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Abstract 

Botnets is a serious threat to Internet security. Popular 

defense strategies such as traffic filtering and malware 

detection all require a good understanding of the 

constituent bot binaries for creating the corresponding filter 

rules or signatures. This means that an effective analysis 

and classification process for bot binaries is needed for 

dealing with the threat of botnets. Unfortunately, the 

rampant usage of binary obfuscation these days has made 

the analysis and classification rather difficult. A simple 

string pattern matching or disassembly of the binary no 

longer suffices as the exact instruction sequence can be 

easily altered by obfuscation. In this work, we propose a 

new framework for automatic analysis and classification of 

bot binaries. The framework analyzes a bot binary’s 

runtime system call trace and uses the longest common 

subsequences between system call traces for the 

classification of bot binaries. The framework can 

effectively deal with obfuscated bot binaries. Experiment 

result shows that the framework can attain an overall 94% 

true positive rate and 93% true negative rate. 

Keywords: Longest common subsequence algorithm, 

obfuscation, system call 

1   Introduction 

The Internet faces many security threats nowadays ranging 

from low-level attacks such as packet spoofing to large-

scale malicious activities such as botnets. A botnet is an 

autonomous network that consists of compromised 

computers running software agents, commonly referred to 

as robots or bots, under the control of an attacker. A bot-

network (botnet) is typically formed to conduct nefarious 

activities such as DDoS attack [18], e-mail spamming [17], 

stealing of personal information, etc. These attacks have 

raised concerns over Internet security and can have severe 

financial impact. For example, a DDoS attack caused by 

botnets in New Jersey had cost a loss of over $2.5 million 

dollars [5]. 

The threat of botnets is difficult to eradicate because 

new types of bots appear every day. The analysis and 

classification of bot binaries can no longer rely on manual 

analysis carried out by experts solely. The process has to be 

automated in order to match the high birth rate of new bots 

these days. On the other hand, the rampant usage of binary 

obfuscation also brings new challenge to traditional 

analysis and classification techniques that are based on 

string pattern matching or disassembly. These traditional 

techniques use the raw instruction sequence to characterize 

a binary, and the sequence can now be easily mutated 

through binary obfuscation. 

In this work, we present a framework for the automatic 

analysis and classification of bot binaries. The framework 

uses dynamic analysis to extract system call sequences 

from bot binaries. The framework then classifies the 

binaries based on the LCS similarity of system call 

sequences. We notice that obfuscation can relocate 

instructions in a bot binary. On the other hand, obfuscation 

can also introduce extra system calls into a call sequence. 

Both of these can negatively affect the classification 

accuracy. We therefore come up with heuristics to 

compensate these effects. Another problem is that many 

bots contains anti-VM code to prevent being analyzed in a 

virtual machine (VM), we therefore use the PIN tool to 

observe their behaviors in real machines. Our experiment 

based on 564 distinct bot binaries and 1692 variants shows 

that the framework is able to achieve high classification 

accuracy (94% true positive rate and 93% true negative rate) 

even with obfuscated bot binaries. Overall, the framework 

offers a streamlined and effective process for the automatic 

analysis and classification of obfuscated bot binaries. 



International Journal of Network Security, Vol.16, No.6, PP.477-486, Nov. 2014 478 

 

Controller Classifier

Recorder
Bot 

Sample

2. Start recorder

4. Record 
system calls

5. Store  
system call 
sequence

6. Start classifier

Storage

Database

1. Fetch a  new 
sample

7. Fetch system call sequence

3. Execute 
sample

 

Figure 2: Architecture diagram 

2 Background 

2.1   Taxonomy of Botnet 

A botnet is made of a bunch of bots, which are controlled 

by a command and control server (C&C server) as shown 

in Figure 1. A botnet typically follows the three-phase life-

cycle, that includes: (1) the injection of bots onto 

vulnerable hosts, (2) the injected bots establishing 

connections back to a C&C server and waiting for its 

commands, and (3) C&C server issuing commands to the 

bots to order the launch of attack on a chosen victim. 

