
International Journal of Network Security, Vol.16, No.6, PP.477-486, Nov. 2014 477

Automatic Analysis and Classification of Obfuscated Bot

Binaries
Ying-Dar Lin

1
, Yi-Ta Chiang

1
, Yu-Sung Wu

1
, and Yuan-Cheng Lai

2

(Corresponding author: Yi-Ta Chiang)

Department of Computer Science, National Chiao Tung University
1

1001 University Road, Hsinchu, 300, Taiwan

Department of Information Management at National Taiwan University of Science and Technology
2

43,Sec.4,Keelung Rd.,Taipei,106,Taiwan
(Email: yida@cs.nctu.edu.tw)

(Received Dec. 17, 2012; revised and accepted May 16, 2013)

Abstract

Botnets is a serious threat to Internet security. Popular

defense strategies such as traffic filtering and malware

detection all require a good understanding of the

constituent bot binaries for creating the corresponding filter

rules or signatures. This means that an effective analysis

and classification process for bot binaries is needed for

dealing with the threat of botnets. Unfortunately, the

rampant usage of binary obfuscation these days has made

the analysis and classification rather difficult. A simple

string pattern matching or disassembly of the binary no

longer suffices as the exact instruction sequence can be

easily altered by obfuscation. In this work, we propose a

new framework for automatic analysis and classification of

bot binaries. The framework analyzes a bot binary’s

runtime system call trace and uses the longest common

subsequences between system call traces for the

classification of bot binaries. The framework can

effectively deal with obfuscated bot binaries. Experiment

result shows that the framework can attain an overall 94%

true positive rate and 93% true negative rate.

Keywords: Longest common subsequence algorithm,

obfuscation, system call

1 Introduction

The Internet faces many security threats nowadays ranging

from low-level attacks such as packet spoofing to large-

scale malicious activities such as botnets. A botnet is an

autonomous network that consists of compromised

computers running software agents, commonly referred to

as robots or bots, under the control of an attacker. A bot-

network (botnet) is typically formed to conduct nefarious

activities such as DDoS attack [18], e-mail spamming [17],

stealing of personal information, etc. These attacks have

raised concerns over Internet security and can have severe

financial impact. For example, a DDoS attack caused by

botnets in New Jersey had cost a loss of over $2.5 million

dollars [5].

The threat of botnets is difficult to eradicate because

new types of bots appear every day. The analysis and

classification of bot binaries can no longer rely on manual

analysis carried out by experts solely. The process has to be

automated in order to match the high birth rate of new bots

these days. On the other hand, the rampant usage of binary

obfuscation also brings new challenge to traditional

analysis and classification techniques that are based on

string pattern matching or disassembly. These traditional

techniques use the raw instruction sequence to characterize

a binary, and the sequence can now be easily mutated

through binary obfuscation.

In this work, we present a framework for the automatic

analysis and classification of bot binaries. The framework

uses dynamic analysis to extract system call sequences

from bot binaries. The framework then classifies the

binaries based on the LCS similarity of system call

sequences. We notice that obfuscation can relocate

instructions in a bot binary. On the other hand, obfuscation

can also introduce extra system calls into a call sequence.

Both of these can negatively affect the classification

accuracy. We therefore come up with heuristics to

compensate these effects. Another problem is that many

bots contains anti-VM code to prevent being analyzed in a

virtual machine (VM), we therefore use the PIN tool to

observe their behaviors in real machines. Our experiment

based on 564 distinct bot binaries and 1692 variants shows

that the framework is able to achieve high classification

accuracy (94% true positive rate and 93% true negative rate)

even with obfuscated bot binaries. Overall, the framework

offers a streamlined and effective process for the automatic

analysis and classification of obfuscated bot binaries.

International Journal of Network Security, Vol.16, No.6, PP.477-486, Nov. 2014 478

Controller Classifier

Recorder
Bot

Sample

2. Start recorder

4. Record
system calls

5. Store
system call
sequence

6. Start classifier

Storage

Database

1. Fetch a new
sample

7. Fetch system call sequence

3. Execute
sample

Figure 2: Architecture diagram

2 Background

2.1 Taxonomy of Botnet

A botnet is made of a bunch of bots, which are controlled

by a command and control server (C&C server) as shown

in Figure 1. A botnet typically follows the three-phase life-

cycle, that includes: (1) the injection of bots onto

vulnerable hosts, (2) the injected bots establishing

connections back to a C&C server and waiting for its

commands, and (3) C&C server issuing commands to the

bots to order the launch of attack on a chosen victim.

The injection of bots can be achieved through many

different ways such as exploiting vulnerability in network

services, through e-mail attachment, via P2P file sharing,

and so on. After a bot is injected into a computer, the bot

will attempt to establish a communication channel with a

C&C server. A popular approach is to rely on an existing

IRC server to act as the C&C server. However, it is also

possible to use a customized server. A malicious attacker,

sometimes known as the bot herder, can remotely control

the bots by issuing commands through the C&C server. The

C&C communication channel is often encrypted to prevent

anyone but the authorized bot herders from controlling a

botnet. A botnet can have more than one C&C server to

make the botnet more robust against crackdown.

