
International Journal of Network Security, Vol.17, No.1, PP.72–78, Jan. 2015 72

Energy Characterization of a Security Module in
ARM Processor

Felipe dos Anjos Lima, Edward David Moreno, Dellano Oliveira D. dos Santos,
and Wanderson Roger Azevedo Dias
(Corresponding author: Edward David Moreno)

DCOMP/UFS - Department of Computer Science, Federal University of Sergipe
Aracaju, Sergipe, Brazil

(E-mail:{felipes1474, edwdavid, dellano.lelo, wradias}@gmail.com)
(Received Apr. 26, 2013; revised and accepted Nov. 26, 2013)

Abstract

This article shows the results obtained during simulations
that measured runtime and energy consumption of a secu-
rity module (SEMO) when it executes in ARM processor.
For the simulations, we considered the impacts of four
algorithms (i.e. RSA, SHA-1, Random Numbers Genera-
tor and AES). We have used the Sim-Panalyzer simulator
and obtained an average energy consumption (x2 Joules)
and runtime (x26000 cycles). We also show the impact of
some compiler optimizations in the energy consumption
of the AES algorithm.
Keywords: AES, ARM, energy, RSA, security

1 Introduction

In the Knowledge era, information is increasingly spread-
ing around the world. This is very substantial, owing to
the fact that people are able to easily access the informa-
tion they want. It only takes a few clicks on the internet,
and everything is within reach. Therefore, this easiness
brings some problems which need to be carefully analyzed,
for instance, we know many people could act maliciously
and try to gather information from others without proper
permission.

By the time internet was created, people started to
use it to perform several tasks, which cost long to be
accomplished. For example, a bank transfer can be prop-
erly done with just a few clicks, without even leaving
home. However, in order to accomplish a safe transac-
tion, some password protection methods and information
security mechanisms are needed, so that the site is reli-
able. If some computer hacker were able to intercept the
users passwords, the damages to the user account could be
irreparable. Furthermore, it is fundamentally important
that the access, to the kind of system discussed above,
is classified. For this purpose, some security mechanisms
like password usage may be utilized. However, due to

security reasons, these passwords may not be generated
without any technique [5]., they must be created by reli-
able software so that they cannot be decrypted by unau-
thorized people.

Thus, security is a fundamental requirement at any se-
rious computational system. Therefore, by the last years,
several algorithms that aim to mask password keys, texts
or any kind of confidential information were developed.
Also, several security modules still being created trying
to guarantee reliability at transactions performed by elec-
tronic devices, and the safety of the information stored.
These modules can be implemented in hardware or soft-
ware. In case they were implemented in hardware, they
are expected to be embedded on chips, performing several
security mechanisms.

The implementation of security modules in software
follows the same philosophy, and also presents software
components that protect data. Thus, the major objective
of a security model is to provide a supervised system to
execute its tasks independently, without having to deal
with security issues. Therefore, in this article, we present
a software implementation of a security module, called
SEMO which is similar to one TPM (Trusted Platform
Module) [3], which proved to be promising on the infor-
mation security field. Then, we present analysis of our
security module, making usage of the architectural sim-
ulation tool Sim-Panalyzer [1], in that we have obtained
performance values by measuring runtime and energy con-
sumption from our SEMO.

This article is divided in six sections. In Section 2
we present the SEMO module and its components; in
Section 3 we depict one software implementation of the
SEMO (TPM in software); Section 4 shows the simula-
tions and analysis of the module; Section 5 presents the
impact of the key seize on the energy consumption of AES
algorithm, and finally, in Section 6 we present conclusions
and ideas for future works.



International Journal of Network Security, Vol.17, No.1, PP.72–78, Jan. 2015 73

2 SEMO - A Security Module

Our security module (SEMO) is similar to a TPM since
it is a security module composed by a set of components
with the intention of protecting the information stored on
the device in that a TPM is coupled. This module can
be developed on both hardware and software. In case it
is implemented directly in hardware is known as TPM
(Trusted Platform Module).