The injection of bots can be achieved through many 

different ways such as exploiting vulnerability in network 

services, through e-mail attachment, via P2P file sharing, 

and so on. After a bot is injected into a computer, the bot 

will attempt to establish a communication channel with a 

C&C server. A popular approach is to rely on an existing 

IRC server to act as the C&C server. However, it is also 

possible to use a customized server. A malicious attacker, 

sometimes known as the bot herder, can remotely control 

the bots by issuing commands through the C&C server. The 

C&C communication channel is often encrypted to prevent 

anyone but the authorized bot herders from controlling a 

botnet. A botnet can have more than one C&C server to 

make the botnet more robust against crackdown. 

Any bot in a botnet can be used to carry out attack 

actions. This means that it is typically difficult to track 

down a single attack origin for crackdown in a botnet attack. 

Botnet is thus a very popular choice for conducting attacks 

such as e-mail spamming. When the bots in a botnet are 

instructed to carry out attacks on a targeted victim around 

the same time, the botnet can become a very effective 

DDoS attack weapon. For instance, the botnet MyDoom [8] 

was used to carry out a DDoS attack on the web site of 

SCO Group. 

2.2   Overview of Binary Analysis and Classification 

For the analysis of bot binaries, there are two different 

approaches: static analysis and dynamic analysis. Static 

analysis analyzes a bot binary without actually running it. 

In its simplest form, static analysis can be a straightforward 

string pattern matching within a binary. More advanced 

static analysis may involve disassembly of binary, 

constructing function call graph, and semantic analysis of 

the disassembled code. For instance, Liang [11] merges 

function calls into modules that characterize specific types 

of high-level tasks such as file and registry operation. 

Zhang and Reeves [21] look for common patterns of 

assembly code sequences in malware binaries. Han [7] uses 

the full-name here (API) list in the full-name here (IAT) 

table as a signature to cassify samples. None of the above 

works can deal with obfuscated binaries. In the work by 

Natarij [13], they design a binary-to-gray-level image 

converter to calculate the similarity of binary codes. While 

they can identify different malware from the same packer, 

they are unable to distinguish different malware from the 

same packer unless the packer has weak encryption 

schemas. 

Static analysis typically runs very fast. It does not 

require actually running the bot binaries (and possibly 

causing damages). However, it can be easily defeated by 

binary obfuscation [6]. One common technique used in 

binary obfuscation is encrypting the binary, so a 

straightforward string matching or disassembly will not be 

able to give any meaningful analysis result. More advanced 

static analysis tools may attempt to decrypt an obfuscated 

binary, but still the obfuscation can introduce extra layers 

of protection. For instance, the layout of a binary can be 

restructured and redundant data fields or garbage codes can 

be added to the binary to cause noise to the static analysis 

process. Some obfuscation tool such as Themida [15] can 

even translate an x86 binary into a binary for some 

unknown architecture and use a virtual machine (VM) of 

the corresponding architecture to execute the obfuscated 

binary. 

The weakness of static analysis on obfuscated binary 

has led to interests in the development of dynamic binary 

analysis techniques. One approach is API hooking, in 

which key system APIs are hooked by monitoring routines 

to track their usage. Since API hooking incurs overhead 

only when the hooked APIs are invoked, the dynamic 

analysis process can be made quite efficient. However, a 

limitation with API hooking is that those in-between 

instruction sequences that do not involve system APIs will 

not be analyzed. It is also possible that a bot binary can 
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Bot
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Figure 1: Architecture of a botnet 
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MOV EAX,0x1b

MOV EDX,0x5a0e0300

SYSENTER or INT 2Eh

callback_before()

callback_after()
 

Figure 3: Intercept system calls through instrumentation 

(Windows platform) 

NTSTATUS ZwQueryValueKey( 

  __in  HANDLE KeyHandle, 

  __in  PUNICODE_STRING ValueName, 

  __in  KEY_VALUE_INFORMATION_CLASS KeyValueInformationClass, 

  __out_opt  PVOID KeyValueInformation, 

  __in  ULONG Length, 

  __out PULONG ResultLength 

); 
 

Figure 4: Example of Windows system call (native API) 

attempt to unhook the monitoring routine or make direct 

API call into the kernel to bypass the dynamic analysis 

[20]. 