Any bot in a botnet can be used to carry out attack

actions. This means that it is typically difficult to track

down a single attack origin for crackdown in a botnet attack.

Botnet is thus a very popular choice for conducting attacks

such as e-mail spamming. When the bots in a botnet are

instructed to carry out attacks on a targeted victim around

the same time, the botnet can become a very effective

DDoS attack weapon. For instance, the botnet MyDoom [8]

was used to carry out a DDoS attack on the web site of

SCO Group.

2.2 Overview of Binary Analysis and Classification

For the analysis of bot binaries, there are two different

approaches: static analysis and dynamic analysis. Static

analysis analyzes a bot binary without actually running it.

In its simplest form, static analysis can be a straightforward

string pattern matching within a binary. More advanced

static analysis may involve disassembly of binary,

constructing function call graph, and semantic analysis of

the disassembled code. For instance, Liang [11] merges

function calls into modules that characterize specific types

of high-level tasks such as file and registry operation.

Zhang and Reeves [21] look for common patterns of

assembly code sequences in malware binaries. Han [7] uses

the full-name here (API) list in the full-name here (IAT)

table as a signature to cassify samples. None of the above

works can deal with obfuscated binaries. In the work by

Natarij [13], they design a binary-to-gray-level image

converter to calculate the similarity of binary codes. While

they can identify different malware from the same packer,

they are unable to distinguish different malware from the

same packer unless the packer has weak encryption

schemas.

Static analysis typically runs very fast. It does not

require actually running the bot binaries (and possibly

causing damages). However, it can be easily defeated by

binary obfuscation [6]. One common technique used in

binary obfuscation is encrypting the binary, so a

straightforward string matching or disassembly will not be

able to give any meaningful analysis result. More advanced

static analysis tools may attempt to decrypt an obfuscated

binary, but still the obfuscation can introduce extra layers

of protection. For instance, the layout of a binary can be

restructured and redundant data fields or garbage codes can

be added to the binary to cause noise to the static analysis

process. Some obfuscation tool such as Themida [15] can

even translate an x86 binary into a binary for some

unknown architecture and use a virtual machine (VM) of

the corresponding architecture to execute the obfuscated

binary.

The weakness of static analysis on obfuscated binary

has led to interests in the development of dynamic binary

analysis techniques. One approach is API hooking, in

which key system APIs are hooked by monitoring routines

to track their usage. Since API hooking incurs overhead

only when the hooked APIs are invoked, the dynamic

analysis process can be made quite efficient. However, a

limitation with API hooking is that those in-between

instruction sequences that do not involve system APIs will

not be analyzed. It is also possible that a bot binary can

Attacker
C&C

Server

Bot

Bot
Victim

(2)C&C channel (3)Attack(1)Injection

Figure 1: Architecture of a botnet

International Journal of Network Security, Vol.16, No.6, PP.477-486, Nov. 2014 479

MOV EAX,0x1b

MOV EDX,0x5a0e0300

SYSENTER or INT 2Eh

callback_before()

callback_after()

Figure 3: Intercept system calls through instrumentation

(Windows platform)

NTSTATUS ZwQueryValueKey(

 __in HANDLE KeyHandle,

 __in PUNICODE_STRING ValueName,

 __in KEY_VALUE_INFORMATION_CLASS KeyValueInformationClass,

 __out_opt PVOID KeyValueInformation,

 __in ULONG Length,

 __out PULONG ResultLength

);

Figure 4: Example of Windows system call (native API)

attempt to unhook the monitoring routine or make direct

API call into the kernel to bypass the dynamic analysis

[20].

Another approach for dynamic analysis is through full

system emulation [2], where a bot binary is executed in an

operating system that runs on a hardware platform

emulator (e.g. QEMU). The emulator can be modified to

extract detailed runtime information such as instructions

executed, memory content at arbitrary address, and so on.

This kind of dynamic analysis can be very thorough.

Typically, the emulated environment is isolated from the

outside world, so the dynamic analysis process cannot be

bypassed or disabled. However, it is possible that a bot can

detect the emulated environment (e.g. through

fingerprinting BIOS, and so on.) and refrain from showing

its full behavior [14]. The approach also comes with

significant runtime overhead due to emulation. For instance,

systems running on QEMU can experience a 4~10 times

slowdown compared with systems running directly on the

underlying hardware [4].

Bayer, Kruegel and Kirda [3] proposed a system named

"TTAnalyze" that executes a binary sample inside a virtual

machine to observe the binary’s runtime behaviors

including file modification, registry modification and

network access. A popular tool for online binary dynamic

analysis is CWSandbox [20], where one can upload

suspicious binaries for dynamic analysis in their sandboxed

environment. A limitation with dynamic analysis is that

only those executed control paths are analyzed by default.

This limitation can be addressed by symbolic execution

[12]. Li, Xu, Zheng and Xu [10] also use system call

sequence similarity to classify samples. Their method

focuses on the patterns of continuous system call. In

comparison, our framework also considers more detailed

features such as gap shift (Sec. 0) in a system call sequence.

