firewall a vital element for networked comput-
ers. They provide the protections between parties that
only wish to communicate over an explicit set of chan-
nels, expressed through protocols, traveling over a net-
work. These explicit set of channels are described and
implemented in a firewall using a set of rules. The fire-
wall implements the will of the organization through an
ordered list of these rules, collectively referred to as a
policy. In small test environments and networks, firewall
policies may be easy to comprehend and understand; how-
ever, in real world organizations these devices and poli-
cies must be capable of handling large amounts of traffic
traversing hundreds or thousands of rules in a particular
policy. Added to that complexity is the tendency of a
policy to grow substantially more complex over time and
the result is often unintended mistakes in comprehend-
ing what is allowed, possibly leading to security breaches.
Therefore, it is imperative that an organization is able
to unerringly and deterministically reason about network
traffic, while being presented with hundreds or thousands
of rules. This work seeks to address this problem using a
data structure, the Firewall Policy Diagram, in an effort
to advance the state of large network behavior compre-
hension.

Keywords: Firewall policy, firewall policy diagram (FPD),
human comprehension, policy analysis

1 Introduction

Computer networking has arguably been one of the most
important advancements in modern computing. Allowing
disparate applications to trade information, conduct busi-
ness, exchange financial transactions, and even the rou-
tine act of sending an email are some of the most common
things we do with computers today. Even with the ad-
vancement of ever faster computer chips, the trend contin-

ues to connect devices at an astounding rate. In addition,
there is also a thriving mobile device market, thus increas-
ing the amount of traffic flowing between systems. An im-
portant aspect of this interconnected system is security.
Without security, the convenience and speed of networked
transactions would present more risk than the majority of
applications could handle. In order to mitigate that risk
and provide a much more secure communication channel,
the firewall device was designed and deployed. It is one
of the most widely used and important networking tools
and exists in virtually every organization. In fact, over
the past two decades the landscape of network security
has come to rely heavily on that single type of device.
The primary purpose of a firewall is to act as the first
line of defense against malicious and unauthorized traffic,
keeping the information that the organization does not
want out, while allowing approved access to flow.

1.1 Firewall Basics

Firewalls allow two entities to connect their networks
together through existing infrastructure and protocols,
while securing the private networks behind them [16, 20].
The typical placement of a firewall is at the entry point
into a network so that all traffic must pass through the
firewall to enter the network. The traffic that passes
through the firewall is typically based on existing packet-
based protocols, and a packet can be thought of as a tuple
with a set number of fields [16]. Examples of these fields
are the source/destination IP address, port number, and
the protocol field. A firewall will inspect each packet that
travels through it and decide if it should allow that traf-
fic to pass based on a sequence of rules. This sequence of
rules is made up of individual rules that follow the general
form:

〈predicate〉 → 〈decision〉
The predicate defines a boolean expression over the

fields in a packet tuple that are evaluated and the physi-
cal network interface from which the packet arrives. For
example, source IP is 10.2.0.1 and destination IP address
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is 192.168.1.1 on eth0 (a common label for a linux inter-
face). Then the decision portion of a rule is what happens
if the predicate matches to a true evaluation. A decision
is typically accept or deny with the possibility of addi-
tional actions, such as an instruction to log the action
[16]. However, for the purpose of this research we are
only concerned with the accept or deny decision.

A firewall policy is made up of an ordered list of these
rules such that as a packet is processed by the firewall, it
attempts to match the packet to the predicate one rule at
a time, from beginning of the rule list to the end. Match-
ing the packet means that the firewall evaluates a packet
based on the fields in the rule tuple, a packet matches the
rule if it matches all the fields identified in the predicate
of the rule [14]. The predicate does not necessarily need
to contain a value for all possible fields and can some-
times contain the “any” variable in a field to indicate to
the rule processing software that this is a “do not care”
condition of the predicate and any value for that variable
will match. It must completely match all the fields for
the firewall to take the appropriate action. These rules
are processed in order until the firewall finds a match, at
that time it will take the appropriate action identified by
the decision [14].

