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Abstract

Many denial-of-service (DOS) attacks in wireless net-
works, such as jamming, will cause significant perfor-
mance degradation to the network and thus need to be
detected quickly. This becomes more important in a cog-
nitive wireless network employing dynamic spectrum ac-
cess (DSA), where it is easier for the attackers to launch
DOS attacks. For instance, the attackers may pretend to
be a licensed primary user, and carry out the primary user
emulation (PUE) attacks. The attackers may also explore
the spectrum themselves, and conduct smart jamming.
These attacks usually happen at unknown time and are
unpredictable due to the lack of prior knowledge of the
attackers. It is also observed that the statistical prop-
erty of the resulted paths from multipath routing will
have abrupt change when the attack happens. Hence,
in this paper, we formulate the detection of DOS attacks
as a quickest detection problem, i.e., detect the abrupt
changes in distributions of certain observables at the net-
work layer with minimum detection delay, while main-
taining a given low false alarm probability. Specifically,
we propose a non-parametric version of the Pages cumu-
lative sum (CUSUM) algorithm to minimize the detection
delay so that a network manager may react to the event as
soon as possible to mitigate the effect of the attacks. Sim-
ulation results using a Spectrum-Aware Split Multipath
Routing with dynamic channel assignment as a baseline
routing protocol demonstrate the effectiveness of the pro-
posed approach.

Keywords: Cognitive radio, denial-of-service attacks,
quickest detection

1 Introduction

Many denial-of-service (DOS) attacks in wireless net-
works, such as jamming, will cause significant perfor-
mance degradation to the network and thus need to be

detected quickly.

This becomes more important in a cognitive radio
(CR) wireless network employing dynamic spectrum ac-
cess (DSA), where CR users will have the capability to
adaptively sense a wide range of frequencies and to op-
portunistically use the unused spectrum in a heteroge-
neous environment. This is because it becomes easier
for the attackers to launch sophisticated DOS attacks in
CR networks. For instance, the attackers may pretend to
be a licensed primary user, and carry out the primary
user emulation (PUE) attacks [1]. The attackers may
also explore the spectrum themselves, and conduct smart
jamming [21]. A common characteristic of these attacks
is that they cause anomalous spectrum usage and dis-
rupt the dynamic spectrum access, thus we termed them
“Anomalous Spectrum Usage Attacks” (ASUAs) in the
context of CR wireless networks [18].

In light of the new types of attacks specific to CR
networks, we observe that a common characteristic of
the attacks in both examples is that they cause Anoma-
lous Spectrum Usage Attacks” (ASUAs) in the context
of CR wireless networks. Anomalous Spectrum Usage
Attacks are extremely difficult to detect, especially for
many mission-critical applications and such as in emer-
gency response where an infrastructure may not exist or
function. Denial of Service (DoS) attack is a specific type
of ASUA that can cause severe performance degradation
in the context of CR networks because of the ability to
make the spectrum resource unavailable which can sub-
sequently disable CRs attempting to establish communi-
cation with each other. This new type of security attacks
in CR is not well researched and should be investigated
further if CR technology is to be deployed successfully.

Network intrusions due to ASUAs or DoS attacks hap-
pen at an unknown time and are usually unpredictable
due to the lack of knowledge of the attackers. It is also
observed that the statistical property of a certain ran-
dom process will have an abrupt change when the attack
happens. For example, ASUAs will cause the availability
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of the spectrum to suddenly decrease. Quickest Detection
(QD) has been used to detect distribution changes of a se-
quence of observations as quickly as possible with the con-
straint of false alarm or detection probability. Common
methods of QD include sequential detection, Bayesian de-
tection, and CUSUM test [13]. In many existing works in
the literature, such as [2, 5, 7, 8, 9], quickest detection has
been applied to detect emerging primary users (PUs) so
that the CR users could vacate the spectrum quickly and
avoid harmful interference to the PUs. In this work, we
dedicate our effort on a new topic, namely detecting spe-
cial cases of ASUAs, DoS attacks in CR ad hoc networks.