Every key generated by a cryptography process is en-
capsulated in the TPM so that it is not possible to access
it from external models. Thus, external attacks aiming to
discover passwords or stealing information may not suc-
ceed. In addition, the security module can also guarantee
safety on both web browsers and email boxes. Figure 1
shows an example of a TPM. As we can observe on Fig-
ure 1, a TPM module holds a set of components which
allows the execution of a set of security tasks. Its main
units are described as follows:

• I/O: manages the information flow on the bus, di-
recting messages to the appropriate components;

• Cryptographic Processor: executes crypto-
graphic asymmetric operation and hashing utilizing
well-known algorithms by the security community,
like RSA, AES or SHA-1;

• Key Generation: creates pair of keys for asymmet-
ric algorithms and symmetric keys;

• Random Number Generation: it is the source of
randomness of a TPM. The TPM uses these random
values on key generation and randomness on signa-
tures;

• SHA-1: it is the hash function which is primarily
used by a TPM, because he is a trustful implemen-
tation of a hash algorithm;

• Opt-In: provide protection mechanisms that allow
the TPM to be turned on/off, or enabled/disabled;

• Execution Engine: execute programs according to
the commands received by the TPM, using the values
from I/O;

• Non-Volatile Memory: utilized for storing persis-
tent identity and the state associated to the TPM;

• Platform Configuration Register: it is a local
storage with 160 bits for measuring the discrete iden-
tity.

3 Software Implementation of the
SEMO

In this section, we describe our contribution, in other
words, a TPM implementation in software, with some

Figure 1: Components of a TPM

security components: namely, AES Engine, SHA-1 En-
gine, Random Number Generator and RSA Engine. Ev-
ery component was implemented using C as its program-
ming language. Figure 2 depicts the architecture from the
SEMO module we have developed.

3.1 AES Engine

The AES Engine (AES - Advanced Encryption Standard)
component that was implemented in our SEMO provides
data encryption utilizing 128, 192 and 256-bit keys. The
AES algorithm performs, during the encryption process,
some operations over the data blocks received as input.
Next, we shall present the operations performed by this
component.

• SubByte: the bytes of the state variable are re-
placed utiizing a substitution table (S-BOX);

• ShiftRow: the bytes from each line of the state vari-
able are rotated;

• MixColumn: each column from the state variable
is transformed in another column through a modular
multiplication;

• AddRoundKey: the key of the round is added to
the state variable using XOR operation.

The four operations above can be inverted. In this
manner, in order to perform the decryption of an en-
crypted text, the operation SubBytes, ShiftRow, MixCol-
umn and AddRoundKey need to be inverted. The op-
erations InvSubBytes, InvShiftRow, InvMixColumn and
InvAddRoundKey operate over the encrypted data block.

3.2 SHA-1 Engine

The SHA-1 (Secure Hash Algorithm) Engine component
increments an important document authentication func-
tion to the TPM, due to the fact that keys generated
by the hash function from this algorithm are unique, in
other words, two distinct documents do not own the same



International Journal of Network Security, Vol.17, No.1, PP.72–78, Jan. 2015 74

Figure 2: Components of our security module SEMO

representation. Therefore, during some transaction that
demands a digital signature from the document, any mod-
ification on it would be perceived by the SEMO, and the
authentication shall not be done.

3.3 Random Number Generator

The Random Number Generator (RNG) we implemented
generates random values that are utilized by the RSA En-
gine Component for the encryption processes of data [5].
These values remain encapsulated inside the SEMO. How-
ever, the algorithm executed by the RSA Engine Compo-
nent uses a random choice of prime numbers as a stop of
the encryption process.

3.4 RSA Engine

The RSA (Random Scheduling Algorithm) Engine Com-
ponent runs an encryption algorithm of public key, in
that, every participant in the data transfer holds a public
and a private key. These keys are pairs of integer num-
bers.

With the RSA Engine Component embedded on the
architecture of the SEMO, our module inherited a new
component that helps in the security process of informa-
tion.

4 Simulation and Analysis of
SEMO

In this section we present the simulation tool Sim-
Panalyzer. We also present the analysis and simulations
and their results, considering the impacts on energy con-
sumption and performance at each one of the SEMO com-
ponents.

