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Abstract

Proxy signcrytipn scheme allows an original signer to dele-
gate his signing power to a proxy such that the latter can
signcrypt a message on behalf of the former. Recently,
Lin et al. proposed a proxy signcryption with CCA and
CMA security. In this work, we indicate that the Lin et
al.’s proxy signcryption scheme does not hold the security
of indistinguishability against adaptive chosen-ciphertext
attacks and existential unforgeability against adaptive
chosen-message attacks. Also, we show that the Jin-Wen’s
certificateless multi-proxy signature scheme does not hold
the security of existential unforgeability against adaptive
chosen-message attacks.
Keywords: Cryptanalysis, multi-proxy signature, proxy
signcryption, unforgeability

1 Introduction

Proxy signcryption, first proposed by Gamage et al. [5,
12, 13], is a cryptographic primitive, which combines the
functionality of a proxy signature scheme with that of
an encryption, to allow an original signer to delegate his
signing power to a proxy one such that the proxy can
signcrypt a message on behalf of the delegator. The sign-
crypted message can only be decrypted by a designated
recipient who is also responsible for verifying the recov-
ered proxy signature function [2, 4, 9]. Recently, Lin
et al. [10, 11] proposed an efficient proxy signcryption
scheme based on bilinear pairings. Jin and Wen et al. [8]
proposed a multi-proxy signature scheme in certificateless
setting. They also stated that their scheme achieves the
confidentiality against indistinguishability under adaptive
chosen-ciphertext attacks (IND-CCA2) and unforgeability
against existential forgery under adaptive chosen-message
attacks (UEF-CMA2) in the random oracle models.

Multi-proxy signature, which was first introduced by
Hwang and Shi et al. [3, 6, 7], could be viewed as a vari-
ation of the proxy signature primitive. In such a scheme,
an original signer delegates his signing power to a group

of proxy signers, and then only the cooperation of all
proxy signers can generate proxy signatures, referred to as
multi- proxy signatures, on behalf of the original signer.

In this work, we show that the Lin et al.’s proxy sign-
cryption scheme [10] is insecure since they cannot obtain
the unforgeability and forward security. We also indicate
that the Jin-Wen’s certificateless multi-proxy signature
scheme does not hold the security of existential unforge-
ability against adaptive chosen-message attacks of their
declared.

2 Model of Proxy Signcryption
and Multi-proxy Signature

2.1 Proxy Signcryption

Definition 1. Proxy Signcryption. A proxy sign-
cryption contains four probabilistic polynomial-time algo-
rithms:

1) Setup: Taking as input 1k where k is a security pa-
rameter, the algorithm generates the systems public
parameters pp

2) Proxy-Credential-Generation (PCG): The PCG algo-
rithm takes as input the private key of original signer
and outputs a corresponding proxy credential for the
proxy signer.

3) Signcrypted-Message-Generation (SMG): The SMG
algorithm takes as input a plaintext m, a proxy cre-
dential, the public key of designated recipient and the
private key of proxy signer, and outputs signcrypted
message δ.

4) Signature-Recovery-and-Verification (SRV): The
SRV algorithm takes as input a signcrypted message
δ, the private key of designated recipient and the
public keys of original and proxy signers, and
outputs a plaintext m and its converted ordinary
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proxy signature if the signcrypted message is valid,
and returns an error symbol ⊥ otherwise.

2.2 Certificateless Multi-proxy Signature

Definition 2. Certificateless Multi-proxy Signa-
ture. A certificateless multi-proxy signature scheme is
defined by a collection of probabilistic polynomial-time al-
gorithms as follows:

1) Setup: Given a security parameter k, the PKG gen-
erates a master key s and the system parameters pp.

2) Partial-Private-Key-Extract (PPKE): Given a user’s
identity IDi, the PKG produces the corresponding
partial private key Di with the master key s after
verifying the user’s identity.