Figure 1: Block diagram of the proposed cross-layer ap-
proach for detection of Denial-of-Service Attacks in cog-
nitive radio networks.

In this paper, we are interested in a specific type of
smart jamming where the jammer is assumed to have sim-
ilar capabilities of a CR user, i.e., the jammer is able to
monitor the spectrum and observe other users’ activities.
In addition, a smart jammer only start jamming after a
legitimate transmission is detected, and it will stop jam-
ming as soon as the legitimate transmission stops. As a
result, its activity will not be picked up by the popular
energy detection based spectrum sensing at the physical
layer because the smart jammer will stop transmission
during the quiet period when the CR users perform spec-
trum sensing. However, it was shown in our preliminary
work that this type of smart jamming will cause change
at the network layer, specifically it will cause changes in
the distribution of the obtained multiple paths from rout-
ing [18]. Hence, in this paper, we formulate a quickest
detection problem to catch such smart jammers, i.e., de-
tect the changes in distributions of certain observables at
the network layer with minimum delay, while maintain-
ing a given low false alarm probability. Specifically, we
employ a Spectrum-Aware Split Multipath Routing (SA-
SMR) as a baseline multipath routing protocol to pro-
vide necessary network layer observables (obtained mul-
tiple paths). According to the obtained paths along time,
a non-parametric version of the Page’s cumulative sum
(CUSUM) test [12] is proposed to detect change in dis-
tribution of the obtained paths, subject to a maximum
allowable false alarm rate. Then comparing to physical-
layer spectrum sensing results, the smart jammer can be
identified and located. A block diagram is shown in Fig-
ure 1 to illustrate our idea. Extensive simulations have
been performed to demonstrate the feasibility of the pro-

posed scheme and the receiver operating characteristic
(ROC) curve are plotted to quantify the effectiveness of
the proposed method. The tradeoff between the average
detection delay and false alarm probability is also shown.

The rest of this paper is organized as follows. The
proposed Spectrum-Aware Split Multipath Routing (SA-
SMR) is introduced in Section 2. Background on quickest
detection is provided in Section 3. The quickest detection
problem for jamming attack is formulated in Section 4,
with proposed solution. Simulation studies and our find-
ings of these experiments are given in Section 5. Compar-
isons with existing related works on quickest detection for
CR networks are given in Section 6. Section 7 contains
the concluding remarks and future work.

2 Spectrum-Aware Split Multi-
path Routing (SA-SMR)

In a cognitive wireless ad hoc network, the links among
CR users may be highly unreliable due to the activities
of the PUs. A backup could be set up in the frequency
spectrum, say, preparing backup channels for each CR
user [10]. When PU emerges, the affected CR user can
scan for another idle channel for transmission. However,
such an approach may incur significant overhead since
finding a new idle channel may be time-consuming. Fur-
thermore, if the PU occupies all available channels, the
traffic path will no longer work, thus causing a serious
performance degradation. A promising solution would be
using multipath routing, where the end-to-end through-
put is resilient to the dynamic behavior of the PUs [22]. In
addition, multipath routing is an effective solution against
jamming attacks [4].

In this section, a novel spectrum-aware multipath rout-
ing protocol, Spectrum-Aware Split Multipath Routing
(SA-SMR), is introduced as a baseline routing protocol
for cognitive wireless ad hoc networks. Routing proto-
cols for cognitive ad hoc networks need to be spectrum
aware, such that the performance of such protocols would
be robust and efficient in a dynamic spectrum access net-
work [16]. Since the objective here is not designing an
optimal routing protocol, but to explore the effects of
PUs’ activities and spectrum sensing by the CR users
on the resulted paths, we use a generic spectrum-aware
multipath routing protocol by modifying Split Multi-path
Routing [6] with dynamic channel assignment. This pro-
tocol serves as a baseline spectrum-aware multipath rout-
ing protocol for performance evaluation.