Another approach for dynamic analysis is through full 

system emulation [2], where a bot binary is executed in an 

operating system that runs on a hardware platform 

emulator (e.g. QEMU). The emulator can be modified to 

extract detailed runtime information such as instructions 

executed, memory content at arbitrary address, and so on. 

This kind of dynamic analysis can be very thorough. 

Typically, the emulated environment is isolated from the 

outside world, so the dynamic analysis process cannot be 

bypassed or disabled. However, it is possible that a bot can 

detect the emulated environment (e.g. through 

fingerprinting BIOS, and so on.) and refrain from showing 

its full behavior [14]. The approach also comes with 

significant runtime overhead due to emulation. For instance, 

systems running on QEMU can experience a 4~10 times 

slowdown compared with systems running directly on the 

underlying hardware [4].  

Bayer, Kruegel and Kirda [3] proposed a system named 

"TTAnalyze" that executes a binary sample inside a virtual 

machine to observe the binary’s runtime behaviors 

including file modification, registry modification and 

network access. A popular tool for online binary dynamic 

analysis is CWSandbox [20], where one can upload 

suspicious binaries for dynamic analysis in their sandboxed 

environment. A limitation with dynamic analysis is that 

only those executed control paths are analyzed by default. 

This limitation can be addressed by symbolic execution 

[12]. Li, Xu, Zheng and Xu [10] also use system call 

sequence similarity to classify samples. Their method 

focuses on the patterns of continuous system call. In 

comparison, our framework also considers more detailed 

features such as gap shift (Sec. 0) in a system call sequence. 

LeDoux [9] combines signatures from Anubis and 

CWSandbox to achieve higher accuracy, but more 

signatures also means more time to analyze samples. 

3 System for Analysis and Classification of 

Obfuscated Bot Binaries 

Figure 2 shows the architecture of the system. First, the 

controller fetches a bot binary sample from disk storage 

(step 1). It then starts the recorder (step 2) to begin dynamic 

analysis on the bot sample. During the dynamic analysis, 

the system calls invoked by the bot sample will be collected 

(step 3 and 4). The recorder relies on the dynamic 

instrumentation tool PIN [16] to record the system calls 

invoked by the binary during its execution. The data 

collected are stored in the database (step 5). Once the 

sample stops running or when a predefined timeout limit is  

reached, the controller will terminate the recorder and 

initiate the classifier. The classifier will classify the sample 

based on its system call trace (step 6 and 7). 

3.1   Analysis of Bot Binaries 

As mentioned in Section 2.2, API hooking is susceptible to 

tampering. On the other hand, full system emulation incurs 

a high overhead and is not suitable for the analysis of a 

huge volume of bot binaries. Instead, we use process-level 

binary instrumentation [16] as the mechanism for the 

dynamic analysis of bot binaries. Process-level binary 

instrumentation can instrument monitoring routine code 

into a bot binary’s process memory at runtime. The 

instrumentation tool can breakpoint the execution of a 

process at locations of interests and insert monitoring code 

at those locations (e.g. locations where a system call is 

about to be invoked). An instrumented process is executed 

natively on the hardware, so the analysis process can be 

made almost as fast as that of API hooking. On the other 

hand, instrumentation is more versatile than API hooking in 

the sense that the monitoring code can be instrumented 

almost anywhere in the text segment of a process, not just 

at the system call sites. However, instrumentation-based 

analysis is typically limited to user-mode process and is not 

suitable for analyzing kernel-mode malware such as rootkit. 