LeDoux [9] combines signatures from Anubis and

CWSandbox to achieve higher accuracy, but more

signatures also means more time to analyze samples.

3 System for Analysis and Classification of

Obfuscated Bot Binaries

Figure 2 shows the architecture of the system. First, the

controller fetches a bot binary sample from disk storage

(step 1). It then starts the recorder (step 2) to begin dynamic

analysis on the bot sample. During the dynamic analysis,

the system calls invoked by the bot sample will be collected

(step 3 and 4). The recorder relies on the dynamic

instrumentation tool PIN [16] to record the system calls

invoked by the binary during its execution. The data

collected are stored in the database (step 5). Once the

sample stops running or when a predefined timeout limit is

reached, the controller will terminate the recorder and

initiate the classifier. The classifier will classify the sample

based on its system call trace (step 6 and 7).

3.1 Analysis of Bot Binaries

As mentioned in Section 2.2, API hooking is susceptible to

tampering. On the other hand, full system emulation incurs

a high overhead and is not suitable for the analysis of a

huge volume of bot binaries. Instead, we use process-level

binary instrumentation [16] as the mechanism for the

dynamic analysis of bot binaries. Process-level binary

instrumentation can instrument monitoring routine code

into a bot binary’s process memory at runtime. The

instrumentation tool can breakpoint the execution of a

process at locations of interests and insert monitoring code

at those locations (e.g. locations where a system call is

about to be invoked). An instrumented process is executed

natively on the hardware, so the analysis process can be

made almost as fast as that of API hooking. On the other

hand, instrumentation is more versatile than API hooking in

the sense that the monitoring code can be instrumented

almost anywhere in the text segment of a process, not just

at the system call sites. However, instrumentation-based

analysis is typically limited to user-mode process and is not

suitable for analyzing kernel-mode malware such as rootkit.

For analyzing kernel-mode malware, it is more appropriate

to rely on full system emulation.

In Figure 3, on 32-bit Windows platform, the

invocation of system call relies on either software interrupt

INT 2Eh or the SYSENTER instruction to transfer control

into the kernel-mode system call handler. The system call

number is passed by the EAX register. The call arguments

are passed by the stack. A pointer to the arguments on the

stack will be passed through the EDX register. We use PIN

API PIN_AddSyscallEntryFunction() to instrument the

monitoring routine callback_before() right before each

SYSENTER/INT 2Eh instruction. This allows the recorder

to intercept the invocation of each system call and collect

the corresponding system call number, call arguments, and

thread ID. The monitoring routine can acquire these

information through PIN API PIN_GetSyscallNumber(),

PIN_GetSyscallArgument(), and PIN_GetTid() respectively.

On the other hand, the analyzer also instruments the

International Journal of Network Security, Vol.16, No.6, PP.477-486, Nov. 2014 480

A B C D

Program
Loader

Unpacking
Loader

Packed
Program

Program
Exit Handler

Figure 5: Segments of system calls in an obfuscated binary

monitoring routine callback_after() right after each

SYSENTER/INT 2Eh instruction. This is used to collect

the return value of each system call.

Some of the system call arguments may be pointers. For

instance, the Windows system call ZwQueryValueKey has

six call arguments (Figure 4). The second argument

ValueName and the fifth argument ResultLength are

pointers. When collecting system call information in

callback_before(), the recorder will deference pointer

arguments and record the values stored at the memory

addresses pointed by the pointers.

3.2 Features for Classification: System Call Sequence

The analyzer will group the collected system calls from a

bot binary based on thread IDs. In the current

implementation, the analyzer only keeps the system calls of

the main thread (the thread that contains the most number

of system calls). The system calls in the main thread is then

sorted into a system call sequence based on the invocation

time of each system call.

An example of a system call sequence from an

obfuscated bot sample is shown in Figure 5. The system

calls in the sequence can be roughly divided into four

segments. Segment A includes system calls related to the

initialization of a new process. (e.g. loading of the

executable image and the related library files). Segment B

represents the stub loader embedded by an obfuscation tool

used for initializing the runtime environment. In the case of

UPX [19], segment B is mainly about the decompression of

program text. For Themida, segment B corresponds to the

loading and initialization of the built-in virtual machine. Of

most interest to us is segment C, which contains the system

calls made by the original bot binary itself. System calls in

segment C characterizes the behavior of a bot binary.

Segment D contains system calls used for the deallocation

of resources (files, memory, etc.) at the time of process

termination.

3.3 LCS Similarity of System Call Sequences

The number of bot binaries is huge. The proposed

framework comes with a classification process to help the

study of bot binaries by automatically identifying and

grouping bot binaries into classes. The similarity between

two bot binaries is judged by the similarity between their

system call sequences.

Bot binaries can bear similarity in their system call

sequences for at least two reasons. First, a bot binary is

often obfuscated into different forms to avoid signature-

based detection. The obfuscated binaries will still contain

the system call behavior of the original binary, or they will

not be able to fulfill the same intended functionality as the

original binary. The other reason for similarity in bot binary

system calls is because malware writers may reuse some

code pieces from previous malware. By looking for

similarity in the system call sequences, the classification

process can help identify the bot variants more quickly.