1.2 Motivation

The cost of a security breach has the potential to neg-
atively impact business and cause large financial losses.
This has been studied in the risk management area and
falls under the avoidance topic [19]. The firewall is an
important avoidance tool, however, over the past decade
firewall rule-bases have grown in size at a remarkably fast
pace. In a study finished in 2001, it was discovered that
the typical organization will have 200 firewalls under the
control of its network consisting of an average of about
150 rules per device [22]. In addition, these rule sets have
been shown to grow to thousands of rules controlling rout-
ing between as many as 13 distinct networks [22]. More
recent statistics gathered further support that the growth
has only accelerated. In a study finished in 2009 the au-
thors determined that the growth in complexity has out
paced the growth in the organization’s ability to synthe-
size and comprehend the changes [8]. The average num-
ber of rules has substantially increased from 150 in 2001
to 793, with a largest rule set found comprised of 17,000
rules [8]. The later study did not discuss the number of
firewalls deployed, but in the unlikely case that firewall
deployment growth stopped and the number of firewalls
at an average organization stayed at 200 [22], then approx-
imately 160,000 rules (200 × 793) would be under active
management. In addition, the study also discovered that
the average rule turnover (change) rate for an organiza-
tion is 9.9% of the rules per month [8]. This means that an
organization’s firewall administration team has to accu-
rately manage about 160,000 rules where 16,000 of those
are changing on a monthly basis [8]. Therefore, the ability
to accurately and confidently understand firewall policies

and know what changes have occurred is more difficult
than ever, and continues to increase in complexity.

1.3 Key Contributions

This work presents a novel set of data structures, to-
gether called a Firewall Policy Diagram (FPD). These
data structures seek to solve the problem of large network
behavior comprehension as it relates to firewall policies in
several key areas:

• De-correlation of the firewall policy from the source
rule set to gain a holistic view of behavior. This
will remove any overlapping rules that will typically
exist in a firewall policy [23] and the resulting data
structure will model the actual accept and deny
space.

• Provide the ability to perform arbitrary mathemati-
cal set based operations like and, or, and not. These
operations will assist in reasoning about firewall pol-
icy changes over time. They will also provide the
foundation for many other firewall operations, such
as understanding the functional differences between
two policies. In addition, these operations will also
provide the base for querying an arbitrary policy.

• Provide the foundation data structure for the imple-
mentation of a method to query the policy.

• Once a policy has been decomposed into an FPD,
allow the reconstitution of that policy into a human
comprehensible form, like an equivalent policy rule
set.

• Finally, the experiments will show that these opera-
tions can be executed in seconds of computation time
even on large policies (up to 10,000 rules).

The remainder of the paper is organized as follows: We
begin with an overview of the FPD data structure and
a description of how it is constructed, operated on, and
translated into a set of de-correllated rules. We will then
present the results of performance related experiments in
terms of creation, set operations, and reconstitution of
firewall policies of various sizes. In the final two sections,
related work and conclusions about FPDs will be covered.

2 Firewall Policy Diagram

A Firewall Policy Diagram is a set of data structures and
algorithms used to model a firewall policy into an entity
allowing efficient mathematical set operations. The en-
tity also has the ability to reconstitute the policy into a
set of human comprehensible rules.

Table 1 demonstrates an access list that might be de-
fined for a particular organization [14]. As shown, fire-
wall policy traditionally consists of a list of rules. These
rules are comprised of a subset of the fields in the Inter-
net Protocol version 4 (IPv4) packet as defined by the
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Open Systems Interconnection (OSI) model [14]. In this
research effort only certain fields will be analyzed and
modelled. The source address, destination address, pro-
tocol, and destination port will be used. The decision was
made for two reasons, the source port is not often used in
most firewall products and the flag is primarily used at
layer three for setup and tear down of TCP connections
[14]. However, if source port is necessary, it is a straight-
forward process to extend a FPD to include an additional
16 variables.