For analyzing kernel-mode malware, it is more appropriate 

to rely on full system emulation. 

In Figure 3, on 32-bit Windows platform, the 

invocation of system call relies on either software interrupt 

INT 2Eh or the SYSENTER instruction to transfer control 

into the kernel-mode system call handler. The system call 

number is passed by the EAX register. The call arguments 

are passed by the stack. A pointer to the arguments on the 

stack will be passed through the EDX register. We use PIN 

API PIN_AddSyscallEntryFunction() to instrument the 

monitoring routine callback_before() right before each 

SYSENTER/INT 2Eh instruction. This allows the recorder 

to intercept the invocation of each system call and collect 

the corresponding system call number, call arguments, and 

thread ID. The monitoring routine can acquire these 

information through PIN API PIN_GetSyscallNumber(), 

PIN_GetSyscallArgument(), and PIN_GetTid() respectively. 

On the other hand, the analyzer also instruments the 
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Figure 5: Segments of system calls in an obfuscated binary 

monitoring routine callback_after() right after each 

SYSENTER/INT 2Eh instruction. This is used to collect 

the return value of each system call. 

Some of the system call arguments may be pointers. For 

instance, the Windows system call ZwQueryValueKey has 

six call arguments (Figure 4). The second argument 

ValueName and the fifth argument ResultLength are 

pointers. When collecting system call information in 

callback_before(), the recorder will deference pointer 

arguments and record the values stored at the memory 

addresses pointed by the pointers. 

3.2   Features for Classification: System Call Sequence 

The analyzer will group the collected system calls from a 

bot binary based on thread IDs. In the current 

implementation, the analyzer only keeps the system calls of 

the main thread (the thread that contains the most number 

of system calls). The system calls in the main thread is then 

sorted into a system call sequence based on the invocation 

time of each system call.  

An example of a system call sequence from an 

obfuscated bot sample is shown in Figure 5. The system 

calls in the sequence can be roughly divided into four 

segments. Segment A includes system calls related to the 

initialization of a new process. (e.g. loading of the 

executable image and the related library files). Segment B 

represents the stub loader embedded by an obfuscation tool 

used for initializing the runtime environment. In the case of 

UPX [19], segment B is mainly about the decompression of 

program text. For Themida, segment B corresponds to the 

loading and initialization of the built-in virtual machine. Of 

most interest to us is segment C, which contains the system 

calls made by the original bot binary itself. System calls in 

segment C characterizes the behavior of a bot binary. 

Segment D contains system calls used for the deallocation 

of resources (files, memory, etc.) at the time of process 

termination. 

3.3   LCS Similarity of System Call Sequences 

The number of bot binaries is huge. The proposed 

framework comes with a classification process to help the 

study of bot binaries by automatically identifying and 

grouping bot binaries into classes. The similarity between 

two bot binaries is judged by the similarity between their 

system call sequences.  

Bot binaries can bear similarity in their system call 

sequences for at least two reasons. First, a bot binary is 

often obfuscated into different forms to avoid signature-

based detection. The obfuscated binaries will still contain 

the system call behavior of the original binary, or they will 

not be able to fulfill the same intended functionality as the 

original binary. The other reason for similarity in bot binary 

system calls is because malware writers may reuse some 

code pieces from previous malware. By looking for 

similarity in the system call sequences, the classification 

process can help identify the bot variants more quickly.  

The similarity between two bots is defined based on 

their system call sequences. Specifically, the similarity is 

defined by the longest common subsequence of the system 

call sequences of the two bots. Let us assume that the two 

system call sequences are X:
1 2 3, , , , mX X X X  and 

Y:
1 2 3, , , , nY Y Y Y , where Xi and Yj are the IDs of the 

respective system calls made by the two bots in ascending 

invocation time order. The longest common subsequence 

LCS(X,Y) is a common subsequence of X and Y with 

maximal length |LCS(X,Y)|. 