The similarity between two bots is defined based on

their system call sequences. Specifically, the similarity is

defined by the longest common subsequence of the system

call sequences of the two bots. Let us assume that the two

system call sequences are X:
1 2 3, , , , mX X X X and

Y:
1 2 3, , , , nY Y Y Y , where Xi and Yj are the IDs of the

respective system calls made by the two bots in ascending

invocation time order. The longest common subsequence

LCS(X,Y) is a common subsequence of X and Y with

maximal length |LCS(X,Y)|.

To evaluate the system call sequence similarity S(X,Y)

between two call sequences X and Y, we define S(X,Y) as

(,)
(,) ,

min(,)

LCS X Y
S X Y

X Y
 (1)

which is the ratio of the maximal length of the common

system call sequence to the length of the shorter sequence

of X and Y. Since
| (,) | min(| |,| |)LCS X Y X Y

, the

value of S(X,Y) is between 0 and 1, where 1 means either

X is a subset of Y, or Y is a subset of X. The similarity

value S(X,Y) is then compared against a threshold value TS

to decide if X and Y should be placed in the same class.

The decision rule is

(,) Different class,

(,) Same class.

s

s

S X Y T

S X Y T

 (2)

while the value of TS is decided in Sec. 0 for

maximizing true positive rate and true negative rate.

3.4 Improve Classification Accuracy with Gap Shift

Ratio

System calls in the longest common subsequence LCS(X, Y)
may not always come from the same locations in sequence

International Journal of Network Security, Vol.16, No.6, PP.477-486, Nov. 2014 481

0

20

40

60

80

0 200 400 600 800

865

870

875

880

885

0 500 1000 1500 2000 2500 3000 3500

G
ap

 S
h

if
t

System call index in LCS(Agobot original, Agobot Themida)

Figure 6: The gap shift sequence of Agobot original vs.

Agobot Themida

0

20

40

60

80

0 50 100 150 200 250 300

0

1000

2000

3000

4000

5000

6000

0 50 100 150 200 250 300 350 400 450 500

G
ap

 S
h

if
t

System call index in LCS(Bodombot original, Breplibot original)

Figure 7: Gap shift value chart of Bodombot original &

Breplibot origional

X and Y. Although these system calls appear in both X and

Y, they may carry quite different semantic meanings. For

instance, two consecutive CreateProcess() calls could very

likely come from a function used in some initialization

work. On the other hand, two CreateProcess() calls that

spread far apart may more likely come from two separate

functions that are not related to each other. Due to this

reason, the LCS similarity between two unrelated bot

binaries can sometimes become erroneously high. This will

cause the classification process to put the two binaries into

the same class by mistake according to Equation 2.

To address the deficiency in classification with LCS

similarity alone (Equation 2), we propose a heuristic that

factors in the effect of the gap shifts in system call

sequences. Specifically, after we obtain the LCS sequence

1 2 1(, , , , ,...,)k k lS S S S S of X and Y, we will

determine the respective indices for each system call Sk in X

and Y. This would create two sequences of indices:

IX: 1 2 3(, , , ,)lp p p p for X and IY:
 1 2 3(, , , ,)lq q q q

for Y. For example, p1 is the index of system call S1 in X

and q1 is the index of S1 in Y. If S1 is the first system call in

X, then p1 is 1. And, if S1 is the 100
th

 system call in Y, then

q1 are 100.

The gap shift sequence G is constructed by taking the

difference of each pair of elements from IX and IY, so we

have G: 1 1 2 2 3 3(, , , ,)l lp q p q p q p q . We then

define N(G) as the number of the distinct values in the

sequence G. According to our observation, for two bot

binaries that should belong to the same class, their N(G)

value will be small. Because they are similar in their

behaviors, their system calls in common should bear

similar semantic meanings, and the relative gap shifts

should be similar as well. On the other hand, for two

unrelated binaries, the corresponding N(G) value will be

usually high.

Figure 6 shows the gap shift sequence between Agobot

original (unpacked) and Agobot Themida (obfuscated by

Themida). The gap shift values for the first 762 system

calls are below 80 because they correspond to the

initialization of a new process (Segment A of Figure 5).

This part of the system call sequence is hardly affected by

the Themida packer. From the 763
th

 system call and onward,

we can see a huge shift (about 865) in the system call

indices. This shift is due to the unpacking loader code

(Segment B in figure 5) inserted by the Themida packer

between the 762
th

 system call and the 763
th

 system call. The

two bot binaries are related, and as we can see from the plot,

the gap shift values only take on a few levels (the

corresponding N(G) value is 27).

Figure 7 shows the gap shift sequence between two

different bots: Bodombot and Breplibot. The LCS

similarity between these two bot binaries is 0.97, which

will cause incorrect classification according to Equation 2.

