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Abstract

The notion of accountable authority introduced by Goyal
(Crypto 2007) in identity-based encryption (IBE) setting
is a novel approach to mitigate the (inherent) key escrow
problem in identity based cryptosystems. As far as we
know, the (inherent) key escrow problem also exists in
attribute based encryption (ABE), for example cipher-
text policy ABE (CP-ABE). In this paper, the concept
of accountable authority is generalized to ABE setting.
We first formalize the definitions and security models
for accountable authority attribute-based encryption (A-
ABE), and then present two concrete constructions. One
is designed for the threshold ABE with large universe at-
tributes, and the other is built for ciphertext policy ABE.
In our scheme, a user will be identified by a pair (id, ω),
where id denotes the identity of a user and ω denotes a
attribute set associated to the user. In addition, both con-
structions are shown to be secure in the standard model
under some reasonable assumptions.
Keywords: Accountable authority, attribute-based encryp-
tion, key escrow, standard model, traceability

1 Introduction

The concept of attribute-based encryption first intro-
duced by Sahai and Waters [20] in 2005 provides one-to-
many communication and is a new means for encrypted
access control. In an ABE scheme, an access structure is
integrated with the identity-based encryption. The origi-
nal system of Sahai and Waters is a Threshold ABE sys-
tem, in which both user’s private key and ciphertext are
associated with a set of attributes, respectively. A user
can decrypt a ciphertext when at least d (threshold pa-
rameter) attributes overlap between the attribute set as-
sociated to the ciphertext and the attribute set associated
to the user’s private key. At present, there are many ex-
tensions for supporting more complex access structure, for
example, the key policy ABE (KP-ABE) in [8, 17] and the
ciphertext policy ABE (CP-ABE) in [2, 14]. We refer the

reader to [4, 10, 15, 22] for some related results about
ABE.

The motivation to consider accountable authority
attribute-based encryption system is as follows. ABE
can be viewed as a generalization of identity-based en-
cryption, and it inherits the key escrow problem from
IBE [3, 5, 21, 25]. In an ABE system, all users’ private
keys are issued by an unconditionally trusted authority.
Such an authority possesses the master secret key of the
system, and can decrypt all ciphertexts encrypted to any
user. Moreover, the authority can redistribute users’ pri-
vate keys for malicious use. Thus, it has great significance
that reducing the trust in the authority in an ABE sys-
tem.

Goyal [6] first introduced the notion of accountable au-
thority identity based encryption (A-IBE) for mitigating
the key escrow problem in IBE. In an A-IBE scheme, if
the authority redistributes some user’s private key for ma-
licious use, it will run the risk of being caught and sued
by the user. The above goal can be achieved by the fol-
lowing approach: (1) For every identity id, there will be
an exponential number of possible keys. (2) To generate
a user’s private key, an interactive key generation proto-
col will be implemented between the authority and the
user. This protocol will ensure that the family, that the
generated key belongs to, is concealed to the authority.
(3) With this single key, it is intractable for the user to
find any other keys from a different family. Thus, two
keys from distinct families for an identity give evidence of
the authority’s misbehavior. At present, there are several
constructions for A-IBE [1, 6, 7, 12, 13, 19]. In ABE set-
ting, we notice that Li et al. [11] introduced a new type
of ABE, which achieves the accountability of the author-
ity. However, their scheme assumes that each user has a
higher level secret before requesting an attribute private
key. This work is orthogonal to ours.

In this paper, we formalize the definitions and security
notions for accountable authority ABE and present two
constructions. One is based on the large universe con-
struction for ABE in [20], and the other is built on the
ciphertext policy ABE scheme in [14]. We refer the reader
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to [23, 24] for some other constructions. Our approach to
achieve the notion of accountable authority ABE is in-
spired by the A-IBE scheme proposed by Libert et al.
[12, 13]. In our constructions, we introduce identity id
to label a user’s private key, and a user will be identified
by a pair (id, ω), where ω is a set of attributes. Fur-
thermore, we modify the scheme in [12], and achieve that
the ability of decryption of a user is independent of his
identity. After that, we non-trivially integrate the mod-
ify scheme with an ABE scheme. Thus, the notion of
A-ABE is achieved. We describe our two constructions in
the white-box model [6]. However, notice that the weak
black-box tracing algorithm described in [12] can be triv-
ially extended to our schemes. In addition, our construc-
tions are shown to be secure in the standard model under
some reasonable assumptions.

The rest of the paper is organized as follows. In Sec-
tion 2 we recall some preliminaries. In Section 3, we
give the construction for accountable authority thresh-
old ABE with large universe attributes and its security
proofs. We describe the construction for accountable au-
thority ciphertext policy ABE and give its security proofs
in Section 4. Finally, we conclude in Section 5.