Split Multi-path Routing (SMR), introduced by Lee
and Gerla [6], is an on-demand routing protocol that
constructs maximally disjoint paths. SMR is based on
DSR [3] but uses a different packet forwarding mechanism.
While DSR discards duplicate routing request (RREQ),
SMR allows intermediate nodes to forward certain du-
plicate RREQ in order to find more disjoint paths. In
SMR, intermediate nodes forward the duplicate RREQ
that traversed through a different incoming link than the
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link from which the first RREQ is received, and whose
hop count is not larger than that of the first received
RREQ. Here we choose SMR as a starting point because
it constructs maximally disjoint paths that provide much
needed backup paths in cognitive wireless ad hoc networks
where PUs’ activities may constantly disrupt CR users’
traffic. In order to use SMR in a dynamic spectrum access
network, we modify SMR in two respects:

1) Dynamic channel assignment is added since each pair
of neighbors along the route must have at least one
available (data) channel in common to be used for the
data traffic. However, to make the protocol generic
and to avoid overhead for complicated distributed
scheduling to minimize the intra-flow and inter-flow
interferences, we do not optimize the channel assign-
ment procedure and simply let the pair of neighbor-
ing nodes to uniformly randomly choose a channel
from the set of their common available channels.

2) Two additional fields on channel availability and traf-
fic load (in unit of channel) are added to RREQ.

Note that collecting all the physical layer spectrum
sensing results to a central node to perform collabora-
tive spectrum sensing in a large CR ad hoc network re-
quires a lot of overhead, both in terms of sensing a wide
spectrum by each individual CR user and the bandwidth
and delay incurred by reporting the results to the central
node. On the contrary, using multipath routing in a CR
ad hoc network covering a large geographical area is nec-
essary to provide robustness and thus quality-of-service
to CR users. Hence, the proposed SA-SMR will not incur
much overhead (except two additional fields on channel
availability and load) if a multipath routing approach is
needed and implemented for the robust operation of the
network. Furthermore, the information provided by the
physical layer spectrum sensing results and from the pro-
posed quickest detection using the resulted paths from
multipath routing usually complement each other and it
can be used for cross examination to distinguish jammers
from legitimate PUs.

3 Background on Quickest Detec-
tion

Detecting abrupt changes in a probability distribution of
a time series or a stochastic process during data acqui-
sition is referred to as quickest detection. In general,
quickest detection can be referred to as statistical change
detection, change-point detection or disorder detection.
Quickest detection is a well-known approach that dates
back to the 1930s in monitoring the quality of manufac-
turing processes. Quickest detection has recently gained
popularity in fields such as econometrics, finance, network
security and remote sensing. Quickest detection has to
deal with detecting whether or not a change has occurred
at an unknown time and determining when that change

occurred while maintaining an acceptable probability of
false alarm and minimizing the average detection delay.
There are two types of quickest detection methods: para-
metric and nonparametric. Parametric quickest detection
occurs when the pre-change and post-change distributions
is known beforehand. Nonparametric quickest detection
is different in that the distributions are unknown before-
hand. In this paper, the pre-change and the post-change
distribution is not known beforehand, thus nonparametric
quickest detection is applied. In this section, an overview
of subcategories of quickest detection is given.

3.1 Sequential Detection Overview

Sequential detection is a classical problem which can be
formulated as an optimal stopping problem. The er-
ror probabilities are optimized over a fixed decision time
which is how this problem becomes an optimal stopping
problem. The goal in this formulation is to create an op-
timal decision rule between two hypothesis (or statistical
models) after a minimum average number of experiments.
The tradeoff in this method is between the probability of
error and the decision time. Intuitively, to obtain more
accuracy in a decision, a longer decision time is needed.
Conversely, a smaller decision time will lead to a less ac-
curate decision. Performance indices of interest are the
probability of error and the decision time which are pe-
nalized for optimization purposes. Sequential detection
is advantageous in that as soon as a decision is made,
the observations stop. An overview of popular sequential
detection methods is given in the following sections.