4.1 Sim-Panalizer Simulator

Sim-Panalyzer is an energy consumption simulation tool,
based on the SimpleScalar which simulates processors [2].

Table 1: Architectural components of Sim-Panalyzer

Architectural
Component

Description

aio Address bar of the input/output units

dio Data bar of the input/output units

irf Integer registers

fprf Floating point registers

il1 Level 1 instruction caches

dl1 Level 1 data caches

il2 Level 2 instruction caches

dl2 Level 2 data caches

itlb TLB instruction table

dtlb TLB data table

btb Branch Target Buffer

bimod Switch Predictor

ras Address stack result

logic Random logic circuit

clock System clock generator

uarch Microarchitecture (the way USA is
implemented in a processor)

fpu Floating point unit

mult Multiplication unit

alu Arithmetic logic unit

SimpleScalar [1] simulates the computational architecture
of a CPU platform, cache and memory hierarchy, and
based on this model, it manages to simulate real programs
over the specified platform. The processor utilized in this
article comes from the ARM (Advanced RISC Machine)
family [1].

Sim-Panalyzer was built based on the ISA (Instruction
Set Architecture) from the families ARM [7] and Alpha
of processors, obtaining great results on this kind of sim-
ulations [6]. Sim-Panalyzer has several components that
altogether generate the total of energy consumption for
the architecture [4]. Each one of these components plays
an important role on measuring the total consumption
of energy spent by the algorithms. Table 1 shows the
components of Sim-Panalyzer that consume energy. The
parameters for generating those vital parts of the com-
puter were set as input for the Sim-Panalyzer simulator,
which altogether generate the patterns of measurement of
performance and energy consumption.

4.2 Analysis

While the simulations were performed on the Sim-
Panalyzer tool, we have observed that SEMO obtained
an average value of energy consumption of 2 Joules when
a 1Kb File was subject to an encryption process. On Fig-
ure 3, we present the energy consumption of the compo-
nents AES Engine, SHA-1 Engine, RNG and RSA Engine
from our SEMO implementation, and then we detail the
architectural elements which obtained the highest energy
consumption values. On Figure 4 we present the runtime
values per cycles from each one of these components.



International Journal of Network Security, Vol.17, No.1, PP.72–78, Jan. 2015 75

As we can observe on Figure 4, the Component AES
Engine presented the lowest consumption, this happens
because the number of operations executed by the AES
algorithm in this component is smaller than in the other
ones. Also, the AES was designed to be utilized by em-
bedded systems, which work with a lesser energy con-
sumption. The RSA engine was the one that presented
the largest energy consumption values in our SEMO. The
components AES and RSA utilized 128-bit keys.

Figure 3: Energy consumption from SEMO components

Regarding the architectural components that are
present on the ARM platform we utilized in the simu-
lations, it is possible to perceive that the architectural
elements uarch (microarchitecture - the way that ISA is
implemented on a processor) and ill (instruction cache
level L1) have obtained the highest energy consumption
values.

Figure 4: Performance of SEMO components

On Figure 5, we can observe that the components SHA-
1 Engine and RNG presented very similar performance

measurements, as well as AES Engine and RSA Engine.
The simulations were performed in a netbook, with an
Athon94 1.66GHz processor, and 2GB of RAM, running
a Linux Ubuntu v11.04 operational system.

The SEMO can be implemented on several devices
whether they are large or mobile ones. Considering the
increasing miniaturization of computer devices, it is im-
portant that the existing software could run rapidly, with-
out exhausting the energy available, because is not always
possible to recharge batteries. Considering that a device
that implements a SEMO could utilized all of its compo-
nents to perform just one task, we present on Figure 5
the total energy consumption from our module.

Figure 5: Energy consumption from the SEMO compo-
nents

5 Detailed Analysis of the AES
Component

In this section we make an analysis of the AES encryp-
tion algorithm, showing the impact the length of the keys
provokes on the algorithms energy consumption and run-
time.