3) User-Key-Generate (UKG): After receiving the par-
tial private key Di from PKG, the user with identity
IDi randomly selects a secret value xi to construct his
full private key ski with Di, and publishes his public
key Pi w.r.t xi.

4) Sign: Given a message m, the user, whose identity
is IDi and public key is Pi, generates a signature σ
on m with his private key ski.

5) Verify: Given a signature σ on message m, the veri-
fier accepts it if σ is a valid signature relative to m,
the signer’s identity IDi and his public key Pi and
rejects otherwise.

6) Proxy-Key-Generate (PKG): It is a protocol be-
tween the original signer and all proxy signers
formed by a group of interactive randomized algo-
rithms. All participants take their identities IDOS

and IDPS1 , IDPS2 , · · · , IDPSn as inputs. Addition-
ally, the original signer also takes his secret key skOS

and the delegation warrant w as inputs, where w in-
cludes the restrictions on the class of messages del-
egated, the identities of the original signer and all
proxy singers, the period of delegation and etc. Ev-
ery proxy signer also takes his secret key skPSi as
input. As a result, each proxy signer gets a multi-
proxy signature secret key PSKi which could be used
to cooperatively produce multi-proxy signatures with
other proxy signers.

7) Multi-Proxy-Sign (MPS): Given a message m which
satisfies the requirements stated in w, all proxy
signers cooperatively produce a multi-proxy signature
σMPS on behalf of the original signer with the multi-
proxy signature secret keys PSKi for i ∈ [n].

8) Multi-Proxy-Verify (MPV): Given a multi-proxy sig-
nature σMPS on message m under the warrant w, the
verifier accepts it if σMPS is a valid signature rela-
tive to m and w by proxy signers PS1, PS2, · · · , PSn

on behalf of the original signer OS.

For certificateless cryptosystems, the widely accepted
notion of security was defined by Al-Riyami and Pater-
son [1]. According to their definitions, two types of adver-
saries with different capabilities were considered, which
could be described as follows:

1) Type I Adversary AI : This type of adversary acts
as a dishonest user who does not have access to the
master key but has the ability to replace the public
key of any entity with a value of his choice.

2) Type II Adversary AII : This type of adversary
acts as a malicious PKG who has access to the master
key but cannot perform the public key replacements.

3 Review of Lin et al.’s Proxy
Signcryption

Setup Taking as input 1k, the system authority selects
two groups (G1, +) and (G2,×) of the same prime
order q. Let P be a generator of order q over G1,
ê : G2

1 → G2 a bilinear pairing and h1 : {0, 1}×G1 →
Zq, h2 : G1 → G1, h3 : G2×G1 → {0, 1}k be collision
resistant hash functions. The system publishes pp =
(G1,G2, q, P, ê; h1, h2, h3). Each user Ui chooses his
private key xi ∈ Zq and computes the corresponding
public key as Yi = xiP .

PCG Let Uo be an original signer delegating his signing
power to a proxy signer Up. Uo first chooses an integer
d ∈ Zq and a warrant mw to compute N = dP ,
σ = xo + d(mw) mod q.

SMG To signcrypt a message m ∈ {0, 1}k on behalf of
the original signer Uo, Up chooses r ∈ Zq to com-
pute: R = rP , S = r(h1(m,R) + xp + σ)−1P , V =
ê(h2(σYv), xpYv), X = EV (S) and Y = h3(V,R)⊕m.
It outputs the ciphertext δ = (R, X, Y,N) together
with the warrant mw.

SRV Upon receiving δ = (R, X, Y, N), Uv computes V =
ê(h2(xv(Yo + mwN)), xvYp), m = h3(V, R)⊕ Y , S =
DV (X), and accepts the message if ê(h1(m, R)+Yp+
Yo + mwN,S) = ê(P,R) holds.

3.1 Cryptanalysis

In this section, we give a forgery attack and a confiden-
tiality attack to show that the Lin et al.’s scheme does not
hold the claimed properties such as unforgeability against
UEF-CMA2 and confidentiality against IND-CCA2.