2 Preliminaries

2.1 Bilinear Maps and Complexity As-
sumptions

We now review the notion of bilinear maps. Let G1, G2

be two multiplicative cyclic groups of prime order p, and
g be a generator of G1. Let e denote a bilinear map,
e : G1 ×G1 → G2, which has the following properties [3]:

• Bilinearity: For all u, v ∈ G1 and a, b ∈ Zp, it satisfies
e(ua, vb) = e(u, v)ab.

• Non-degeneracy: e(g, g) 6= 1G2 .

• Computability: There exists an efficient algorithm to
compute e(u, v), for all u, v ∈ G1.

We require the following two assumptions holds which
have been used before in [9, 12].

Definition 1. (Modified Diffie-Hellman Assump-
tion, MDH). Given a tuple (g, h, gx), where g is a gen-
erator of G1, and x ∈ Zp, h ∈ G1 are random, there is no
polynomial-time algorithm to output h1/x.

Definition 2. (Modified Bilinear Decision Diffie-
Hellman Assumption, MBDDH). This assumption
states that the two distributions (A = ga, B = gb, C = gc,
C ′ = gc2

, D = e(g, g)abc) and (A = ga, B = gb, C =
gc, C ′ = gc2

, D = e(g, g)z) are indistinguishable for any
polynomial-time adversary B, where a, b, c, z ∈ Zp are
random. Let κ be the security parameter. The advantage
function Advmbddh

B (κ) of B is defined as
∣∣Pr

[B(ga, gb, gc, gc2
, e(g, g)abc) = 1

]−
Pr

[B(ga, gb, gc, gc2
, e(g, g)z) = 1

]∣∣.

We say that the MBDDH assumption holds if
Advmbddh

B (κ) is negligible for all polynomial-time
adversaries.

Note that the MDH assumption is equivalent to the
Diffie-Hellman assumption [12], and the MBDDH as-
sumption is equivalent to the Bilinear Decision Diffie-
Hellman assumption (BDDH) [9].

2.2 Syntax

We now describe the syntax of an A-ABE scheme. In
our setting, a user will be identified by a pair (id, ω).
It is allowable for different users with the same set of
attributes. However, we require that a user should be
assigned only one set of attributes. Formally, an account-
able authority attribute-based encryption scheme consists
of five polynomial-time algorithms described as follows:

• Setup: This algorithm takes as input a security pa-
rameter κ, and outputs a master public key mpk and
a master secret key msk.

• KeyGen: This is an interactive protocol imple-
mented between a user U and the authority. The
public input to the authority and U consists of the
mpk and (id, ω) (of U). The private input to the au-
thority is the msk. In addition, a sequence of random
coin tosses may be used by the authority and U as
private inputs. At the end of the protocol, U can
extract a private key did,ω.

• Encryption: Takes as input the mpk, a set of at-
tributes ω′ (in CP-ABE, ω′ is replaced by an access
structure W ) and a message M , this algorithm out-
puts a ciphertext E.

• Decryption: Takes as input a user secret key did,ω

and a ciphertext E encrypted under ω′ (or W ), this
algorithm outputs a plaintext message M if |ω∩ω′| ≥
d (in CP-ABE, ω should satisfy the access structure
W ), where d is a threshold parameter.

• Trace: This algorithm takes a well-formed decryp-
tion key did,ω as input, and outputs the decryption
key family number nF .

Note that the above algorithms are described in the
white-box traceability model. In this model, the Trace
algorithm can only deal with a well-formed key. However,
the Trace algorithm needs to trace a decryption box in the
black-box traceability model [7].

2.3 Security Models

In this section, we describe the security models of our
A-ABE scheme in the white-box setting. The reader
is referred to [6, 7, 12] for further extensions in the
black-box model.

The IND-SS-CPA game. We simply extend the
selective model of [20] to our setting. Let A be an
adversary.
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• Init. A declares a set of attributes ω∗ (in CP-ABE,
A declares an access structure W ∗).

• Setup. The challenger runs the Setup algorithm of
A-ABE and gives the public parameters to A.

• Phase 1. A runs the key generation protocol
with the challenger for many pairs (idj , ωj), where
|ωj∩ω∗| < d (in CP-ABE, this condition should state
that ωj does not satisfy W ∗) for all j. There is no
limitation on idj .

• Challenge. A submits two equal length messages
M0, M1. The challenger flips a random coin, ν, and
encrypts Mν with ω∗ (replaced by the access struc-
ture W ∗ in CP-ABE). The ciphertext is passed to
A.

• Phase 2. Phase 1 is repeated.

• Guess. A outputs a guess ν′ of ν.

In the above game, the advantage of the adversary A
is defined as |Pr[ν′ = ν]− 1

2 |.

The FindKey game. This game follows from [6]
except slight modification for our setting. Let A be a
malicious authority.

• Setup. A generates and gives the mpk with a pair
(id, ω) to the challenger. The challenger runs a sanity
check on mpk and aborts if the check fails.