Looking at the gap shift sequence plot in Figure 7, we can

see that the gap shift values take on many different levels

(the N(G) value is 100). This indicates that the common

system calls as identified by LCS are located at quite

different locations in Bodombot and Breplibot, meaning

that the corresponding behaviors shall be quite different.

The N(G) value also increases with the length of a gap

shift sequence. We can normalize it by the length of the gap

shift sequence L=|G| and define the gap shift ratio R as

()

.
N G

R
L

 (3)

Combined with Equation 2, the criteria for determining

if two bot binaries belong to the same class is now defined

as

Different class,

Different class,

Same class.

s

s r

s r

S T

S T and R T

S T and R T

 (4)

3.5 Improve Classification Accuracy of Call Sequences with

Segment Identification

In Figure 5, we see that only segment C of a system call

sequence is of relevance for identifying bots with similar

behaviors. The system calls in segments A and D are

common to most executable files, and segment B is

International Journal of Network Security, Vol.16, No.6, PP.477-486, Nov. 2014 482

Table 1: List of bots used in the experiment

Id MD5 Kaspersky Sophos

1 ea46b4606531d28

474e06cb4cd060c

71

Backdoor.Wi

n32.Anibot.b

Mal/IRCBot-B

2 c1ed6261902e

bc178f55159c

a1b061b1

Backdoor.

Win32.Afb

ot.a

Mal/IRCBot-C

3 d7b32cc7056f

37eb8ccf0d1f4

72d8e5b

Backdoor.

Win32.Rb

ot.gen

W32/Rbot-Gen

4 fa29f9048e3b

57705e97583d

70f00ba1

Backdoor.

Win32.Ag

obot.gen

W32/Agobot-

Gen

5 f1f9f762f899a

24a2d71a35c4

b825db8

Backdoor.

Win32.Ro

hbot.a

Mal/Generic-A

6 69fd63dade7c

d4f8878c6e80

084069fb

Backdoor.

Win32.Rb

ot.gen

W32/Rbot-Fam

7 4aac37248630

70dc422ad0dc

0a39a5af

Backdoor.I

RC.Botva.

b

Troj/Bckdr-MPJ

8 8a87d88714f2

017e2cdd7491

2449e7cf

Backdoor.

Win32.De

vBot.b

Troj/DevBot-B

9 c3207feb5160

c71227dbd92c

c3fe4e53

Backdoor.

Win32.Da

SBot.12

Mal/Generic-A

10 0ce8ccbd76e6

126ed10350fd

70c37d98

Backdoor.

Win32.Poe

Bot.a

 W32/Poebot-

Gen

NTOpenKey

\Registry\Machine\Software\Micros

oft\Windows

NT\CurrentVersion\Image File

Execution Options\winmm.dll

NTOpenKey

\Registry\Machine\Software\Micros

oft\Windows

NT\CurrentVersion\DRIVERS32

NTQueryValueKey wave

NTQueryValueKey wave

NTQueryValueKey wave1

NTQueryValueKey wave2

NTQueryValueKey wave3

NTQueryValueKey wave4

NTQueryValueKey wave5

Figure 8: System call sequence in segment B from a

Themida-obfuscated binary

 introduced by an obfuscation tool. We can improve the

classification accuracy by ignoring segments A, B, and D

in the calculation of LCS similarity and gap shift ratio.

Segment A and D are easy to identify and ignore as they

are very much the same across all executables.

Segment B, on the other hand, is much more difficult to

deal with, because it depends on the type of obfuscation

tool in use. As a result, we have to build profiles for each

different obfuscation tool in order to identify and remove

segment B effectively. As an example, a Themida-

obfuscated binary always has the system calls shown in

Figure 8 in segment B, which can be reliably removed to

improve classification accuracy.

To build the profile, we use LCS to identify the

common subsequence over a bunch of binaries obfuscated

by a given packer (e.g. Themida). The resulting common

subsequence that is left should include only segment A, B,

and D. Since segment A and D are standard to any

executable, we can trim them away in the recorder and

extract segment B as the profile for the corresponding

obfuscation tool.

4 Experiments

We conduct four experiments to evaluate the proposed

framework. The first two experiments (Section 4.1 and

Section 4.2) look at the effect of obfuscation on LCS

similarity and gap shift ratio. Ideally, neither of them

should be significantly affected by obfuscation, or the

proposed framework would fail to accurately classify

obfuscated bot binaries according to Equation 4. In the

third experiment (Section 4.3), we look at how the selection

of different threshold values TS and TR affects the

classification accuracy. In the fourth experiment (Section

4.4), we evaluate the overall effectiveness of our

framework with a large sample of 564 real-world bot

binaries.