3.1.1 Unforgeability Attack

Definition 3. Unforgeability of Proxy Signcryp-
tion. A proxy signcryption scheme is said to achieve
unforgeability against existential forgery under adap-
tive chosen-message attacks (EF-CMA) if there exists
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no probabilistic polynomial-time) forger F with non-
negligible advantage in the following game played with a
challenger B:

Setup B runs the Setup(1k) algorithm and sends the sys-
tem’s public parameters pp to the forger F .

Phase 1 The forger F can issue several kinds of follow-
ing queries adaptively.

- PCG queries: F issues a PCG query with respect to
the target proxy signer. B returns the corresponding
warrant and its proxy credential (σ,N, mw).

- SMG queries: F chooses a message m and a warrant,
and B outputs the corresponding signcrypted message
δ to F .

- SRV queries: On receiving a signcrypted ciphertext δ
with its warrant sent by F , B returns a message m
and its converted proxy signature if the signcrypted
message δ is valid. Otherwise, an error symbol ⊥ is
returned.

Forgery F arbitrarily chooses a message m and produces
a ciphertext δ∗ which is not outputted by the SMG
query. The forger F wins if δ∗ is valid.

Forgery Attacks. We now show that the receiver Uv

may forge a new valid ciphertext δ̃ for any message m̃ on
behalf of the proxy signcrypter Up. Receiver Uv does

1) Random pick r̃ ∈ Zq, compute R̃ = r̃(Yo+Yp+mwN)
and S̃ = r̃P − r̃ · h1(m̃, R̃)P .

2) Compute V = ê(h2(xv(Yo+mwN)), xvYp) using Uv’s
secret key xv.

3) Compute Ỹ = m̃⊕ h3(V, R̃).

4) Set X̃ = EV (S̃).

5) Output the forged ciphertext δ̃ = (R̃, X̃, Ỹ , N).

The forged ciphertext δ̃ = (R̃, X̃, Ỹ , N) is valid for the de-
cryption algorithm SRV: V = ê(h2(xv(Yo+mwN)), xvYp),
m̃ = h3(V, R̃)⊕ Ỹ , S = DV (X̃).

ê(h1(m̃, R̃)P + Yp + Yo + mwN, S̃)

=ê(h1(m̃, R̃)P + Yp + Yo + mwN, r̃P–r̃h1(m̃, R̃)P )

=ê(Yp + Yo + mwN, P )r̃

=ê(P, R̃).

Remark 1. Because the verification equation is only to
verify the components R and S where R = rP and S =
r(h1(m,R) + xp + σ)−1P = (h1(m,R) + xp + σ)−1R. We
can construct the new R̃, S̃ such that R̃ = r̃(Yo + Yp +
mwN) and S̃ = r̃P − r̃h1(m, R̃)P . Then R̃, S̃ have the
same relation with R, S in the verification. i.e.,

ê(h1(m,R)P + Yo + Yp + mwN, S) = ê(P, R) ⇔
ê(h1(m,R)P + Yo + Yp + mwN, S̃) = ê(P, R̃).

Remark 2. Actually, any user can forge a signcrypted
ciphertext on behalf of the proxy signcrypter successfully,
since anyone may compute the proxy agreement key V
with his secret key.

3.1.2 Confidentiality Attack

Definition 4. Confidentiality. A proxy signcryp-
tion scheme is said to achieve the security requirement
of confidentiality against indistinguishability under adap-
tive chosen-ciphertext attacks (IND-CCA2) if there is no
PPT distinguisher D with non-negligible advantage in the
following game played with a challenger B.

Setup B first runs the Setup(1k) algorithm and sends the
system’s public parameters pp to D.

Phase 1 The distinguisher D adaptively issues PCG,
SMG and SRV queries as those in Phase 1 of un-
forgeability definition.

Challenge D produces two plaintexts m0 and m1 of the
same length, then B flips a coin η ∈ {0, 1} and gen-
erates a ciphertext δ∗ for mη. The ciphertext δ∗ is
then delivered to D as a target challenge.