• Key Generation. The challenger andA run the key
generation protocol to generate a decryption key for
(id, ω). The challenger gets the key did,ω as private
output and runs a key sanity check on it. It aborts
if the check fails.

• Find Key. A outputs a decryption key d′id,ω. The
challenger runs a key sanity check on it. It aborts if
the check fails.

Let K1 denote the event that Trace(d′id,ω) = Trace(did,ω).
Define A’ advantage as Pr[K1]. The above game emulates
the attack that a malicious authority try to produce a
private key belonging to the same family as the user’s
key generated in the key generation protocol.

The ComputeNewKey game. This game is de-
fined along the line of [6]. Here, we describe it in the
selective model. Let A be an adversary.

• Init. A declares an identity id∗.

• Setup. The challenger runs the Setup algorithm of
A-ABE and gives the public parameters to A.

• Key Generation. A runs the KeyGen with the
challenger for many pairs (idj , ωj), where idj must
be distinct. There is no limitation on ωj .

• New Key Computation. A outputs two decryp-
tion keys did∗,ω and d′id∗,ω. The challenger runs a key
sanity check on them. It aborts if any check fails.

Let K2 denote the event that Trace(d′id∗,ω) 6=
Trace(did∗,ω). In this game, define A’ advantage as
Pr[K2]. Intuitively, this game emulates the attack that
a user try to compute a new key belonging to a differ-
ent family from his key generated in the key generation
protocol.

Definition 3. An A-ABE scheme is IND-SS-CPA secure
if all polynomial time adversaries have at most a negligible
advantage in the above three games.

3 Accountable Authority Thresh-
old ABE with Large Universe
Attributes

We now describe our first construction, which mainly bor-
rows ideas from the A-IBE scheme [12] and is based on
the large universe construction of the attribute-based en-
cryption scheme proposed by Sahai and Waters [20].

3.1 Description

In this construction, we assume n be the maximum size
attribute set for a user, d be the threshold value and N
be the set of {1, 2, . . . , n + 1}. For simplicity, let ω be
a set of n elements of Z∗p. In addition, we can apply a
collision-resistant hash function h : {0, 1}∗ → Z∗p, which
allows arbitrary strings as attributes. Define the Lagrange
coefficient ∆k,S for k ∈ Zp and a set, S, of elements in
Zp: ∆k,S(x) =

∏
j∈S,j 6=k

x−j
k−j . Our construction follows:

• Setup: First, generate a set of pairing groups at the
security level κ. Next, choose randomly x, y, y1 ∈
Z∗p, h,Z, g2, t1, . . . , tn+1 ∈ G1, and set X = gx, Y1 =
gy1
2 , g1 = gy. Now, define a function T as in [20]:

T (x) = gxn

2

∏n+1
i=1 t

∆i,N (x)
i . Finally, set the master

public key mpk as

{X, h, Z, t1, . . . , tn+1, K = e(g1, g2),K1 = e(g, Y1)},
and the master private key msk as {x, y, y1}.

• KeyGen: To generate a private key for a user U
with (id, ω). The following protocol will be executed
between U and the authority.

– U chooses s0, θ ∈ Z∗p at random, and provides
a commitment R = hs0 ·Xθ with an interactive
witness indistinguishable proof of knowledge of
the (s0, θ) to the authority. In addition, U re-
tains (s0, θ).

– The authority verifies the proof of knowledge,
outputs ⊥ if fails. Otherwise, it chooses ran-
domly s1, r

′ ∈ Z∗p and a d−1 degree polynomial
q(x) with q(0) = y − y1. The authority returns
d′id,ω = (d′1, d

′
2, d

′
3, d

′
4) as

((gy1
2 Rhs1)

1
x · (gidZ)r′ , Xr′ , s1,

{Di = g
q(i)
2 T (i)ri , Fi = gri}i∈ω),
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where ri are chosen randomly from Z∗p.
– U chooses r′′ ∈ Z∗p at random and computes

did,ω = (d1, d2, d3, d4) as (d′1/gθ · (gidZ)r′′ , d′2 ·
Xr′′ , d′3 + s0, d

′
4), which should equal

((gy1
2 hs)

1
x · (gidZ)r, Xr, s,

{Di = g
q(i)
2 T (i)ri , Fi = gri}i∈ω),

where r = r′ + r′′ and s = s0 + s1. Now U
checks did,ω as follows. First, the consistence of
every element of d4 should be checked. Choose
an arbitrary d-element subset, S, of ω and com-
pute Ri = e(Di, g)/e(Fi, T (i)) for i ∈ S. Then
compute R0 =

∏
i∈S(R∆i,S(0)

i ). Let Γ be an ar-
bitrary subset of S such that |Γ| = d−1. Define
S′ = Γ ∪ {0}. U checks the following relation
for each j ∈ ω − S:

∏

i∈S′

(
R

∆i,S′ (j)
i

)
=

e(Dj , g)
e(Fj , T (j))

.