3.1.1 Bayesian Quickest Detection

Kolmogorov and Shiryaev [17] presented the first formal
quickest detection method in the early 1960s. This formu-
lation assumes that a prior distribution is known which is
given as a geometric distribution. The goal is to detect an
abrupt change in distribution along a random sequence of
observations as quickly as possible. This approach uses
a log-likeliood ratio (LLR) to determine the hypotheses
that a change occurred or that no change occurred [19].
Two types of performance indices are of importance in
this formulation, the mean delay until detection and the
probability of false alarm. The changepoint is decided
once the posterior probability crosses a predefined thresh-
old based on current and past observations [13]. There are
several approaches to the Bayesian formulation including
the Shiryaev problem, the Bojdecki’s problem and the Ri-
tov’s problem. The disadvantage is that the assumption
of a known prior distribution is sometimes unrealistic in
a practical scenario.

3.1.2 Non-Bayesian Quickest Detection

Lorden first proposed a non-Bayesian quickest detection
approach in which a pre-existing statistical model of the
changepoint is given. This type of model is beneficial
in scenarios in which the assumption of a known prior
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distribution is unrealistic is not desired. In this type of
scenario, mean detection delay and false alarm probability
are not useful since there can be numerous distributions
for the observations. Lorden’s formulation optimizes the
worst case delay and places a constraint of the rate of false
alarms. The rate of false alarms is quantified by the mean
time between false alarms. A lower bound is placed on
the mean time between false alarms to control the false
alarms. The disadvantage of this approach is that the
pre-change distribution and the post-change distribution
should be known beforehand [13].

3.1.3 CUSUM Test

The CUSUM (cumulative sum) test is a sequential anal-
ysis technique proposed by E.S. Page [12] and is used to
monitor change detection. It is intuitively sequential since
analysis is performed as a result of each sum. Threshold-
ing of a statistic, S is sequentially summed until the value
S passes a threshold value. Upon the first crossing of this
threshold, a stopping time has been reached which in-
fers that a change has occurred. Similar to the Shiryaev
test, the CUSUM test also uses the LLR for testing the
hypotheses that a change occurred or that a change did
not occur. However, the CUSUM does not necessarily re-
quire the use of the LLR depending on the application.
In this case, an appropriate score function should be se-
lected to replace the LLR. Probability of false alarm and
probability of detection are two common performance in-
dices, however the average run length (ARL) time is an
additional metric to consider when applying the CUSUM
test.

We presented here a general overview of quickest detec-
tion. Depending on the application needed change point
detection analysis will determine which method of quick-
est detection that will be applied. We choose to use a
nonparametric version of the CUSUM method of quick-
est detection because it is proven to be optimal when the
post distributions are unknown beforehand.

4 Quickest Detection of Smart
Jamming

The effect of location-dependent channel availability is
significant in a CR ad hoc network which requires mul-
tihop communications for traffic sessions. As a result,
certain statistics of resulted paths from multipath rout-
ing can reveal potential “troubled” areas in the network,
which provide ground for further investigation of poten-
tial jamming attacks.

4.1 CUSUM Algorithm

In this study, because the prior knowledge of the attack
on the network is usually not available, we apply the
non-parametric version of the sequential detection algo-
rithm. Let Yn be a sequence of observations from moni-

toring the network. Assuming that the probability dis-
tribution before change is p0, and the probability dis-
tribution after change is p1, and the change occurs at
an unknown point in time, say at n∗. Thus the condi-
tional probability density function (PDF) before change
is p0(Yn|Y1, Y2, · · · , yn−1) when n < n∗, while the condi-
tional PDF after change is p1(Yn|Y1, Y2, · · · , yn−1) when
n ≥ n∗. Denote the time of detection, i.e., at which point
it is declared that a change has occurred, as nd, then the
detection delay is r = nd − n∗. Define two average run
lengths (ARL) [13] to measure the performance of the
quickest detection as follows

T̄1 = ess sup E1[r|nd ≥ n∗], (1)

T̄0 = E0[nd], (2)

where E1 denotes the expectation under the assumption
that the change happens at time n∗, E0 is the expecta-
tion under the assumption that the change never happens.
Note that the esssup in T̄1 means the worst-case delay.
For quickest detection, we need to obtain a small T̄1 and
a large T̄0.