The internal storage mechanism of an FPD uses Re-
duced Ordered Binary Decision Diagrams (ROBDD or
BDD) [5, 6, 18]. These data structures were introduced
as an efficient way to capture hierarchical binary data and
related works have described their use in firewall policy
validation [11, 13, 23]. In addition to those that support
the use of the BDD compressed data structure, there are
research efforts that argue against its use in favor of other
combination data structures [17]. However, in our work,
the BDD provides the efficient storage and the necessary
operations that allow our algorithms to reason about pol-
icy changes over time and differences between policies.
Also, using network address translation (NAT) methods
presented by [13], multi-firewall behavior over time can
be modelled using BDDs, a missing research component
in other policy comprehension work to date.

In a similar manner to the FIREMAN system [23], poli-
cies and rules are modelled as variable sets represented
as BDDs. Using a BDD is an efficient way to represent a
Boolean expression, like (a∨b)∧c. Extending this concept
to firewall policies, the variables in the expression become
the bits of the associated IPv4 field. In this research, 32
bits representing the source address, 32 bits representing
the destination address, 8 bits representing the protocol,
and 16 bits representing the destination port. This means
that for a particular accept space, there are 88 variables
and 288 potential combination of variable values.

2.1 Creation and Decomposition

When an FPD is initialized and created, the process be-
gins by iterating over the policy rule set one rule at a
time. Each rule is decomposed into its constituent parts
relevant to our research: source, destination, protocol and
destination port. At this point, each bit of each field is
converted into an input vector of an appropriate size for
the field. For example, the source field is 32 bits and
therefore the vector is of size 32. Once the input vectors
are constructed, the four input vectors are appended and
added as a constraint in the underlying BDD [23].

2.2 Operations

Based on set mathematics, if a data structure can accu-
rately implement the union, intersection, and complement
operation, other operations can be derived. For the pur-
poses of this research and experimentation there are two

primary operations that are being studied, namely, Dif-
ference and Symmetric Difference.

Difference is used in the situation where there exists
a base policy P and the desire is to understand what has
changed in a later version of the policy, P ′.

4 = P ′ − P

= P ′ ∧ ¬P

Symmetric difference is used in the situation
where there exists two policies P1 and P2 and the desire
is to know what is not shared between the two policies.

4 = (P1− P2) ∨ (P2− P1)

= (¬P2 ∧ P1) ∨ (¬P1 ∧ P2)

Using these two operations with basic set functions,
we are able to reason about policy discrepancies and un-
derstand how one policy is related to another arbitrary
policy. In addition, these operations can be chained to-
gether to produce a FPD′ such that changes to a policy
over time or as a set of access flows through multiple poli-
cies, the data structure can then be used to extract the
resulting allowed (or denied) rules in a human compre-
hensible form.

2.3 Human Comprehension

Using the resulting policy represented by 4, the proce-
dure to reconstitute that policy into a human consumable
set of rules involves transforming the BDD. The first step
in the algorithm is to only explore the space necessary
for the operation, typically the accept space. Therefore,
starting at the root node the graph is traversed to the
accept node and avoids having to explore the potentially
large opposite space. During this traversal, the BDD is
transformed into human comprehensible rules. To ac-
complish this sort of rule extraction without having to
completely decompress the data structure, two additional
data structures and algorithms are used.

The first data structure is a Ternary Tree, which, as
the name suggests, consists of three child nodes for every
parent. The purpose behind this tree is to take the fully
compressed BDD and decompress portions of it without
the full cost of the worst case of 288 leaf nodes being
represented. There is a low, high, and combination child
node, such that the low represents a 0, the high represents
a 1, and the combination represents both 0 and 1. The
idea behind using a Ternary Tree was inspired by [5, 6]
and other systems allowing the processing of a “do not
care” variable, such as ternary content-addressable mem-
ory (TCAM). Therefore, for a particular sequence of or-
dered variables in a BDD, solutions that occupy the same
space (i.e., accept) have variables of three potential val-
ues: 0, 1, or both. The representation of the potential
values is 0, 1, and X, respectively. The definition of the 0
and 1 are the same as a binary tree, and the variable rep-
resented in the node assumes that value. The new edge
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Table 1: Example access control list for a firewall interface

rule action src address dest address protocol dest port

1 allow 172.16.0.0/16 10.2.0.0/16 TCP 80

2 allow 10.2.0.0/16 172.16.0.0/16 TCP > 1023

3 allow 172.16.0.0/16 10.2.0.0/16 UDP 53

4 allow 10.2.0.0/16 172.16.0.0/16 UDP > 1023

5 deny all all all all

value of X represents that it is both 0 and 1 for that par-
ticular variable at that particular node in the tree. The
result is compression in the size of the tree by removing
the need for a left and right sub tree.