Second, U checks

e(d1, X)
e(g, h)d3 · e(gidZ, d2)

= K1,

and R0 · K1 = K. U outputs ⊥ if any check
fails. Otherwise, U sets his private key as did,ω

and the key family number as nF = d3 = s.
• Encryption: The sender chooses t ∈ Z∗p at random

to encrypt a message M ∈ G2 under a set of at-
tributes ω′. Compute E = (ω′, E1, E2, E3, E4, E5)
as

(ω′, gt, Zt, Xt,M · e(g1, g2)t, {T (i)t}i∈ω′).

• Decryption: Let E be a valid encryption of M un-
der ω′. E can be decrypted by a user with the private
key did,ω, where |ω ∩ ω′| ≥ d. First compute E′

1 =
Eid

1 ·E2 = (gid ·Z)t and E′
5 =

∏
i∈S( e(Di,E1)

e(Fi,T (i)t) )
∆i,S(0),

where S be an arbitrary d-element subset of ω ∩ ω′.
Next decrypt E as:

M = E4 · e(E1, h)d3 · e(E′
1, d2)

e(d1, E3) · E′
5

,

• Trace: Takes as input a well-formed decryption key
did,ω = (d1, d2, d3, d4), this algorithm outputs the de-
cryption key family number nF = d3.

3.2 Analysis of the Construction

If the cryptosystem is operated as specified, we have E′
5 =

e(gt, g2)y−y1 and

E4 · e(E1, h)d3 · e(E′
1, d2)

e(d1, E3) · E′
5

= E4 · e(gt, h)s · e((gidZ)t, Xr)
e((gy1

2 hs)
1
x · (gidZ)r, Xt) · e(gt, g2)y−y1

= E4 · 1
e(gy1 , gt

2) · e(gy−y1 , gt
2)

= M.

The above construction is based on the large universe
construction in [20]. However, we notice that one can use
our approach to construct an A-ABE based on the large
universe construction of KP-ABE [8]. Now we present the
security proofs for our construction.

Theorem 1. The above construction is IND-SS-CPA se-
cure under the MBDDH assumption.

Proof. Let A be an adversary against our scheme with
advantage ε. We build a simulator B that can solve a
MBDDH instance with advantage ε

2 . First, let the chal-
lenger set the groups G1 and G2 with an efficient bi-
linear map e. Second, the challenger flips a fair binary
coin µ outside of B’s view. If µ = 0, the challenger sets
(A, B,C, C ′, D) = (ga, gb, gc, gc2

, e(g, g)abc), otherwise it
sets (A,B, C, C ′, D) = (ga, gb, gc, gc2

, e(g, g)z) for random
a, b, c, z ∈ Z∗p. The simulator proceeds as follows:

• Init. B receives the target set of attributes ω∗ from
A.

• Setup. B chooses α, β, γ, y1 ∈ Z∗p and sets h =
Aα, X = Cβ , Z = Xγ ,K = e(A,B) and K1 =
e(g, By1) (we have implicitly set g1 = A, g2 = B).
B chooses a random n degree polynomial f(x) and
computes an n degree polynomial u(x) such that
u(x) = −xn for all x ∈ ω∗ and u(x) 6= −xn for
x /∈ ω∗. For i ∈ {1, . . . , n + 1}, B sets ti = g

u(i)
2 gf(i).

Now B gives the public parameters to A.

• Phase 1. Suppose A requests a private key (id, ω).
We assume that id is non zero. The simulator will
receive an element R = hs0 ·Xθ with a WI proof of
knowledge of (s0, θ) from A. If the proof succeeds
to be verified, B prepares the private key as follows.
Firstly, it chooses randomly s1 ∈ Z∗p and defines W =
Y1 · R · hs1 , d′3 = s1. Then, d′1 and d′2 are generated
as:

(d′1, d
′
2) = ((gid · Z)r′ ·W− γ

id , Xr′ ·W− 1
id ),

where r′ is chosen randomly from Z∗p. If we let r̃′ =

r′− logg(W )

(cβ)·id , d′1 and d′2 have the correct distributions.
We have

d′1 = W 1/(cβ) · (gid · Z)r̃′

= W 1/(cβ) · (gid ·Xγ)r′ · (gid ·Xγ)−
w

cβ·id

= (gid · Z)r′ ·W− γ
id ,

and d′2 = X r̃′ = Xr′ · (gcβ)−
w

cβ·id = Xr′ · W− 1
id ,

where w = logg(W ). To generate d′4, B proceeds as
follows. First, define three sets Γ = ω∗ ∩ ω, Γ′ such
that Γ ⊆ Γ′ ⊆ ω and |Γ′| = d− 1, and S = Γ′ ∪ {0}.
For i ∈ Γ′, Define Di = gλi