5.1 Compiler Optimization

The executable codes generated by the optimizations are
semantically equivalent to the original ones. In brief, they
behave the same as the original codes given the same in-
put [7]. With the increase in the utilization of embedded
systems, the demand for code optimization has been stim-
ulated so that energy consumption can be reduced [8]. In
this article, we used gcc version 4.4.5 applying the follow-
ing optimizations: -O0, -O1, -O2, -O3 and -Ip when com-
piling MiBenchs. The effects of each type of optimization
are described hereafter:

• -O0: represents the default compilation, in other
words, without any optimizations;



International Journal of Network Security, Vol.17, No.1, PP.72–78, Jan. 2015 76

• -O1: this type of optimization enable some specific
functions, for instance: (i) - Elimination of common
subexpressions; (ii) - Global registry allocation;

• -O2: these are own specific functions, namely: (i)
freorder-blocks: this function records blocks to be
compiled in order so that algorithm processing costs
can be reduced; (ii) falign-functions: this function
reduces the information loading of compiling infor-
mations;

• -O3: these types of optimization also have specific
functions, for example: (i) frename-registers: this
function utilizes the maximum of all registers in a
minimized way, thus avoiding false dependencies in
the code; (ii) finline-functions: this function heuristi-
cally decides the simpler functions in order to declare
them as static;

• -Ip: enables some optimizations like, for instance,
dead-code elimination.

5.2 Key Size Impact on Energy Con-
sumption

During the simulations we have utilized a 1Mb text file,
which was encrypted and decrypted. We have also used
128, 192 and 256-bit keys (see Figure 6).

Figure 6: AES input and output

The file used as input for the simulations is handled in
blocks by the algorithm. At each step, a 128-bit block is
encrypted. The quantity of necessary operations to en-
crypt and decrypt each block depends on the length of
the key used by the process. Table 2 presents the num-
ber of rounds executed by the AES algorithm for each
cryptography key.

In this section, we present the impact key length has,
highlighting the consumption of all architectural compo-
nents of an ARM processor. As we can see on Figure 7, al-
most every architectural component obtained similar en-
ergy consumption value, therefore we highlight the dio
component, which presented an average reduction of 23%
when the key length increases. The simulation performed

Table 2: Number of rounds for encrypting/decrypting

Key Length Number of Rounds
128 bits 10
192 bits 12
256 bits 14

on Sim-Panalyzer showed that the O2 optimization pre-
sented a better performance when compared to other op-
timizations. The average gain was 10% for 128-bit keys
when compared to other key lengths. Furthermore, it
is possible to observe that the optimization flag Ip could
not provoke any significant reduction on runtime, present-
ing similar results to the O0 which does not enable any
greater impact optimizations (see Figure 8). Compiler
optimizations are processes of improving the output of
a compiler, which is an executable file, according to [7].
By means of switches, substitutions and even exclusion
of structures, the compiler can return a faster program
executable, consuming less memory.

Figure 7: Characterization of energy consumption of AES

5.3 GCC Compiler Optimization Impacts
on Energy Consumption

The analysis of the results show us that if the AES code
is compiled utilizing O3 optimization, the average total
consumption of all components is lower, when compared
to the other optimization flags (see Figure 9).

The main optimizations enabled by the O3 flag are:

• Inline-functions: replaces every function call by
the body of the function itself.



International Journal of Network Security, Vol.17, No.1, PP.72–78, Jan. 2015 77

Figure 8: AES runtime measurements

• Rename-register: eliminates the dependencies be-
tween registers by reorganizing the stored values.

Figure 9: AES energy consumption

By activating the inline-functions optimization during
the compilation step, every function present on the main
program is replaced by the code that appears in the func-
tion body In this manner, the overhead on function call
can be highly reduced. This explains why the energy con-
sumption on AES is reduced, because even though the
algorithm is compounded by just four functions, they a
called at least 40 to 56 times, depending on the key used
on encryption or decryption of data.

6 Conclusions and Future Works

In this work, firstly, we present the characteristics and
functionalities of the SEMO (SEcurity MOdule). Sec-
ondly, we show its software implementation. And finally
we present the simulation and analysis of this module,
using the Sim-Panalyzer, where we concluded that our
module had an average consumption of 2 joules and run-
time of approximately 26 thousands cycles.