Phase 2 The distinguisher D issues new queries as those
in Phase 1, except the SRV query for the target chal-
lenge δ∗.

Guess D outputs a bit η′ and wins the game if η′ = η.

Confidentiality Attacks. We show that the scheme
is not forward secure as the confidentiality definition de-
clared. In the forward security definition, only designated
recipient can decrypt the message legally. That is, it is
infeasible for a distinguisher D to extract the message
even though the signcrypter leaks his secret key to D. To
guess the message mη in the ciphertext δ∗ = (R,X, Y,N),
D gets the guess η as follows:

1) Computes V = ê(h2(σYv), xpYv);

2) Recovers m = Y ⊕ h3(V,R).

3) If m = m0, D outputs η′ = 0 as the guess, otherwise
outputs η′ = 1.

Remark 3. In Lin et al.’s proxy signcryption scheme,
the agreement key V between the proxy signcrypter and
the decrypter is fixed and constant that does not import
a randomness. This means that any ciphertext generated
by proxy signcrypter Up to Uv may be decrypted using this
decrypted key V . This violates the probabilistic encryption
principle.
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4 Cryptanalysis of Jin-Wen Cer-
tificateless Multi-proxy Signa-
ture Scheme

4.1 Review of Jin-Wen’s Scheme

Setup Given a security parameter k, the PKG does
as follows: first choose groups G and GT of prime
order q such that an admissible bilinear pairing
ê : G × G → GT can be constructed and pick
an arbitrary generator P of G; Choose a random
number s ∈ Zq as the master key msk and set
Q = sP as the master public key; Choose six dif-
ferent cryptographic hash functions that H1, h2,H3 :
{0, 1}∗ → G and H4,H5, H6 : {0, 1}∗ → Zq; Fi-
nally, output and publish system parameters pp =
(G,GT , ê, P, Q,H1,H2, H3,H4,H5,H6) while keep-
ing the master key msk = s.

PPKE Given a user’s identity ID ∈ {0, 1}∗, the PKG gen-
erates the partial private key for the user by comput-
ing D = sH1(ID) and sends D to user ID.

UKG The user with identity ID selects a random number
x ∈ Zq, sets his public key as PID = xP and makes
it public while keeping the secret value x and the
partial private key D as his secret key skID.

Sign To sign a message m ∈ {0, 1}∗ with sk = (x,D),
the signer (identity ID and pk = PID) first chooses
a random number r ∈ Zq and computes R =
rP ; computes W = H2(pp), T = H3(Q), h =
H4(pp,m, ID, P,R) and V = hD+xW + rT . Finally,
outputs σ = (R, V ) as the signature.

Verify. The verifier checks whether ê(V, P ) =
ê(hH1(ID), Q)e(W,PID)e(T, R) holds, where W =
H2(pp), T = H3(Q), h = H4(pp,m, ID, PID, R).

PKG The proxy key generation algorithm performs as
follows:

1) Delegation generation: To delegate the signing
capability, the original signer o, with identity
IDo and public key Po, first makes the signed
warrant w which specifies the necessary proxy
details, such as the identities of the original
signer and the proxy signers, the type of mes-
sages delegated, the period of delegation and
etc. Then he produces the delegation as follows

a. Choose a random number r0 ∈ Zq and com-
pute R0 = r0P ;

b. Compute h0 = H5(pp, w, IDo, Po, R0), W =
H2(pp), T = H3(Q) and V0 = h0Do +
xoW + r0T ;

c. Send (w, R0, V0) to each proxy signer psi,
i = 1, . . . , n.

2) Delegation verification: After receiving
the delegation (w, R0, V0) from the orig-
inal signer o, each proxy signer psi con-
firms its validity by checking ê(V0, P ) =
e(h0H1(IDo), Q)ê(W,Po)ê(T, R0), where
h0 = H5(pp, w, IDo, Po, R0), W = H2(pp),
T = H3(Q). psi accepts it if the equation
holds; otherwise, he requests a valid one from
o, or terminates the protocol.