Var1
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Var1

1

Var2
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Var2

1

Var2

0

Var3

1
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1

Var3
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Var3

1

(a) Binary Tree

Var3:1 Var3:X

Var1:0 Var1:1

Var2:X Var2:0

(b) Ternary Tree

Figure 1: Identical binary numbers in a (a) binary tree
and (b) Ternary tree

Figure 1 illustrates the concept and what the model
would resemble when a binary tree is represented as a
Ternary Tree. The tree still maintains the hierarchical na-
ture of the data, but in a more compressed format. There
are two important differences as a binary tree transforms
to a Ternary tree. The first is the representation of the
values of a particular variable (identified by bit location)
is stored with the node. The second difference is the order
of the variables in the Ternary Tree, as they are represen-
tative of how a tree formed from the algorithm shown in
Figure 2 resulting in the least significant bit (LSB) vari-
able at the root. These differences allow the tree to be
pruned in reverse such that the process begins at the root
and generates intervals as it traverses to a leaf. The bi-
nary numbers represented in these identical trees are 1,
3, 4, and 5.

The Ternary Tree provides an intermediary between
the BDD and the pruned rules by allowing ranges in data
to be represented and subsequently combined as the tree
is pruned. This is information that cannot be easily as-
certained from a canonical BDD representation. The al-

gorithm to transform the ROBDD into a Ternary tree is
shown in Figure 2.

An additional concern is that a true tree structure
has the potential to have a higher storage cost because
of replicated data nodes in child trees when the pattern
could be shared where appropriate. This has been ad-
dressed in the Ternary Tree by allowing it to share nodes
where the underlying pattern is shared. The resulting
rule set deals with any collisions that may occur when
pruning by copying intervals. For example, if the pattern
starting at a certain variable is common and shared by
parent variables, then the Ternary Tree will share those
nodes by an edge pointing to those nodes. This accom-
plishes the goal of reducing space requirements without
sacrificing the expressiveness of the data structure.

Input: ROBDD Bdd
Output: A fully formed Ternary Tree T
1: procedure Translate(Bdd)

. Bdd Variables labels start with 0
2: T ← newTernaryTree
3: for all R ∈ RootNodes(Bdd) do
4: N ← createTernaryRoot(T )
5: WalkEdge(R.low,N)
6: WalkEdge(R.high,N)
7: end for
8: end procedure
9: procedure WalkEdge(bN, tN)

10: for bN.parent.var to bN.var − 1 do
11: tN ← tN.middle← newTernaryNode(X)
12: end for
13: if bN.var = Bdd.One then return
14: end if
15: if bN.low 6= Bdd.Zero then
16: tN.left← newTernaryNode(0)
17: WalkEdge(bN.low, tN.left)
18: end if
19: if bN.high 6= Bdd.Zero then
20: tN.right← newTernaryNode(1)
21: WalkEdge(bN.high, tN.right)
22: end if
23: end procedure

Figure 2: Algorithm for translation of a ROBDD to
Ternary tree
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for i = Min; i <= Max; i + = 2 Conversion Factor

do
V alue← i

end for

Figure 3: Algorithm for expressing all interval values

2.4 Pruning the Ternary Tree

The Ternary tree acts as an intermediate data structure
where the primary purpose is to allow a second algorithm
to collapse the tree into a set of human comprehensible
data structures. The second algorithm is the pruning pro-
cedure that starts at the place-holder root of the Ternary
tree and then traverses the tree to the leaves, pruning
and generating intervals. The resulting data structure
captures an interval and a count of bits in a conversion
factor. The interval has a starting and ending number,
with the conversion factor identifying how the interval se-
quence progresses. As an example, the source IP address
Ternary Tree that represents an odd number of IP ad-
dresses is considered. In this example, the interval would
be the starting and ending values of the range with a con-
version factor of 1. All individual values in an interval can
be expressed using the procedure shown in Figure 3.