To evaluate the system call sequence similarity S(X,Y) 

between two call sequences X and Y, we define S(X,Y) as 

( , )
( , ) ,

min( , )

LCS X Y
S X Y

X Y
                                     (1) 

which is the ratio of the maximal length of the common 

system call sequence to the length of the shorter sequence 

of X and Y. Since
| ( , ) | min(| |,| |)LCS X Y X Y

, the 

value of S(X,Y) is between 0 and 1, where 1 means either 

X is a subset of Y, or Y is a subset of X. The similarity 

value S(X,Y) is then compared against a threshold value TS 

to decide if X and Y should be placed in the same class. 

The decision rule is 

( , ) Different class,

( , ) Same class.

s

s

S X Y T

S X Y T






 (2) 

while the value of TS is decided in Sec. 0 for 

maximizing true positive rate and true negative rate. 

3.4   Improve Classification Accuracy with Gap Shift 

Ratio 

System calls in the longest common subsequence LCS(X, Y) 
may not always come from the same locations in sequence  
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Figure 6: The gap shift sequence of Agobot original vs. 

Agobot Themida 
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Figure 7: Gap shift value chart of Bodombot original & 

Breplibot origional 

X and Y. Although these system calls appear in both X and 

Y, they may carry quite different semantic meanings. For 

instance, two consecutive CreateProcess() calls could very 

likely come from a function used in some initialization 

work. On the other hand, two CreateProcess() calls that 

spread far apart may more likely come from two separate 

functions that are not related to each other. Due to this 

reason, the LCS similarity between two unrelated bot 

binaries can sometimes become erroneously high. This will 

cause the classification process to put the two binaries into 

the same class by mistake according to Equation 2. 

To address the deficiency in classification with LCS 

similarity alone (Equation 2), we propose a heuristic that 

factors in the effect of the gap shifts in system call 

sequences. Specifically, after we obtain the LCS sequence 

1 2 1( , , , , ,..., )k k lS S S S S  of X and Y, we will 

determine the respective indices for each system call Sk in X 

and Y. This would create two sequences of indices: 

IX: 1 2 3( , , , , )lp p p p  for X and IY:
 1 2 3( , , , , )lq q q q  

for Y. For example, p1 is the index of system call S1 in X 

and q1 is the index of S1 in Y. If S1 is the first system call in 

X, then p1 is 1. And, if S1 is the 100
th

 system call in Y, then 

q1 are 100. 

The gap shift sequence G is constructed by taking the 

difference of each pair of elements from IX and IY, so we 

have G: 1 1 2 2 3 3( , , , , )l lp q p q p q p q    . We then 

define N(G) as the number of the distinct values in the 

sequence G. According to our observation, for two bot 

binaries that should belong to the same class, their N(G) 

value will be small. Because they are similar in their 

behaviors, their system calls in common should bear 

similar semantic meanings, and the relative gap shifts 

should be similar as well. On the other hand, for two 

unrelated binaries, the corresponding N(G) value will be 

usually high. 

Figure 6 shows the gap shift sequence between Agobot 

original (unpacked) and Agobot Themida (obfuscated by 

Themida). The gap shift values for the first 762 system 

calls are below 80 because they correspond to the 

initialization of a new process (Segment A of Figure 5). 

This part of the system call sequence is hardly affected by 

the Themida packer. From the 763
th

 system call and onward, 

we can see a huge shift (about 865) in the system call 

indices. This shift is due to the unpacking loader code 

(Segment B in figure 5) inserted by the Themida packer 

between the 762
th

 system call and the 763
th

 system call. The 

two bot binaries are related, and as we can see from the plot, 

the gap shift values only take on a few levels (the 

corresponding N(G) value is 27). 

Figure 7 shows the gap shift sequence between two 

different bots: Bodombot and Breplibot. The LCS 

similarity between these two bot binaries is 0.97, which 

will cause incorrect classification according to Equation 2. 