3) Proxy secret key generation: If all proxy sign-
ers psi confirm the delegation, each of them sets
PSKi = (skpsi

, R0, V0) as his multiproxy signa-
ture secret key respectively.

MPS Every proxy signer psi computes Ri = riP
with random picked ri ∈ Zq, and Vi = hiDpsi

+
xpsi

W + riT , where W = H2(pp), T = H3(Q)
and hi = H6(pp, w, m, IDpsi , Ppsi , Ri). Sends
(w,R0, V0, Ri, Vi) to a clerk.
The clerk verifies its validity by checking the equa-
tions ê(V0, P ) = ê(h0H1(IDo), Q)ê(W,Po)ê(T,R0)
and ê(Vi, P ) = ê(hiH1(IDpsi

), Q)ê(W,Ppsi
)ê(T, Ri).

Then it generates the multi-proxy signature as
σMPS = (w, RMPS , VMPS) where RMPS =
(R0, R1, . . . , Rn) and VMPS =

∑
i Vi.

MPV To verify a multi-proxy signature σMPS =
(w,RMPS , VMPS) of the message m, the verifier
checks whether: ê(VMPS , P ) = ê(h0H1(IDo) +∑

i hiH1(IDpsi)) · ê(W,
∑

i∈Ω Pi)·
ê(T,

∑
i Ri), where h0 = H5(pp, w, IDo, Po, R0), Ω =

{o, ps1, . . . , psn}, W = H2(pp), T = H3(Q) and
hi = H6(pp, w,m, IDpsi , Ppsi , Ri).

4.2 Forgery Analysis

In this section, we give a forgery attack to show that the
Jin-Wen scheme does not hold the claimed security.

4.2.1 Clerk’s Forgery

A clerk C can forgery a multiproxy signature on behalf of
the new original delegator õ. First, C requests a Proxy-
key-gen query between the original delegator õ and multi-
proxy ps1, . . . , psn, then he gets a delegation (w̃, R̃0, Ṽ0).

After clerk C obtains all multi-proxy signatures
(w,R0, V0, Ri, Vi) on the message m from psi (i =
1, . . . , n), C replaces w, R0, V0 with w̃, R̃0, Ṽ0 respectively.

Adversary can forge a valid multi-proxy signature
(w̃, R̃0, Ṽ0, R̃i, Ṽi) on message m̃ under warrant w̃ 6= w
by IDi where i = 2, . . . , n + 1 on behalf of ID1 (or the
challenger). To forge a valid multi-proxy signature, ad-
versary A does

1) A makes a warrant w̃ that the original signer’s
identity is ID1, the proxy signers’s identities are
ID2, . . . , IDn+1.

2) A requests a signature query on (ID1, w̃), and obtains
an answer (Ũ1, Ṽ1).
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3) A performs extraction queries for ID2, . . . , IDn+1.
That is, A knows the secret keys of identities
ID2, . . . , IDn+1. A can generate IDi’s proxy key
(skidi , Ũ1, Ṽ1).

4) A generates a valid multi proxy signature σMPS =
(w̃, R̃MPS , ṼMPS).

Remark 4. The Jin-Wen certificateless multi-proxy sig-
nature scheme, which can be viewed as a two-level hierar-
chical IBE scheme, is not secure in the proposed security
model. The main reason is the direct employment of the
proposed scheme that is a simple aggregation of standard
signatures produced by multiple original signer and multi-
proxy, respectively.

5 Conclusion

In this work, two attacks were proposed to show that
the Lin etl al.’s proxy signcryption scheme does not hold
the indistinguishability against CCA2 and existential un-
forgeability against CMA. Also, existential forgery at-
tacks was presented to demonstrate that a certificateless
multi-proxy signature proposed by Jin and Wen does not
hold the existential unforgeability.
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