As the tree is walked to the heuristically defined leaves
of the tree, the interval is transformed by bit shifting and
sometimes cloning of the interval to represent a transfor-
mation from a hierarchical data set into a rule. Additional
details of the algorithm are identified in Figure 4. As the
algorithm progresses, a number of these intervals are cap-
tured and get merged when appropriate. The internal
representation of the ranges makes use of a red-black tree
algorithm [9] to maintain a balanced structure while the
intervals are assembled into a human readable form.

Notably, the entire rule is represented on the originat-
ing BDD; and therefore heuristics are used to help sepa-
rate the data and make the rules more human comprehen-
sible. This means that for a particular policy model, the
data structure represents the concatenation of the source
IP, destination IP, destination port, and protocol. The al-
gorithms will separate the data structure into three sep-
arate Ternary Tree boundaries during the processing of
the algorithm, namely, a source IP boundary, destination
IP boundary, and service boundary. The process of ex-
tracting human comprehensible rules from an FPD runs
at O(V + E) where V and E are the number of vertices
and edges in the Ternary trees, respectively.

The upper bound on the number of copies an interval
must endure is 16. This is because a copy must occur
when a variable transitions from 0 or 1 to X, and for a
32 variable number that can only occur a maximum of
16 times. This is also an upper bound on the number of
intervals that could potentially exist at 216.

The final useful function achieved by using the interval
data structure with conversion factor is a simple way to
determine the number of addresses, ports or services in a
particular rule. For an interval in a rule, it results in the

Input: Ternary Tree
Output: List of Rules that composed the space
1: procedure PruneRules(T )
2: for all L ∈ Children(T.root) do
3: Interval← create(from = 0, to = 0)
4: Depth← 0
5: ParseNode(L, Interval, 0)
6: end for
7: end procedure
8: procedure ParseNode(N, Interval, lnV al)
9: if N.value = X and Interval.factor empty and

lnV al 6= X then
10: Interval.factor ← Depth
11: end if
12: if N.value = X then
13: Interval.to← to | 1 << depth
14: end if
15: if N.value = 1 then
16: Interval.from← from | 1 << depth
17: Interval.to← to | 1 << depth
18: end if
19: if N is boundary then
20: Rules← Interval
21: Interval← create(from = 0, to = 0)
22: Depth← 0
23: ParseNode(N.parent, Interval, 0)
24: else if N not root then
25: Depth = Depth + 1
26: if lnV al 6= X and N.value = X then
27: Interval′ ← clone(Interval)
28: ParseNode(N.left, Interval′, N.value)
29: ParseNode(N.right, Interval′, N.value)
30: ParseNode(N.middle, Interval′, N.value)
31: end if
32: ParseNode(N.parent, Interval,N.value)
33: end if
34: end procedure

Figure 4: Algorithm for rule extraction
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equation:[
(Interval Maximum− Interval Minimum)

2 Conversion Factor

]
+ 1

The result of the pruning is a list of de-correlated rules
with three intervals, the source IP range, destination IP
range, and service range. An interesting result of the way
that we have chosen to order the BDD variables is that the
source IP to destination IP variable transition drives the
number of distinct rules present in the final reconstituted
rule set. This means that when that boundary in the
variables is crossed while traversing the Ternary Tree, a
new rule is generated and the remaining destination IP
and service ranges are collected in that rule. Additional
research could be done using the BDD variable reordering
capability to find the most concise rule set representing a
particular policy.

2.5 Heuristics Applied to Policies

Knowledge about the data set being modelled is impor-
tant to the conversion and pruning algorithms. The
heuristics provide the knowledge about where the hier-
archical data sets begin and allow the summary of those
data as the tree is pruned.