4.1 LCS Similarities and Gap Shift Ratios between

Variants of a Bot Sample

In this experiment, we calculate the LCS similarities and

gap shift ratios between bot variants, which are created by

obfuscating 10 (unpacked) bot samples with different

packers. We use the 10 unpacked bot samples (Table 1) as

the baseline (denoted as group A) in this experiment. We

then obfuscate each of those 10 bot samples with ASProtect

[1] to create ASProtect-obfuscated test targets (denoted as

group B). We also create 10 Themida-obfuscated test

targets (denoted as group C) and 10 UPX-obfuscated test

targets (denoted as group D). For each bot sample, there are

six different combinations for evaluating the LCS

similarities and gap shift ratios: (A,B), (A,C), (A,D), (B,C),

(B,D), and (C,D). For instance, in the case of (A,B), we

will take one bot from group A and calculate the LCS

similarity and gap shift ratio of it with the corresponding

ASProtect-obfuscated version of the bot from group B.

This yields 10 data points, and overall, there will be 60 data

points, which are summarized in Figure 9.

Figure 9 shows the distrbution of the 60 data points.

Here, each data point corresponds to the LCS similarity (S)

and the gap shift ratio (R) between two variants of a bot

sample. Each of the circle in Figure 9 represents a group of

International Journal of Network Security, Vol.16, No.6, PP.477-486, Nov. 2014 483

data points with the same LCS similarity and gap shift ratio.

The diameter of the circle is proportaionl to the number of

data points in that circle. As we can see, most of the data

points present a high LCS similarity values (close to 1)

indicating that the two corresponding variants are from the

same origin. On the other hand, the gap shift ratios are low

(near 0.01), which also indicates the variants are from the

same origin. This shows that LCS similarity and gap shift

ratio are not sensitive to obfuscation with respect to

identifying bot variants of the same origin.

4.2 LCS Similarities and Gap Shift Ratios between

Distinctive Bot Samples

In this experiment, we evaluate the LCS similarities and

gap shift ratios between bot samples of different origins.

First, we calculate the pair-wise LCS similarities and gap

shift ratios for the 10 unpacked bot samples (group A in

Sec. 0). The result is presented in Figure 10-A. We then

calculate the pair-wise LCS similarities and gap shift ratios

for the ASProtect-obfuscated bot samples (group B) with

the result shown in Figure 10-B. The results for Themida-

obfuscated bot samples (group C) and UPX-obfuscated bot

samples (group D) are presented in Figure 10-C and Figure

10-D respectively.

This result shows that the LCS similarities (S) between

bot samples of different origins are widely dispersed. The

LCS similarities no longer concentrate near 1 as in Sec. 0.

Some of the data points have high LCS similarities, but

comparing to Figure 9, their gap shift ratios (R) are mostly

above 0.05. Thereby, if we consider both the LCS

similarity and gap shift ratio together as in Equation 4, we

can also reliably distinguish bot samples of different origins.

4.3 Choosing TS (LCS Similarity Threshold) and TR

(Gap Shift Ratio Threshold)

From the previous two experiments, we know that for bot

variants from the same origin, their LCS similarity values

are close to 1 and their gap shift ratios are close to 0. On

the other hand, for bot samples from different origins, their

LCS similarities are widely dispersed and the gap shift

ratios tend to be larger. Based on the observation, we

designed the classification criteria of Equation 4. To

determine the proper threshold values TS and TR in

Figure 9: Distribution of LCS similarity and gap shift ratio

A. Non-obfuscated bots

B. ASProtect obfuscated bots

C. Themida obfuscated bots

D. UPX obfuscated bots

Figure 10: Result distribution on the same obfuscation

samples

Figure 1 Distribution of LCS similarity and gap shift ratio

International Journal of Network Security, Vol.16, No.6, PP.477-486, Nov. 2014 484

0

0.04

0.08

0.12

0.16

0.2

0.24

0.28

0.32

0.36

0.4

0.44

0.48

0.52

0.56

0.6

0.64

0.68

0.72

0.76

0.8

0.84

0.88

0.92

0.96

1

0

0
.0

4

0
.0

8

0
.1

2

0
.1

6

0
.2

0
.2

4

0
.2

8

0
.3

2

0
.3

6

0
.4

0
.4

4

0
.4

8

0
.5

2

0
.5

6

0
.6

0
.6

4

0
.6

8

0
.7

2

0
.7

6

0
.8

0
.8

4

0
.8

8

0
.9

2

0
.9

6 1

G
ap

 S
h

if
t

R
at

io
 T

h
re

sh
o

ld
 (

T
R
)

LCS Similarity Threshold (TS)

95%-100%

90%-95%

85%-90%

80%-85%

75%-80%

70%-75%

65%-70%

60%-65%

55%-60%

50%-55%

45%-50%

40%-45%

35%-40%

30%-35%

25%-30%

20%-25%

15%-20%

10%-15%

5%-10%

0%-5%

Figure 11: True positive rate

Table 2: Classification accuracy

True Positive ate True Negative Rate

94% 93%

Equation 4, we experiment with different TS and TR values
and look at the corresponding classification accuracy in

terms of true positive rate (TPR) and true negative rate

(TNR). True positive rate represents the percentage of bot

samples classified in the same group, which are indeed

from the same origin. On the other hand, true negative rate

represents the percentage of bot samples classified into

different groups, which indeed belong to different origins.