2 T (i)ri , Fi = gri , where
ri, λi are chosen randomly in Z∗p. For i ∈ ω − Γ′, B
chooses r′i ∈ Z∗p and defines Di as

( ∏

j∈Γ′
g

λj∆j,S(i)
2

)(
(g1g

−y1)
−f(i)

in+u(i) (gin+u(i)
2 gf(i))r′i

)∆0,S(i)
,
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and Fi = ((g1g
−y1)

−1
in+u(i) gr′i)∆0,S(i). Let ri = (r′i −

a−y1
in+u(i) )∆0,S(i), the above values have the correct
distributions. Di is equal to

( ∏

j∈Γ′
g

λj∆j,S(i)
2

)(
(g1g

−y1)
−f(i)

in+u(i) (gin+u(i)
2 gf(i))r′i

)∆0,S(i)

=
( ∏

j∈Γ′
g

λj∆j,S(i)
2

)(
g
−(a−y1)f(i)

in+u(i) (gin+u(i)
2 gf(i))r′i

)∆0,S(i)

=
( ∏

j∈Γ′
g

λj∆j,S(i)
2

)
g
(a−y1)∆0,S(i)
2

(
(gin+u(i)

2 gf(i))ri
)∆0,S(i)

= g
q(i)
2 T (i)ri

and

Fi = ((g1g
−y1)

−1
in+u(i) gr′i)∆0,S(i)

= (g
−(a−y1)
in+u(i) gr′i)∆0,S(i) = gri .

Finally, d′id,ω is returned to A.

• Challenge. A will submit two challenge messages
M1 and M0 to the simulator. The simulator chooses
randomly ρ ∈ Z∗p and flips a fair binary coin, ν. It
returns the challenge ciphertext of an encryption of
Mν as:

E∗ = (ω∗, Cρ, C ′βγρ, C ′βρ,MνDρ, {Cρf(i)}i∈ω∗).

Let t = cρ. If D = e(g, g)abc, the above ciphertext is
a valid encryption of Mν . Otherwise, if D is random,
E∗

4 gives no information about Mν .

• Phase 2. The simulator proceeds as it did in
Phase 1.

• Guess. A will submit a guess ν′ of ν. If ν = ν′

the simulator will output µ′ = 0. Otherwise it will
output µ′ = 1.

The advantage of the simulator in solving MBDDH in-
stance is ε

2 .

Theorem 2. The construction is secure in the FindKey
game in the information theoretic sense.

The above theorem directly follows from [12], due to
the uses of the perfect hiding property of Pedersen’s com-
mitment [18] and the perfect witness indistinguishability
of the protocol [16].

Theorem 3. The construction is secure in the Compute-
NewKey game under the MDH assumption.

Proof. Let A be an adversary against the Compute-
NewKey game. We build a simulator B which can find
h1/x given (g, h, X = gx). B proceeds as follows:

• Init. B receives the target identity id∗ from A.

• Setup. To prepare the public parameters. First,
B takes X,h from the MDH instance. Second, it
chooses α, β, γ ∈ Z∗p, t1, . . . , tn+1 ∈ G1 and sets K =
e(gα, gβ), Z = g−id∗Xγ . B chooses ρ, s′1 and defines
Y1 = Xρh−s′1 and computes K1. Finally, B gives the
public parameters to A.

• Key Generation. Suppose A requests a private key
(id, ω). The simulator will receive an element R =
hs0 ·Xθ with a WI proof of knowledge of (s0, θ) from
A. If the proof succeeds to be verified, B prepares
the private key as follows:

– For id 6= id∗, B picks s1, r
′ ∈ Z∗p at random and

defines W = Y1Rhs1 , d′3 = s1. Then, d′1, d
′
2 can

be generated as

(d′1, d
′
2) = ((gidZ)r′W− γ

id−id∗ , Xr′W− 1
id−id∗ ).

If we let r̃′ = r′ − logg(W )

x·(id−id∗) , the above compo-
nents have the correct distribution. Addition-
ally, d′4 can be generated as follows. By our
setting of Y1, we have y1 = xρ−s′1 logg h

β . It first
chooses an arbitrary subset Γ of ω such that
|Γ| = d − 1. For i ∈ Γ, it chooses randomly
λi, ri ∈ Z∗p and sets Di = gλi

2 T (i)ri , Fi = gri .
We implicitly select a d − 1 degree polynomial
q(x) with q(i) = λi and q(0) = α − xρ−s′1 logg h

β .
For i ∈ ω − Γ, it chooses ri ∈ Z∗p and sets

Di =
( ∏

j∈Γ

g
λj∆j,S(i)
2

)(
gα
2 X−ρhs′1

)∆0,S(i)
T (i)ri ,

and Fi = gri . Notice that the above values have
correct distributions.

– For id = id∗, B uses the knowledge extractor to
find (s0, θ) of R by rewinding A. It sets s1 =
s′1 − s0. Now it chooses r ∈ Z∗p and computes

(d′1, d
′
2, d

′
3) = (gρ+θ · (gid∗ · Z)r, Xr, s1).