In this work the size of each of the fields drives the
separation of the trees such that the 32nd, 64th, and 88th

variables divide the hierarchy of a solution into the source
IP address, destination IP address, and service (a combi-
nation of protocol and port). Notably, these algorithms
can be applied to other hierarchical data sets in differ-
ent domains. They may be especially useful when dealing
with large solution spaces and multiple hierarchies being
combined to provide the composition of a desired “space”.

2.6 Generalized Example

This section will step through an example of how the al-
gorithms of the FPD function on a smaller solution space
in an effort to both show how the boundary heuristics
may be applied to other domains, as well as a better de-
scription of how the algorithms function. A example is
considered where we represent the solution space as 28,
with a fictitious rule being made up of two fields of 4 bi-
nary variables, A and B, which subsequently form an 8
binary variable solution space. As the stored ROBDD is
generated, A will represent the decimal values 2 through
12 and B will represent the decimal values 3 through 13.
Figure 5 visualizes the canonical ROBDD data structure
representing A and B with the LSB at the root, and re-
ferred to as variable zero. As the ROBDD is traversed
from root to leaf, the tree is transformed into the graph
as seen in Figure 6. The variable transition values high
and low are shifted to the variable values in the individual
nodes. The new root node with label 1 is created and the
tree is rooted at that node. In addition, the solution space
removes the need for the edges leading to the zero value
as we do not care about those numbers when extracting

the stored data. The change from one tree to another is
what is described in the algorithm shown in Figure 2.

As indicated in earlier explanations of the Ternary tree,
it acts as an intermediary data structure as human com-
prehensible intervals are extracted. Therefore, the next
step of process is to traverse the Ternary Tree from root
to leaf in an effort to generate a set of rules with the
described intervals that make up those rules. We have
already identified our single boundary heuristic in this
generalized example as variable 4 of our 8 variables (us-
ing a zero index). Therefore as the algorithm shown in
Figure 4, begins with that knowledge by traversing the
root to leaf in an effort to create intervals.

The initial result is two groupings or rules being gener-
ated. This can be visually confirmed in the Ternary tree
with the existence of two nodes for variable 4. Subse-
quently, in each rule there are two sets of intervals, those
representing the variables 0 through 3 and those repre-
senting the variables 4 through 7. Rule 1, segment 1
(variables 0-3):

2 to 10 every 23

3 to 11 every 23

4 to 12 every 23

5, 6, 7, 8, 9

Rule 1, segment 2 (variables 4-7):

4 to 12 every 23

6, 8, 10

Thus, the intervals may be merged into segment 1 (vari-
ables 0 through 3) being represented by the decimal num-
bers 2 through 12. Subsequently the segment 2 interval
may be merged into 4 to 12 every 2, so even numbers 4
through 12. Based on a similar interval merging proce-
dure for Rule 2, segment 1 (variables 0-3) becomes:

2 to 10 every 23

3 to 11 every 23

4 to 12 every 23

5, 6, 7, 8, 9

Rule 2, segment 2 (variables 4-7):

3 to 11 every 23

5 to 13 every 23

7, 9

The intervals may then be merged into segment 1 being
represented by the decimal numbers 2 through 12. Then
segment 2 may be merged into 3 to 13 every 2, so odd
numbers 3 through 13.

The final merge may then be reviewed between two
rules such that when a segment of a rule matches another
segment, as it does with segment 1, it may become one
rule with the segment that is not matching (segment 2),
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being combined and reviewed for merges. Therefore, after
rule 1 merges with rule 2, and since the segment 2 inter-
vals represents overlapping odd and even ranges, i will
become a contiguous decimal interval from 3 to 13. This
reconstitutes our original rule that created the BDD: A
= 2-12, B = 3-13; which is fit for human comprehension.