Looking at the gap shift sequence plot in Figure 7, we can 

see that the gap shift values take on many different levels 

(the N(G) value is 100). This indicates that the common 

system calls as identified by LCS are located at quite 

different locations in Bodombot and Breplibot, meaning 

that the corresponding behaviors shall be quite different. 

The N(G) value also increases with the length of a gap 

shift sequence. We can normalize it by the length of the gap 

shift sequence L=|G| and define the gap shift ratio R as 

          
( )

.
N G

R
L

  (3) 

Combined with Equation 2, the criteria for determining 

if two bot binaries belong to the same class is now defined 

as 

Different class,

Different class,

Same class.

s

s r

s r

S T

S T and R T

S T and R T




 
  

       (4) 

3.5 Improve Classification Accuracy of Call Sequences with 

Segment Identification 

In Figure 5, we see that only segment C of a system call 

sequence is of relevance for identifying bots with similar 

behaviors. The system calls in segments A and D are 

common to most executable files, and segment B is 
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Table 1: List of bots used in the experiment 

Id MD5 Kaspersky Sophos 

1 ea46b4606531d28

474e06cb4cd060c

71 

Backdoor.Wi

n32.Anibot.b 

Mal/IRCBot-B 

2 c1ed6261902e

bc178f55159c

a1b061b1 

Backdoor.

Win32.Afb

ot.a 

Mal/IRCBot-C 

3 d7b32cc7056f

37eb8ccf0d1f4

72d8e5b 

Backdoor.

Win32.Rb

ot.gen 

W32/Rbot-Gen 

4 fa29f9048e3b

57705e97583d

70f00ba1 

Backdoor.

Win32.Ag

obot.gen 

W32/Agobot-

Gen 

5 f1f9f762f899a

24a2d71a35c4

b825db8 

Backdoor.

Win32.Ro

hbot.a 

Mal/Generic-A 

6 69fd63dade7c

d4f8878c6e80

084069fb 

Backdoor.

Win32.Rb

ot.gen 

W32/Rbot-Fam 

7 4aac37248630

70dc422ad0dc

0a39a5af 

Backdoor.I

RC.Botva.

b 

Troj/Bckdr-MPJ 

8 8a87d88714f2

017e2cdd7491

2449e7cf 

Backdoor.

Win32.De

vBot.b 

Troj/DevBot-B 

9 c3207feb5160

c71227dbd92c

c3fe4e53 

Backdoor.

Win32.Da

SBot.12 

Mal/Generic-A 

10 0ce8ccbd76e6

126ed10350fd

70c37d98 

Backdoor.

Win32.Poe

Bot.a 

 W32/Poebot-

Gen 

 

 

NTOpenKey 

\Registry\Machine\Software\Micros

oft\Windows 

NT\CurrentVersion\Image File 

Execution Options\winmm.dll 

 

NTOpenKey 

\Registry\Machine\Software\Micros

oft\Windows 

NT\CurrentVersion\DRIVERS32 

 

NTQueryValueKey wave 

NTQueryValueKey wave 

NTQueryValueKey wave1 

NTQueryValueKey wave2 

NTQueryValueKey wave3 

NTQueryValueKey wave4 

NTQueryValueKey wave5 
 

Figure 8: System call sequence in segment B from a 

Themida-obfuscated binary 

 introduced by an obfuscation tool. We can improve the 

classification accuracy by ignoring segments A, B, and D 

in the calculation of LCS similarity and gap shift ratio. 

Segment A and D are easy to identify and ignore as they 

are very much the same across all executables.  

Segment B, on the other hand, is much more difficult to 

deal with, because it depends on the type of obfuscation 

tool in use. As a result, we have to build profiles for each 

different obfuscation tool in order to identify and remove 

segment B effectively. As an example, a Themida-

obfuscated binary always has the system calls shown in 

Figure 8 in segment B, which can be reliably removed to 

improve classification accuracy. 