For d′1, we have (Y1Rhs1)1/x · (gid∗ · Z)r =
gρ+θ · (gid∗ · Z)r. The above values have cor-
rect distributions. To prepare d′4, B does as the
above description for the case of id 6= id∗.

Finally, d′id,ω is returned to A.

• New Key Computation. At this point, A
outputs two well-formed private keys for id∗,
i.e., d

(1)
id∗,ω = (d(1)

1 , d
(1)
2 , d

(1)
3 , d

(1)
4 ) and d

(2)
id∗,ω =

(d(2)
1 , d

(2)
2 , d

(2)
3 , d

(2)
4 ), such that s = d

(1)
3 6= d

(2)
3 = s′.

Then, we have d
(1)
1 = (Y1h

s)1/x ·Xαr, d
(1)
2 = Xr and

d
(2)
1 = (Y1h

s′)1/x ·Xαr′ , d
(2)
2 = Xr′ , where r, r′ ∈ Z∗p

are unknown to B. Now, the simulator can compute

h1/x =
(d

(1)
1 /(d

(1)
2 )α

d
(2)
1 /(d

(2)
2 )α

) 1
s−s′ .

This completes the proof.
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4 Accountable Authority Cipher-
text Policy ABE

This construction is built on the ciphertext policy ABE
scheme in [14]. We assume n be the maximum size at-
tribute set for a user and N be the set of {1, 2, . . . , n}.
We refer to attributes i and their negations ¬i as literals.
The ciphertext policy achieved is AND gate access struc-
ture W =

∧
i∈I i, where I ∈ N and every i is a literal,

i.e., i or ¬i.

4.1 Description

• Setup: First, generate a set of pairing groups
at the security level κ. Next, choose randomly
x, y, y1, t1, . . . , t3n ∈ Z∗p, a generator g of G1 and
h,Z ∈ G1. Set X = gx, Y1 = gy1 ,K = e(g, g)y,K1 =
e(g, Y1) and Ti = gti for i ∈ {1, . . . , 3N}. Finally, set
the master private key msk and the master public
key mpk as:

msk = {x, y, y1, t1, . . . , t3n},
mpk = {X, h, Z,K, K1, T1, . . . , T3n}.

• KeyGen: To generate a private key for a user U
with (id, ω). The following protocol will be executed
between U and the authority.

– U chooses s0, θ ∈ Z∗p at random, and provides
a commitment R = hs0 ·Xθ with an interactive
witness indistinguishable proof of knowledge of
the (s0, θ) to the authority. In addition, U re-
tains (s0, θ).

– The authority verifies the proof of knowl-
edge, outputs ⊥ if fails. Otherwise, it selects
r1, . . . , rn ∈ Z∗p such that

∑n
i=1 ri = y−y1. The

authority first generates d′4. For each i ∈ N ,
set Di = g

ri
ti if i ∈ ω; otherwise, let it be

g
ri

tn+i . In addition, set Fi = g
ri

t2n+i for all i ∈ N .
Now it chooses randomly s1, r

′ ∈ Z∗p and returns
d′id,ω = (d′1, d

′
2, d

′
3, d

′
4) as

((gy1Rhs1)
1
x · (gidZ)r′ , Xr′ , s1, {Di, Fi}i∈N ).

– U chooses r′′ ∈ Z∗p at random and computes
did,ω = (d1, d2, d3, d4) as (d′1/gθ · (gidZ)r′′ , d′2 ·
Xr′′ , d′3 + s0, d

′
4), which should equal

((gy1hs)
1
x · (gidZ)r, Xr, s, {Di, Fi}i∈N ),

where r = r′+r′′ and s = s0+s1. Now U checks
did,ω as follows. First, the consistence of every
element of d4 should be checked. For each i ∈
N , compute Ri = e(Di, Ti) if i ∈ ω, otherwise,
compute Ri = e(Di, Tn+i). Set R0 =

∏
i∈N Ri.

In addition, compute R′i = e(Fi, T2n+i) for i ∈
N and check Ri = R′i for i ∈ N . Next, check

e(d1, X)
e(g, h)d3 · e(gidZ, d2)

= K1,

and R0 · K1 = K. U outputs ⊥ if any check
fails. Otherwise, U sets his private key as did,ω

and the key family number as nF = d3 = s.

• Encryption: The sender chooses t ∈ Z∗p at random
to encrypt a message M ∈ G2 under W =

∧
i∈I i.

For each i ∈ I, let Ei be T t
i if i = i, or be T t

n+i if
i = ¬i. For each i ∈ N \I, let Ei be T t

2n+i. Compute
C = (W,C1, C2, C3, C4, C5) as

(W, gt, Zt, Xt,M ·Kt, {Ei}i∈N ).