The effect on TPR and TNR when varying the LCS

similarity threshold (TS) and gap shift ratio threshold (TR) is

shown in Figure 11 and Figure 12. We thereby consider

0.53 as an appropriate threshold value TS and 0.05 as the

threshold for TR because this can achieve an overall 95%

TPR and 92% TNR.

4.4 Classification Accuracy on a Large Sample of Bots

In this experiment, we conduct a large scale experiment

with 560 distinct bot samples from the honeypot at campus,

along with 4 legitimate programs: notepad, Firefox, MS

Word, and 7-Zip. For each of the 564 binaries, we create 3

obfuscated variants with ASProtect, Themida, and UPX

respectively. This results in a total of 2256 binaries,

including original programs and obfuscated ones. We then

use the proposed framework to analyze and classify all the

binaries. The threshold TS is set to 0.53 and the threshold TR

is set to 0.05 according to Section 4.3.

The classification result is summarized in Table 2.

Overall, we can see that the framework achieves a decent

94% true positive rate and 93% true negative rate on the

classification of the 2256 binaries.

5 Conclusions

We propose a framework for the automatic analysis and

classification of obfuscated bot binaries. The framework

use dynamic analysis to extract the system call sequence of

a bot binary. Since system calls define the interactions

between a program (the bot binary) and the operating

system, obfuscation can hardly alter the call sequence

without breaking the interactions. We rely on this property

and use the system call sequence to characterize the

behavior of a bot binary.

For the classification, we define a similarity metric

between two bot binaries based on the longest common

subsequence (LCS) of their system call sequences. The

LCS similarity does not consider the relative locations of

system calls in the two binaries, and that can cause mis-

classification in some cases. This is addressed by a

heuristic called gap shift ratio, which detects excessive

variation in the relative locations of system calls.

Although obfuscation can hardly change the original

system call sequence in a bot binary, it can often introduce

additional system calls into an obfuscated binary. Most of

them are due to the obfuscation tool's stub code. The

additional system calls are noises to the classification

process, and we have come up with a segment

International Journal of Network Security, Vol.16, No.6, PP.477-486, Nov. 2014 485

0

0.04

0.08

0.12

0.16

0.2

0.24

0.28

0.32

0.36

0.4

0.44

0.48

0.52

0.56

0.6

0.64

0.68

0.72

0.76

0.8

0.84

0.88

0.92

0.96

1

0

0
.0

4

0
.0

8

0
.1

2

0
.1

6

0
.2

0
.2

4

0
.2

8

0
.3

2

0
.3

6

0
.4

0
.4

4

0
.4

8

0
.5

2

0
.5

6

0
.6

0
.6

4

0
.6

8

0
.7

2

0
.7

6

0
.8

0
.8

4

0
.8

8

0
.9

2

0
.9

6 1

G
ap

 S
h

if
t

R
at

io
 T

h
re

sh
o

ld
 (

T R
)

LCS Similarity Threshold (TS)

95%-100%

90%-95%

85%-90%

80%-85%

75%-80%

70%-75%

65%-70%

60%-65%

55%-60%

50%-55%

45%-50%

40%-45%

35%-40%

30%-35%

25%-30%

20%-25%

15%-20%

10%-15%

5%-10%

0%-5%

Figure 12: True negative rate

 identification process to filter out these noises. Overall, the

framework can achieve 94% true positive rate and 93% true

negative rate.

The current system is based on an off-line process. It

records the system call sequence and then compares the

sequence with sequences of known samples in the database.

In future work, we plan to implement an on-line analysis

process, where the system can work as an anti-virus tool

that can detect running bots on a computer.

References

[1] ASPack, Software Protection Tools for Software

Developers. (http://www.aspack.com/asprotect.html)

[2] U. Bayer, P. M. Comparetti, C. Hlauschek, C. Kruegel,

and E. Kirda, “Scalable, behavior-based malware

clustering,” Network and Distributed System Security

Symposium, 2009.

[3] U. Bayer, C. Kruegel, and E. Kirda, “Ttanalyze: A tool

for analyzing malware”, in 15th Annual Conference of

the European Institute for Computer Antivirus

Research, 2006.

[4] F. Bellard, “Qemu, a fast and portable dynamic

translator,” in USENIX Annual Technical Conference,

2005.

[5] K. K. R. Choo, “Zombies and botnets,” TRENDS &

ISSUES in crime and criminal justice, 2007.

[6] C. Collberg, C. Thomborson, and D. Low, A taxonomy

of Obfuscating Transformations, Department of

Computer Science, The University of Auckland, New

Zealand, 1997.

[7] K. Han, I. Kim, and E. Im, “Malware classification

methods using API sequence characteristics,” in The

International Conference on IT Convergence and

Security, Sewon, Korea, 2011.

[8] M. Landesman, The Secrets to Mydoom's Success.

(http://antivirus.about.com/cs/allabout/a/mydoomddos_

3.htm)

[9] C. LeDoux, A. Walenstein, and A. Lakhotia,

“Improved malware classification throughsensor fusion

using disjoint union,” Information Systems,

Technology and Management Communications in

Computer and Information Science, vol. 285, pp. 360-

371, 2012.