In addition, we have done a detailed analysis of the
AES component, which is an algorithm people have given
much attention to in the latest years. Several simulations
were performed which had very satisfactory results, due
to the fact that they could evidence the impact that key
length caused on runtime and energy consumption of each
component. Those results we obtained are now able to
be used as a baseline for the implementation of security
devices that demand less energy consumption.

As a future work, we plan to add more security compo-
nents to the SEMO, as well as using it in a cellphone emu-
lator. We also plan to develop a hardware implementation
of the SEMO, and embedded it in a micro-controller and
design an IP core in VHDL/Verilog and so that it can be
used in several devices as notebooks, smartphones, ATMs
and others.

References

[1] “The simplescalar-arm power modeling project,”,
June 2012. http://web.eecs.umich.edu/ panalyzer/.

[2] D. Burger and T. M. Austin, “The simplescalar tool
set, version 2.0,” ACM SIGARCH Computer Archi-
tecture News, vol. 25, pp. 13–25, June 1997.

[3] Trusted Computing Group, June 2012.
[4] E. D. Moreno, F. M. R. Junior, F. A. Lima, and

W. R. A. Dias, “Computer architecture under energy
consumption vision,” International Journal of Com-
puter Architecture Education, vol. 2, pp. 5–8, Dec.
2013.

[5] E. D. Moreno, F. D. Pereira, and R. B. Chiaramonte,
Criptografia em software e hardware. Novatec: São
Paulo, Brazil, 2005.

[6] F. D. Pereira, E. D. M. Ordonez, and R. B. Chiara-
monte, “Vliw cryptoprocessor: Architecture and per-
formance in FPGAs,” International Journal of Com-
puter Science and Network Security, vol. 6, pp. 151–
160, Aug. 2006.

[7] D. Seal, ARM architecture reference manual. Addison-
Wesley Professional, 2nd edition edition, 2001.

[8] J. S. Seng and D. M. Tullsen, “The effect of compiler
optimizations on pentium 4 power consumption,” in
Proceedings of the Seventh Workshop on Interaction
between Compilers and Computer Architectures, p. 51,
Sep. 2003.

Felipe dos Anjos Lima received his B. S. in Computer
Science from Universidade Federal de Sergipe (UFS) in
2013. His areas of research interest include embedded



International Journal of Network Security, Vol.17, No.1, PP.72–78, Jan. 2015 78

systems, distributed computing and information security.

Edward David Moreno received the M.Sc. and Ph.D.
degrees in Electrical Engineering from USP (University
of So Paulo), SP, Brazil, in 1994 and 1998. During
1996 and 1997 he stayed as invited researcher at Uni-
versity of Toronto, Canada, and Chalmers University of
Technology, Sweden. He is teacher at the UFS (Federal
University of Sergipe), Aracaju, Sergipe, Brazil. Moreno
has participated on 100 events as International Program
Committee and he is editorial board of 4 important
Journals: JUCS - Journal Universal on Computer Sci-
ence, Springer Transactions on Computational Science
and IJCSNS International Journal of Computer Science
and Network Security and JCP - Journal of Computers.
He has published five books about digital systems,
FPGAs, Microcontrollers, Reconfigurable Computing
and Hardware Security. The research areas are: com-
puter architecture, reconfigurable computing, embedded
systems, hardware security, power aware computing and
performance evaluation.

Dellano Oliveira D. Santos received his B. S. in
Computer Science from Universidade Federal de Sergipe
(UFS) in 2013. His areas of research interest include em-
bedded systems, distributed computing and information
security.

Wanderson Roger Azevedo Dias received the B.S.
in Computer Information Systems (2004), specialist in
Software Development for Web (2007), M.Sc. and Ph.D.
degrees in Computer Science by UFAM (Federal Univer-
sity of Amazonas), Manaus, Amazonas, Brazil, in 2009
and 2013. He is teacher at the IFS (Federal Institute
of Sergipe), Aracaju, Sergipe, Brazil. The researches of
teacher Roger are in the areas of: computer architecture,
embedded systems, code compression, simulation archi-
tecture, hardware security, power aware computing, per-
formance evaluation and FPGAs.