• Decryption: Let C be a valid encryption of M un-
der W =

∧
i∈I i. C can be decrypted by a user with

the private key did,ω, where ω satisfies W . First com-
pute C ′1 = Cid

1 · C2 = (gid · Z)t. Then compute

C ′5 =
∏

i=i∧i∈ω

e(Di, Ei)
∏

i=¬i∧i/∈ω

e(Di, Ei)
∏

i/∈I

e(Fi, Ei).

Next decrypt C as:

M = C4 · e(C1, h)d3 · e(C ′1, d2)
e(d1, C3) · C ′5

,

• Trace: Takes as input a well-formed decryption key
did,ω = (d1, d2, d3, d4), this algorithm outputs the de-
cryption key family number nF = d3.

4.2 Analysis of the Construction

If the cryptosystem is operated as specified, we have C ′5 =
e(gt, g)y−y1 and

C4 · e(C1, h)d3 · e(C ′1, d2)
e(d1, C3) · C ′5

= C4 · e(gt, h)s · e((gidZ)t, Xr)
e((gy1hs)

1
x · (gidZ)r, Xt) · e(gt, g)y−y1

= C4 · 1
e(gy1 , gt) · e(gy−y1 , gt)

= M.

Now we present the security proofs for our second con-
struction.

Theorem 4. The above construction is IND-SS-CPA se-
cure under the MBDDH assumption.

Proof. Let A be an adversary against our scheme with
advantage ε. We build a simulator B that can solve a
MBDDH instance with advantage ε

2 . First, let the chal-
lenger set the groups G1 and G2 with an efficient bi-
linear map e. Second, the challenger flips a fair binary
coin µ outside of B’s view. If µ = 0, the challenger sets
(A, B,C, C ′, D) = (ga, gb, gc, gc2

, e(g, g)abc); otherwise it
sets (A,B, C, C ′, D) = (ga, gb, gc, gc2

, e(g, g)z) for random
a, b, c, z ∈ Z∗p. The simulator proceeds as follows:

• Init. B receives the target structure W ∗ =
∧

i∈I i
from A.
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• Setup. B chooses α, β, γ, δ ∈ Z∗p and sets K =
e(A,B),K1 = e(g, Bδ), h = Aα, X = Cβ , Z = Xγ .
For each i ∈ N , B selects αi, βi, γi ∈ Z∗p. For i ∈ I,
set Ti = gαi , Tn+i = Bβi and T2n+i = Bγi if i = i;
otherwise, set Ti = Bαi , Tn+i = gβi and T2n+i = Bγi .
For i /∈ I, set Ti = Bαi , Tn+i = Bβi and T2n+i = gγi .
Now B gives the public parameters to A.

• Phase 1. Suppose A requests a private key (id, ω),
where id is non zero and ω does not satisfy W ∗. The
simulator will receive an element R = hs0 ·Xθ with a
WI proof of knowledge of (s0, θ) from A. If the proof
succeeds to be verified, B prepares the private key as
follows. Firstly, it chooses randomly s1 ∈ Z∗p, and
defines W = Bδ · R · hs1 and d′3 = s1. Then, d′1 and
d′2 are generated as:

(d′1, d
′
2) = ((gid · Z)r′ ·W− γ

id , Xr′ ·W− 1
id ),

where r′ is chosen randomly from Z∗p. If we let r̃′ =

r′− logg(W )

(cβ)·id , d′1 and d′2 have the correct distributions.
To generate d′4, B proceeds as follows. There exist j ∈
I such that: either j ∈ ω and j = ¬j, or j /∈ S and
j = j, due to ω does not satisfy W ∗. For simplicity,
assume B chooses such j: j /∈ S and j = j. For each
i ∈ N, i 6= j, B selects randomly r′i ∈ Z∗p and sets
ri = r′ib. It sets rj = ab − bδ −∑

i∈N∧i 6=j ri. Then
Dj and Fj can be computed as:

Dj = g
rj

bβj = A
1

βj g
−δ−∑

i∈N∧i 6=j r′i
βj ,

Fj = g
rj

bγj = A
1

γj g
−δ−∑

i∈N∧i 6=j r′i
γj .

For i 6= j, we have follows. When i ∈ ω, set Di =

B
r′i
αi if i ∈ I∧i = i or set Di = g

r′i
αi if (i ∈ I∧i = ¬i)∨

i /∈ I. When i /∈ ω, set Di = g
r′i
βi if (i ∈ I∧i = i)∨i /∈

I or set Di = B
r′i
βi if i ∈ I ∧ i = ¬i. For Fi, we set

Fi = g
r′i
γi if i ∈ I; otherwise, set Fi = B

r′i
γi . It is easy

to see the above values have correct distributions.
Finally, d′id,ω is returned to A.