4.2 Sequential Detection Algorithm

Anomalous Spectrum Usage Attacks (ASUAs) [18] are a
subtle type of Denial of Service (DoS) attack that can
cause severe damage in CR networks. This characteris-
tic renders these types of attacks difficult to detect. If
these types of attacks are not detected quickly, spectrum
shortage will result. Thus, quick detection approaches
such as sequential detection and batch-sequential detec-
tion should be implemented. These types of approaches
analyze statistics of a distribution before an attack and
after the attack. In order to obtain good performance,
an observable needs to be carefully selected such that be-
fore an attack, the distribution of the observable remains
normal, and an attack will result in sharp change of statis-
tics of the observable with high probability. There are two
common approaches used to detect this type of change:
sequential detection and batch-sequential detection [19].
Sequential detection is used here, because the statistics of
the observations are calculated on-line during data acqui-
sition which is advantageous.

In this work, we propose to use “the frequency of a
node (secondary user) appearing in the resulted paths
from routing” as a metric to categorize nodes. This is
based on our preliminary result [18] that the Probability
Mass Function (PMF) of this frequency changes dramat-
ically when under ASUAs. Define NP as the number of
obtained paths, mi as the number of times that node ni

appearing in those paths, then the percentage of ni ap-
pearing in the resulted paths is given by

fi =
mi

NP

. (3)

If a node never appear in any path, then fi = 0 for this
node. On the contrary, if a node appears in every path,
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then fi = 1. We use this observable fi as the metric to
put the nodes in different “bins”, i.e., according to the
percentage of that node appearing in the resulted paths
from routing. Suppose there are total B bins, and a node
ni will be put in bin j iff bj ≤ fi ≤ bj , where bj and bj are

the lower and upper bound of bin j, respectively1, then
the percentage of nodes belonging to bin j is given by

gj =
hj

∑B

j=1
hj

, (4)

where hj represents the number of nodes in bin j.
Ideally, the distribution before attack and after the at-

tack are known a priori and the probability of the log
likelihood ratio (LLR) can be used. However, an ASUA
occurs at a random time and its effect on the distribution
can vary. Thus the distribution after the attack is unpre-
dictable and unknown. Therefore, only the distribution
before attack can be assumed as known. Thus, we use a
nonparametric approach. Specifically, it is appropriate to
use a score function, v instead of using the LLR to detect
changes in multiple bins [19]. The size of each bin is gen-
erally based on the set of obtained paths. We evaluate
the mean value of gj , µj = E[gj ], in the before and after
attack distribution. The score function, v is selected so
that it can indicate the changes of µ after an attack. The
mean value, µj = E0[(A1,j , · · · , At,j)], can be estimated
during each t-th time interval, where At,j , is the total per-
centage of nodes in the t-th time interval in the j-th bin.
The score function is defined as:

vj (A1,j , · · · , At,j) = At,j − µj . (5)

Once the attack occurs, the CUSUM-type statistic be-
comes

Cn,j = max
1≤n∗≤n

n
∑

t=n∗

vj (A1,j , · · · , At,j) (6)

for the j-th bin, where n∗ is the change-point. Then the
decision rule is

{

Attack is not presented; if Cn,j < θ

Attack is presented; if Cn,j ≥ θ
, (7)

where θ is a pre-determined threshold. θ has to be care-
fully determined and it will have significant effect on the
performance of the QD algorithm, as we will see in the
numerical results later. Similarly, which bin should be
the observable for QD should be also carefully chosen.
Suppose a specific bin is selected, say the jth bin, the
declaration time for the jamming attack is obtained by
the following stopping rule:

n̂d = min{n : Cn,j ≥ θ}. (8)

It can be shown that the average detection delay is related
to the detection threshold in the following manner

E1[r|nd ≥ n∗] ≈
θ

E[vj ]
=

θ

E[At,j ] − µj

(9)

1A node will be put in bin j if fi = bj , or equivalently, we assume

that bj+1 = bj + δ, where δ is infinitesimal.