To build the profile, we use LCS to identify the 

common subsequence over a bunch of binaries obfuscated 

by a given packer (e.g. Themida). The resulting common 

subsequence that is left should include only segment A, B, 

and D. Since segment A and D are standard to any 

executable, we can trim them away in the recorder and 

extract segment B as the profile for the corresponding 

obfuscation tool. 

4 Experiments 

We conduct four experiments to evaluate the proposed 

framework. The first two experiments (Section 4.1 and 

Section 4.2) look at the effect of obfuscation on LCS 

similarity and gap shift ratio. Ideally, neither of them 

should be significantly affected by obfuscation, or the 

proposed framework would fail to accurately classify 

obfuscated bot binaries according to Equation 4. In the 

third experiment (Section 4.3), we look at how the selection 

of different threshold values TS and TR affects the 

classification accuracy. In the fourth experiment (Section 

4.4), we evaluate the overall effectiveness of our 

framework with a large sample of 564 real-world bot 

binaries. 

4.1 LCS Similarities and Gap Shift Ratios between 

Variants of a Bot Sample 

In this experiment, we calculate the LCS similarities and 

gap shift ratios between bot variants, which are created by 

obfuscating 10 (unpacked) bot samples with different 

packers. We use the 10 unpacked bot samples (Table 1) as 

the baseline (denoted as group A) in this experiment. We 

then obfuscate each of those 10 bot samples with ASProtect 

[1] to create ASProtect-obfuscated test targets (denoted as 

group B). We also create 10 Themida-obfuscated test 

targets (denoted as group C) and 10 UPX-obfuscated test 

targets (denoted as group D). For each bot sample, there are 

six different combinations for evaluating the LCS 

similarities and gap shift ratios: (A,B), (A,C), (A,D), (B,C), 

(B,D), and (C,D). For instance, in the case of (A,B), we 

will take one bot from group A and calculate the LCS 

similarity and gap shift ratio of it with the corresponding 

ASProtect-obfuscated version of the bot from group B. 

This yields 10 data points, and overall, there will be 60 data 

points, which are summarized in Figure 9. 

Figure 9 shows the distrbution of the 60 data points. 

Here, each data point corresponds to the LCS similarity (S) 

and the gap shift ratio (R) between two variants of a bot 

sample. Each of the circle in Figure 9 represents a group of 
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data points with the same LCS similarity and gap shift ratio. 

The diameter of the circle is proportaionl to the number of 

data points in that circle. As we can see, most of the data 

points present a high LCS similarity values (close to 1) 

indicating that the two corresponding variants are from the 

same origin. On the other hand, the gap shift ratios are low 

(near 0.01), which also indicates the variants are from the 

same origin. This shows that LCS similarity and gap shift 

ratio are not sensitive to obfuscation with respect to 

identifying bot variants of the same origin. 

4.2 LCS Similarities and Gap Shift Ratios between 

Distinctive Bot Samples 

In this experiment, we evaluate the LCS similarities and 

gap shift ratios between bot samples of different origins. 

First, we calculate the pair-wise LCS similarities and gap 

shift ratios for the 10 unpacked bot samples (group A in 

Sec. 0). The result is presented in Figure 10-A. We then 

calculate the pair-wise LCS similarities and gap shift ratios 

for the ASProtect-obfuscated bot samples (group B) with 

the result shown in Figure 10-B. The results for Themida-

obfuscated bot samples (group C) and UPX-obfuscated bot 

samples (group D) are presented in Figure 10-C and Figure 

10-D respectively. 

This result shows that the LCS similarities (S) between 

bot samples of different origins are widely dispersed. The 

LCS similarities no longer concentrate near 1 as in Sec. 0. 

Some of the data points have high LCS similarities, but 

comparing to Figure 9, their gap shift ratios (R) are mostly 

above 0.05. Thereby, if we consider both the LCS 

similarity and gap shift ratio together as in Equation 4, we 

can also reliably distinguish bot samples of different origins. 