0 1

0

11

222

3

4

3

5 5

66 6

7 7

Figure 5: ROBDD generalized example

This algorithm is in contrast to a more naive, brute
force approach to processing all known “solutions” to the
BDD. In the example presented here, there are 64 8-bit
numbers that will need to be parsed back into the known
intervals that created the BDD from the start. While
that number may seem small, the example and solution
space are small by design. The important difference is
between the number of solutions and the number of nodes
in the Ternary tree. In addition, the brute force method
removes the hierarchical relationships between the nodes,
i.e. the heuristic value of node 4, further complicating
reconstituting related intervals.

2.7 De-correlation

When a list of rules in a policy is decomposed into an
FPD, a reconstituted policy that covers the same equiva-
lent accept or deny space will result in a rule set with
none of the resulting rules overlapping in any area. The
primary reason for this behavior is that as a policy is de-
composed one rule at a time, all inconsistent or overlap-
ping rules are removed and just the space is represented.

0:0

1:0 1:1

2:02:1

3:1

4:0 4:1

1

0:1

5:0 5:1

6:06:1

7:17:x

6:0 6:1

7:0

5:0 5:1

6:0

7:x

6:1

3:x

2:0

3:x

2:1

3:0

1:0 1:1

2:0 2:1

Figure 6: ROBDD as Ternary tree

The de-correlation property is useful in a number of sce-
narios:

• A policy no longer has a need to be processed as
an ordered set of rules, since the FPD removes any
overlapping rules. As a result, if the FPD is built by
the rules in the policy from last to first, the resulting
system can match an incoming packet to all rules
simultaneously.

• A policy may be substantially smaller and take much
less time to process once it has been de-correlated.
This behavior is the effect of the procedure that con-
verts rules into the FPD where it has also merged
adjacent rules and removed any redundancies. In
addition, the matching operation of a rule can be
performed in constant time. This is because match-
ing a rule involves walking the data structure from
root to result, which is a constant 88 elements.

3 Experiments

The experiments designed for our work seek to review and
address problems seen in the outside industry, i.e., large
and difficult to understand firewall policies. We will first
measure the time required to construct an FPD from rule
sets of various sizes. We will then measure the time to ex-
tract a set of human comprehensible rules from an FPD.
Finally, we will review the results of the difference and
symmetric difference operations between two policies
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Figure 7: FPD generation and extraction of rules for
policy sizes 100 to 10,000 rules

that share from 0% to 90% of the same space. The FPD
data structure and algorithms are implemented in the
JavaTM 6 programming language and the tests are run on
a Mac Book Pro laptop computer. For ROBDD software,
the Buddy and JavaBDD libraries were used [15, 21].

For the data sets used to test creation and extraction
of rules, policies of sizes 100 to 10,000 with 100 rule in-
crements were created. When testing the difference
and symmetric difference operations, we created two
randomly generated 200 rule policies that share from 0%
to 90% of the same space. Security reasons prevented
us from being able to gain access to actual industry rule
sets, as the majority of companies with firewall policies of
those sizes are hesitant to allow outside parties access.

Figure 7 charts the performance of the FPD data struc-
ture for creation of a policy from a set of rules through to
extraction of the policy into an equivalent set of rules. For
creation of the FPD from a set of rules, the performance
is consistently below one second for policies up to 5,500
rules. The creation times then begins to take more than
a second until finally approximately 3 seconds to create
a policy that originated from 10,000 rules. The extrac-
tion stays consistently less than a second to produce an
equivalent set of rules and stays less than 500 ms for the
majority of the data sets.

Figure 8 charts the performance of a difference op-
eration and symmetric difference operation between
two 200 rule policies. The experiment involved executing
the appropriate operation; and then extracting the human
comprehensible rules from the FPD. Notably, over 90% of
the computation time is used producing human compre-
hensible rules. The actual difference and symmetric
difference operations are averaging 5 milliseconds in
all operations. Symmetric difference operation ex-
hibited slower processing performance due to the size of
the resulting space represented by that operation. This
means for that particular data set, the worst case repre-
sentation of a space was very close to the maximum size of
the potential space. Difference operation yielded much
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Figure 8: FPD difference and symmetric difference
operations for a 200 rule policy

smaller resulting data set sizes and reflected that fact in
the computation times.