4.3 Cross-Layer Examination

Recall in Figure 1, a cross-layer examination is needed af-
ter the dramatic change in resulted paths from routing is
detected in order to distinguish between legitimate PU ac-
tivities and a smart jammer. The physical-layer spectrum
sensing results are obtained from the additional fields on
channel availability of the routing requests. The proposed
scheme for spectrum congestion detection consists of the
following three steps:

1) Perform statistical analysis of the paths/nodes ob-
tained from route discovery using SA-SMR. If
anomalous patterns occur, go to the next step. Oth-
erwise, choose several candidate paths and feedback
to the source node.

2) Passive checking: Cross check the anomalous pattern
in the resulted paths with physical layer spectrum
sensing results and the traffic load information, as
well as any prior knowledge on PUs from empirical
data to detect potential spectrum congestion.

3) Active checking: In order to confirm a spectrum con-
gestion, perform active checking by selectively inject-
ing controlled traffic to the potential congested area
and collect measurements such as the packet delivery
ratio.

In step 1, exactly how many routes will be chosen for sta-
tistical analysis is a design parameter in multi-path rout-
ing protocols. It depends on the multi-path data delivery
strategy and specific applications, with maximum disjoint
paths preferred. The passive checking in step 2 and the
active checking in step 3 progressively confirm whether
the suspicious area is indeed under spectrum congestion.
Since the focus of this paper is on the QD of network layer
changes, tests of the cross-layer examination procedures
are performed in our future work.

5 Simulation Results and Analysis

In this section, we present the numerical simulations to
demonstrate the performance of the proposed scheme. We
analyze how parameters such as the detection threshold
will impact the average detection delay (ADD), proba-
bility of false alarm, and probability of detection. The
simulation results are obtained in a 2500mx2500m square
area in which there are 10 licensed channels. One PU
is present that randomly turns on and transmits on a
number of randomly distributed (uniformly from 1 to 10)
contiguous channels during an on-period. The PU has a
circular interference range of 500m and the SUs located
within this area cannot access those channels occupied by
the PU. There exists 50 SUs which are randomly deployed
in the network in which each user has a sensing range of
300m. The smart jammer is randomly located in the net-
work and has a circular interference range of 300m and
occupies all of the channels within its range. An example
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scenario is shown in Figure 2 in which 68 paths were dis-
covered in the presence of a jammer and a PU. The nodes
in the interference range of the jammer do not have any
available channels to use since the jammer uses all of the
channels. However, some paths are created within the in-
terference range of the PU because there are still a few
channels available.

0 500 1000 1500 2000 2500
0

500

1000

1500

2000

2500

1

1

2

3

4

5

6
7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

Primary, Jammer and Secondary User Locations on Area Grid

 

 

2345

Primary User
Jammer User
Secondary User

Figure 2: Typical routing result from node 12 to node 47.

We created 200 time series of routing events, with
each series containing 20 time slots. During each time
slot, a source-destination pair is randomly selected and
Spectrum-Aware Split Multipath Routing (SA-SMR, see
Section 2) is used to obtain the paths. We select the
bins according to a 10% interval, i.e., bj − bj = 10%, for
j = 1, · · · , 12. For instance, a node ni never appear in
any path (fi = 0) belongs to bin1, a node appears in 8%
of the paths belongs to bin2, while a node contained in
every path (fi = 1) is in bin12. We are particularly in-
terested in the statistics of bin1 and bin12, because an
attack would push more nodes to these 2 bins. In other
words, under an Anomalous Spectrum Usage Attack, the
nodes under the influence of the attacker would not par-
ticipate in the routing process, thus they belong to bin1;
similarly, the attack will also create choking point such
that it will force many paths go through the same nodes,
thus increase the number of nodes in bin12. Hence, we
choose bin12 in this simulation study.