• Challenge. A will submit two challenge messages
M1 and M0 to the simulator. The simulator chooses
randomly ρ ∈ Z∗p and flips a fair binary coin, ν. It
returns the challenge ciphertext of an encryption of
Mν as:

C∗ = (W ∗, Cρ, C ′βγρ, C ′βρ,MνDρ,

{Cαi |i ∈ I ∧ i = i}, {Cβi |i ∈ I ∧ i = ¬i}, {Cγi |i /∈ I}).

Let t = cρ. If D = e(g, g)abc, the above ciphertext is
a valid encryption of Mν . Otherwise, if D is random,
the challenge ciphertext gives no information about
Mν .

• Phase 2. The simulator proceeds as it did in
Phase 1.

• Guess. A will submit a guess ν′ of ν. If ν = ν′

the simulator will output µ′ = 0. Otherwise it will
output µ′ = 1.

The advantage of the simulator in solving MBDDH in-
stance is ε

2 .

Theorem 5. The construction is secure in the FindKey
game in the information theoretic sense.

This theorem directly follows from [12], due to the
uses of the perfect hiding property of Pedersen’s com-
mitment [18] and the perfect witness indistinguishability
of the protocol [16].

Theorem 6. The construction is secure in the Compute-
NewKey game under the MDH assumption.

Proof. Let A be an adversary against the Compute-
NewKey game. We build a simulator B which can find
h1/x given (g, h, X = gx). B proceeds as follows:

• Init. B receives the target identity id∗ from A.

• Setup. To prepare the public parameters. First,
B takes X, h from the MDH instance. Second,
it chooses α, γ, t1, . . . , t3n ∈ Z∗p, and sets K =
e(g, g)α, Z = g−id∗Xγ and T (i) = gti for i ∈
{1, . . . , 3n}. B chooses ρ, s′1 and defines Y1 = Xρh−s′1

and computes K1. Finally, B gives the public param-
eters to A.

• Key Generation. Suppose A requests a private key
(id, ω). The simulator will receive an element R =
hs0 ·Xθ with a WI proof of knowledge of (s0, θ) from
A. If the proof succeeds to be verified, B prepares
the private key as follows:

– For id 6= id∗, B picks s1, r
′ ∈ Z∗p at random and

defines W = Y1Rhs1 , d′3 = s1. Then, d′1, d
′
2 can

be generated as (d′1, d
′
2) = ((gidZ)r′W− γ

id−id∗ ,
Xr′W− 1

id−id∗ ). If we let r̃′ = r′ − logg(W )

x·(id−id∗) , the
above components have the correct distribution.
Additionally, d′4 can be generated as follows. It
chooses randomly j ∈ ω, ri ∈ Z∗p for i ∈ N ∧ i 6=
j. Set rj = α − xρ + s′1 logg h − ∑

i∈N∧i 6=j ri.
Then Dj and Fj can be computed as:

Dj = g
α−∑

i∈N∧i 6=j ri
tj X

−ρ
tj h

s′1
tj ,

Fj = g
α−∑

i∈N∧i 6=j ri
t2n+j X

−ρ
t2n+j h

s′1
t2n+j .

For i 6= j ∧ i ∈ N , Di and Fi can be computed
as the description of the scheme. Notice that
the above values have correct distributions.

– For id = id∗, B uses the knowledge extractor to
find (s0, θ) of R by rewinding A. It sets s1 =
s′1 − s0. Now it chooses r ∈ Z∗p and computes

(d′1, d
′
2, d

′
3) = (gρ+θ · (gid∗ · Z)r, Xr, s1).
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For d′1, we have (Y1Rhs1)1/x · (gid∗Z)r = gρ+θ ·
(gid∗Z)r. Thus, the above values have correct
distributions. To prepare d′4, B does as the
above description for the case of id 6= id∗.

Finally, d′id,ω is returned to A.

• New Key Computation. At this point, A
outputs two well-formed private keys for id∗,
i.e., d

(1)
id∗,ω = (d(1)

1 , d
(1)
2 , d

(1)
3 , d

(1)
4 ) and d

(2)
id∗,ω =

(d(2)
1 , d

(2)
2 , d

(2)
3 , d

(2)
4 ), such that s = d

(1)
3 6= d

(2)
3 = s′.

Then, we have d
(1)
1 = (Y1h

s)1/x ·Xαr, d
(1)
2 = Xr and

d
(2)
1 = (Y1h

s′)1/x ·Xαr′ , d
(2)
2 = Xr′ , where r, r′ ∈ Z∗p

are unknown to B. Now, the simulator can compute

h1/x =
(d

(1)
1 /(d

(1)
2 )α

d
(2)
1 /(d

(2)
2 )α

) 1
s−s′ .

This completes the proof.

5 Conclusions

To mitigate the key escrow problem existed in threshold
attribute based encryption and ciphertext policy attribute
based encryption, we introduce the notion of accountable
authority attribute based encryption and present related
constructions. In addition, we proof the security of our
constructions in the standard model under some reason-
able assumptions.
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