4.3 Choosing TS (LCS Similarity Threshold) and TR 

(Gap Shift Ratio Threshold) 

From the previous two experiments, we know that for bot 

variants from the same origin, their LCS similarity values 

are close to 1 and their gap shift ratios are close to 0. On 

the other hand, for bot samples from different origins, their 

LCS similarities are widely dispersed and the gap shift 

ratios tend to be larger. Based on the observation, we 

designed the classification criteria of Equation 4. To 

determine the proper threshold values TS and TR in  

 

 

Figure 9: Distribution of LCS similarity and gap shift ratio 
  

A. Non-obfuscated bots  

 

B. ASProtect obfuscated bots 

 
C. Themida obfuscated bots 

 

D. UPX obfuscated bots 

Figure 10: Result distribution on the same obfuscation 

samples 

 

Figure 1 Distribution of LCS similarity and gap shift ratio 
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Figure 11: True positive rate 

 

Table 2: Classification accuracy 

True Positive ate True Negative Rate 

94% 93% 

 

Equation 4, we experiment with different TS and TR values 
and look at the corresponding classification accuracy in 

terms of true positive rate (TPR) and true negative rate 

(TNR). True positive rate represents the percentage of bot 

samples classified in the same group, which are indeed 

from the same origin. On the other hand, true negative rate 

represents the percentage of bot samples classified into 

different groups, which indeed belong to different origins. 

The effect on TPR and TNR when varying the LCS 

similarity threshold (TS) and gap shift ratio threshold (TR) is 

shown in Figure 11 and Figure 12. We thereby consider 

0.53 as an appropriate threshold value TS and 0.05 as the 

threshold for TR because this can achieve an overall 95% 

TPR and 92% TNR. 

4.4 Classification Accuracy on a Large Sample of Bots 

In this experiment, we conduct a large scale experiment 

with 560 distinct bot samples from the honeypot at campus, 

along with 4 legitimate programs: notepad, Firefox, MS 

Word, and 7-Zip. For each of the 564 binaries, we create 3 

obfuscated variants with ASProtect, Themida, and UPX 

respectively. This results in a total of 2256 binaries, 

including original programs and obfuscated ones. We then 

use the proposed framework to analyze and classify all the 

binaries. The threshold TS is set to 0.53 and the threshold TR 

is set to 0.05 according to Section 4.3. 

The classification result is summarized in Table 2. 

Overall, we can see that the framework achieves a decent 

94% true positive rate and 93% true negative rate on the 

classification of the 2256 binaries. 

5 Conclusions 

We propose a framework for the automatic analysis and 

classification of obfuscated bot binaries. The framework 

use dynamic analysis to extract the system call sequence of 

a bot binary. Since system calls define the interactions 

between a program (the bot binary) and the operating 

system, obfuscation can hardly alter the call sequence 

without breaking the interactions. We rely on this property 

and use the system call sequence to characterize the 

behavior of a bot binary. 

For the classification, we define a similarity metric 

between two bot binaries based on the longest common 

subsequence (LCS) of their system call sequences. The 

LCS similarity does not consider the relative locations of 

system calls in the two binaries, and that can cause mis-

classification in some cases. This is addressed by a 

heuristic called gap shift ratio, which detects excessive 

variation in the relative locations of system calls.  

Although obfuscation can hardly change the original 

system call sequence in a bot binary, it can often introduce 

additional system calls into an obfuscated binary. Most of 

them are due to the obfuscation tool's stub code. The 

additional system calls are noises to the classification 

process, and we have come up with a segment 
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Figure 12: True negative rate 

 identification process to filter out these noises. Overall, the 

framework can achieve 94% true positive rate and 93% true 

negative rate. 

The current system is based on an off-line process. It 

records the system call sequence and then compares the 

sequence with sequences of known samples in the database. 

In future work, we plan to implement an on-line analysis 

process, where the system can work as an anti-virus tool 

that can detect running bots on a computer. 
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