In the following experiments, we assume that we have
no knowledge whether the PU is on or off when performing
QD. As a result, the mean before an attack, µj , is esti-
mated using mixed cases with half with PU on and half
with PU off. In order to examine the effect of the thresh-
old value for QD, we vary the threshold value from 0.1
to 0.5 and plot the probability of false alarm in Figure 3
and the average detection delay in Figure 4, respectively.
It is observed that the average detection delay increases,
while the probability of false alarm decreases, when the
detection threshold increasing, as expected.

The results show that when the detection threshold

equals to 0.5, there will be very few false alarm, but the
average detection delay would be more than 5 time units.
The tradeoff between the probability of false alarm and
the average detection delay can be observed in Figure 5. A
good compromise would be setting the detection threshold
to 0.3, where the probability of false alarm is less than 2%
(with PU off) and less than 7% (with PU on), while the
average detection delay is merely 3.25 time units.
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Figure 3: Probability of false alarm vs. the threshold
values.
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Figure 4: Average detection delay vs. the threshold val-
ues.

It is also observed that with PU on, both the proba-
bility of false alarm and the average detection delay in-
crease, due to the fact that PU will occupy certain num-
ber of channels that would affect the routing of the SUs.
However, it is interesting to notice that when the PUs
behave inherently different from the smart jammers, such
as a PU usually does not occupy all the available chan-
nels and block all the routing requests from its trans-
mission range, then the proposed QD algorithm performs
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very well at identifying the smart jammers from legiti-
mate PUs. Indeed, under the current parameter setting,
the probability of false alarm and the average detection
delay only increase slightly when the PU is on. Of course,
if the PU would occupy all channels and block all the SU’s
paths in its interference range, we cannot make decisions
based solely on QD using obtained paths, and cross-layer
examination becomes necessary (see Section 4.3).
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Figure 5: Average detection delay vs. the probability of
false alarm.
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Figure 6: ROC curve when PU is on.

Under the current parameter setting, we do not have
any miss during the detection process. In other words,
the ROC curve is flat, see Figure 6. This is due to the
ideal assumption that the destination node would be able
to collect all the paths, thus the waiting time is long. In
realistic implementation, the destination may only wait
for a limited amount of time and only obtain a portion of
the paths. It would be interesting to investigate how that
would affect the ROC curve and this is one of our future
works.

6 Related Works and Disucssions

6.1 Quickest Detection in Cognitive Ra-
dio Networks

In [9], quickest spectrum sensing is used to detect the
change in frequency distribution by employing a suc-
cessive refinement algorithm which combines generalized
likelihood ratio (GLR) and the parallel CUSUM test. It
is shown that most secondary nodes achieve good per-
formance (1.5%) while a small portion of nodes perform
much worse (3.5%) due to bad signal-to-noise ratio.

A sequential change detection framework was pre-
sented [5] to characterize the detection delay of certain
detection algorithms. Detection schemes that minimize
the detection delay while maintaining false alarm at a
given level were developed.

The collaborative quickest detection approach pro-
posed in [8] is based on a threshold broadcast scheme.
This scheme is employed without a centralized coordinat-
ing entity and the local observations are broadcast in a
random time slot. It is demonstrated that the proposed
threshold broadcast scheme can achieve substantial per-
formance gain (less than 60% in detection delay for the
same false alarm rate) over schemes of random broadcast
without regulation and single-user spectrum sensing.

The authors in [2] combine the Hidden Markov Model
(HMM) and quickest detection for spectrum detection.
Spectrum recognition is achieved via frequency sweeping
in which samples of the power spectral density become the
input for the HMM and forward variables derived from
the HMM are sequentially observed to create the decision
statistic.

Quickest Detection has been also applied to spectrum
detection in CR networks employing cyclostationary fea-
ture detection [7]. A multi-thread competition based algo-
rithm was applied which indicates a change when a thread
reaches a limit in the cyclic structure. Thread truncation
was used minimize the computational cost.