4 Related Work

Other work has been done modeling firewall policies, how-
ever, most of the models reflect their intended use and
not all are capable of the sort of operations described in
this work. Much of the research has focused on rule pro-
cessing and validation of those rules where the goal is
to identify redundant, shadowed, and inconsistent rules
[1, 2, 3, 4, 7, 10, 16, 23]. In general the focus in those
efforts is on algorithms for finding policy anomalies both
from a single policy model to a multi-policy model. A por-
tion of the related research introduced the use of BDDs
for the models and became the foundation for some of the
algorithms in our work [5, 6, 11, 18, 23].

In [12] the authors present a rule de-correlation al-
gorithm with efforts to extract rules from existing fire-
wall policies. The methods appear to be strictly for de-
correlating rules with an exponential running time cor-
related to the size of the original policy and no overall
policy comprehension.

One of the earliest works on policy comprehension built
a query engine on top of a formal verification system
named Voss [11]. Hazelhurst implemented a simple func-
tional language that is capable of modeling a firewall pol-
icy in a formal verification system. While the underly-
ing Voss hardware verification system used ordered bi-
nary decision diagrams to model a rule set, it is unclear
the method in which the results were extracted from the
canonical BDD form. The algorithm complexity was cited
to be linear with respect to the number of rules for cre-
ation of the policy and constant time with respect to the
number of variables in the BDD for any set operations on
the of the policy [11]. This is consistent with our work on
processing FPDs. However, that analysis does not discuss
the processing time related to extracting human compre-
hensible data from a binary decision diagram. This is
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a large segment of processing and could involve millions
of individual BDD solutions. Our analysis indicates that
discussing the complexity as a function of the resulting
BDD and the number of distinct solutions is a more ac-
curate representation of the running time.

The research most similar to ours focuses on a data
structure called a Firewall Decision Diagram [10, 16, 17].
The goal of the data structure is similar to ours, but the
authors chose a different internal representation of a pol-
icy, specifically a combination of prefix and interval trees
with additional data structures. It is capable of some dif-
ference operations, and is portrayed as a tool in which
to achieve more accurate firewall design and change im-
pact analysis. They specifically cite reasons for not using
BDDs as the core of the data structure, although our work
seeks to overcome the limitations referenced. In addition,
it is not clear that they are capable of handling more com-
plicated situations, such as network address translation,
as a space is modelled through a real network.

5 Internet Protocol Version 6

Internet Protocol Version 6 (IPv6) is the latest iteration in
the Internet protocol routing stack. It is an improvement
to the current protocol IPv4, with the primary difference
related to our research being the unique address space be-
ing expanded from 32 bits to 128 bits. This increase will
allow many more devices to communicate and connect
on the Internet. However, this also represents a chal-
lenge for firewalls and firewall administration teams. The
growth of the addressable space means that these teams
will need better and faster tools in which to comprehend
how the firewalls under their control are configured and
what sort of changes are happening to the security poli-
cies over time. This trend in the market space also sup-
ports the need for structures such as FPD for allowing the
comprehension of these policies. While the experiments
in this dissertation are on 32 bit addresses, expanding the
FPD to use 128 bit addresses is a straightforward process
and is planned for future experimentation. There is no
reason that the algorithms would not function, although
the size of the search space would become at least 2192

larger. This expansion is a result of the source and desti-
nation IP address space growing from 232 to 2128, there-
fore the number of bits needing to be represented grows
296 × 296 = 2192.

6 Conclusions

In this paper we presented the Firewall Policy Diagram,
an efficient and accurate data structure that serves as
a basis for reasoning about firewall policy behavior and
change. There are four primary contributions in this
work:

• Data structures to efficiently model firewall policies
that can be used to reason about them over time and

modification.

• A data structure to act as the basis for the imple-
mentation of a means in which to query the policy.

• A set of algorithms in which to extract understand-
able rules from the FPD.

• Experimental evidence that these algorithms can per-
form the appropriate operations in seconds even on
large firewall policy rule sets.
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