[10] J. Li, M. Xu, N. Zheng, and J. Xu, “Malware

obfuscation detection via maximal patterns,” in Third

International Symposium on Intelligent Information

Technology Application, 2009.

[11] Z. Liang, T. Wei, Y. Chen, X. Han, J. Zhuge, and W.

Zou, “Component similarity based methods for

http://www.aspack.com/asprotect.html

International Journal of Network Security, Vol.16, No.6, PP.477-486, Nov. 2014 486

automatic analysis of malicious executables,” in Virus

Bulletin Conference, 2007.

[12] A. Moser, C. Kruegel, and E. Kirda, “Exploring

multiple execution paths for malware analysis,” IEEE

Symposium on Security and Privacy, 2007.

[13] L. Nataraj, S. Karthikeyan, G. Jacob, and B. S.

Manjunath, “Malware Images: Visualization and

Automatic Classification,” in The 8th International

Symposium on Visualization for Cyber Security,

Pittsburgh, U.S.A, 2011.

[14] A. A. e. Omella, Methods for Virtual Machine

Detection. (http://www.s21sec.com/descargas/vmware-

eng.pdf)

[15] Oreans Technology : Software Security Defined.

(http://www.oreans.com/themida.php)

[16] Pin, Pin - a dynamic binary instrumentation tool.

(http://www.pintool.org/)

[17] J. Sheu, “An efficient two-phase spam filtering method

based on e-mails categorization,” International Journal

of Network Security, vol. 9, no. 1, pp. 34-43, July 2009.

[18] J. Udhayan and T. Hamsapriya, “Statistical segregation

method to minimize the false detections during DDoS

attacks” International Journal of Network Security, vol.

13, no. 3, pp. 152-160, Nov. 2011.

[19] UPX, UPX: the Ultimate Packer for eXecutables –

Homepage. (http://upx.sourceforge.net/)

[20] C. Willems, T. Holz, and F. Freiling, “Toward

automated dynamic malware analysis using

cwsandbox,” IEEE Security & Privacy, 2007.

[21] Q. Zhang and D. S. Reeves, “Metaaware: Identifying

metamorphic malware,” in Annual Computer Security

Applications Conference, 2007.

Ying-Dar Lin is Professor of Computer Science at

National Chiao Tung University (NCTU) in Taiwan. He

received his Ph.D. in Computer Science from UCLA in

1993. He served as the CEO of Telecom Technology

Center during 2010-2011 and a visiting scholar at Cisco

Systems in San Jose during 2007¡V2008. Since 2002, he

has been the founder and director of Network

Benchmarking Lab (NBL, www.nbl.org.tw), which reviews

network products with real traffic. He also cofounded L7

Networks Inc. in 2002, which was later acquired by D-Link

Corp. He recently, in May 2011, founded Embedded

Benchmarking Lab (www.ebl.org.tw) to extend into the

review of handheld devices. His research interests include

design, analysis, implementation, and benchmarking of

network protocols and algorithms, quality of services,

network security, deep packet inspection, P2P networking,

and embedded hardware/software co-design. His work on

¡§multi-hop cellular¡̈ was the first along this line, and has

been cited over 500 times and standardized into IEEE

802.11s, WiMAX IEEE 802.16j, and 3GPP LTE-Advanced.

He was elevated to IEEE Fellow in 2013 for his

contributions to multi-hop cellular communications and

deep packet inspection. He is currently on the editorial

boards of IEEE Transactions on Computers, IEEE

Computer, IEEE Network, IEEE Communications

Magazine - Network Testing Series, IEEE Wireless

Communications, IEEE Communications Surveys and

Tutorials, IEEE Communications Letters, Computer

Communications, Computer Networks, and IEICE

Transactions on Information and Systems. He recently

published a textbook "Computer Networks: An Open

Source Approach" (www.mhhe.com/lin), with Ren-Hung

Hwang and Fred Baker (McGraw-Hill, 2011). It is the first

text that interleaves open source implementation examples

with protocol design descriptions to bridge the gap between

design and implementation.

Yi-Ta Chiang performed this research while at National

Chiao Tung University. He is now an engineer at Network

Benchmarking Lab. His research interests include Network

Security and performance evaluation. Chiang has an MS in

computer science from National Chiao Tung University.

Yu-Sung Wu received the B.S. degree in Electrical

Engineering from National Tsing Hua University, Taiwan

in 2002, and the Ph.D. degree in Electrical and Computer

Engineering from Purdue University, West Lafayette,

Indiana in 2009. He is an assistant professor in the

Department of Computer Science, National Chiao Tung

University, Taiwan, where he leads the Laboratory of

Security and Systems. His research interests include

security, dependability, and systems.

Yuan-Cheng Lai received the Ph.D. degree in computer

science from National Chiao Tung University, Hsinchu,

Taiwan, in 1997. In August 2001, he joined the faculty of

the Department of Information Management at National

Taiwan University of Science and Technology, Taipei,

Taiwan, where he has been a professor since February 2008.

His research interests include wireless networks, network

performance evaluation, network security, and content

networking.