It is clear from the reviews and discussions that the ex-
isting works of quickest detection in cognitive radio net-
work context are focusing on detection of abrupt changes
in distribution of spectrum usage, while the proposed
work applied quickest detection for Denial-of-Service at-
tacks by detecting abrupt changes in statistics of rout-
ing paths. The authors believe that this is the first of
such work that applying quickest detection for identify-
ing Denial-of-Service attacks in cognitive radio networks.

6.2 Anomaly Detection in Computer
Networks and Sensor Networks

It is noticeable that quickest detection methods have
been used for anomaly and attack detection in com-
puter networks and distributed sensor networks, such as
in [11, 14, 15, 19, 20], just to name a few. Adaptive se-
quential and batch-sequential methods are used in [19] for
an early detection of attacks in computer networks that
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lead to changes in network traffic, such as denial-of-service
attacks, worm-based attacks, portscanning, and man-in-
the-middle attacks. These methods employ a statistical
analysis of data from multiple layers of the network proto-
col to detect very subtle traffic changes. Results of the ex-
perimental study with a network simulator testbed as well
as real-life testing for TCP SYN flooding attacks show the
effectiveness of the methods.

In [20], a decentralized formulation of the quickest de-
tection problem is studied, where the distributions of the
observations at all of the sensors in the system change at
the time of disruption, and the sensors communicate with
a common fusion center. An optimal solution to the prob-
lem is derived when a priori knowledge of the change time
distribution is available. It is further relaxed to include
the case where this information is not known.

Quickest change detection in the multisensor setting
where the change propagates across the sensors was con-
sidered in [15]. A dynamic programming framework was
proposed and an optimal stopping rule was derived. Un-
der a certain condition on the Kullback-Leibler (K-L) di-
vergence between the post- and the pre-change densities,
it is established in [15] that the threshold test is asymp-
totically optimal.

In [11], the quickest detection problem was studied in
a general context of monitoring a large number of data
streams in sensor networks when the trigger event may
affect different sensors differently. Motivated by censor-
ing sensor networks, scalable detection schemes were de-
veloped based on the sum of those local CUSUM statis-
tics that are large under either hard thresholding or top-r
thresholding rules or both. The proposed schemes are
shown to possess certain asymptotic optimality proper-
ties.

A sleep/wake scheduling algorithm is proposed in [14]
for quickest detection of an intrusion using a sensor net-
work, while keeping only a minimal number of sensors
active to maximize energy efficiency. The intrusion detec-
tion problem was modeled as a Markov decision process
(MDP).

In this paper, we adopted a non-parametric version of
the cumulative sum (CUSUM) method. The challenge is
to find an appropriate statistical metric and the corre-
sponding score function that can capture the Denial-of-
Service attacks in cognitive radio networks due to smart
jamming. As a result, the focus of this paper is on ap-
plying quickest detection method to identify Denial-of-
Service attacks in cognitive radio networks by developing
an appropriate non-parametric version of the cumulative
sum (CUSUM) method, rather than trying to invent a
new quickest detection method.

7 Conclusions and Future Work

In this paper, we proposed a non-parametric version of
the Pages cumulative sum (CUSUM) algorithm to de-
tect spectrum congestion in cognitive wireless ad hoc net-

works. Placing within a cross-layer framework, the pro-
posed algorithm is capable of detecting DOS attacks with
minimum delay while maintaining desired false alarm
rate. It is demonstrated that as long as the primary users
will not occupy all channels and aggressively block all
the routing packets of the SU, i.e., primary user behaves
differently from the jammers, then the proposed quick-
est detection algorithm is rather robust whether primary
user is on or off. It worth pointing out that the aim of
the proposed Spectrum-Aware Split Multipath Routing
(SA-SMR) is not to optimize a routing protocol, but sim-
ply use it as a base-line routing protocol, and a vehicle
to carry critical information, both spectrum sensing infor-
mation and traffic load information, to fulfill the needs for
cross-layer detection. Since the focus of this paper is on
the quickest detection of network layer changes, tests of
the cross-layer examination procedures are not performed,
and this is one of our future research topics.
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