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Abstract

A lattice ciphertext policy attribute based encryption
(CP-ABE) scheme is presented, in which the ciphertext
policy achieved is the AND-gates on multi-valued at-
tributes. The previous construction with AND-gates on
multi-valued attributes as ciphertext policy is based on bi-
linear paring technology. In this paper, inspired by the re-
cent progress of lattice identity based encryption scheme,
we achieve this access structure from lattice technology.
There are two constructions given, and both of them can
be viewed as an extension and generalization of the lattice
identity based encryption schemes proposed by Agrawal et
al., respectively. In addition, our constructions are shown
to be secure under the learning with errors assumption in
the standard model.
Keywords: Access structure, attribute-based encryption,
lattice, learning with errors, standard model

1 Introduction

The notion of attribute based encryption was first intro-
duced by Sahai and Waters [18] at EUROCRYPT’05. In
their scheme, a sender can generate a ciphertext according
to an attribute set ω and a user described by an attribute
set γ can get a private key from the authority. When at
least d (threshold parameter) attributes overlapped be-
tween ω and γ, the user is allowed to decrypt this cipher-
text. The above scheme achieves threshold access struc-
ture. At present, some access structures of more com-
plexity are achieved. Attribute based encryption scheme
can be viewed as a generalization of identity based en-
cryption (IBE) [8, 19, 21]. Substantially, the notion of
attribute based encryption integrates an access structure
with the notion of identity based encryption.

There are two approaches for an attribute based
encryption scheme to deploy access control policy.
One is Key-Policy attribute-based encryption (KP-ABE)
scheme [13, 15, 20] first proposed by Goyal et al. [13].
In their cryptosystem, ciphertexts are labeled with sets
of attributes, and private keys are identified by a tree-
access structure in which each interior node of the tree

is a threshold gate and the leaves are associated with at-
tributes. This access tree control which ciphertexts a user
is able to decrypt. The other approach to deploy policy is
ciphertext-policy attribute-based encryption (CP-ABE)
schemes [6, 7, 16, 22]. In these schemes, a message is
encrypted with a specific access policy determined by the
encrypter, and private keys issued by a trusted authority
are labeled with sets of attributes. Decryption requires
that the attribute set of a user matches the cipertext pol-
icy. There are many applications for both types of ABE
systems, such as sharing of audit-log and broadcast en-
cryption. In addition, all the above schemes are shown
to be secure in the selective model. Lewko et al. [14]
proposed an attribute based encryption scheme which is
secure in the full model.

Lattice-based cryptography has many appealing prop-
erties, for example, it can be implemented efficiently and
it is believed to be secure against quantum computer.
Notice that there are several lattice identity based en-
cryption schemes proposed. In [12], the author gives a
construction of lattice IBE in the random oracle model
by using trapdoor functions with preimage sampling. In
the standard model, Cash et al. [10], Agrawal et al. [1]
(denoted by ABB-1) and Agrawal et al. [2] (denoted by
ABB-2) present efficient constructions for lattice IBE. At
present, attribute based encryption schemes are mainly
built on the technique of bilinear map. Recently, lattice
ABE achieved some progresses [3, 9, 23].

In this work, we present a lattice ciphertext policy
attribute based encryption scheme and give two corre-
sponding constructions. The ciphertext policy achieved
is AND-gates on multi-valued attributes. We notice that
this access structure has been used before in [11] for con-
structing an attribute based encryption scheme, which has
constant length of ciphertext. The previous construction
with AND-gates on multi-valued attributes as ciphertext
policy is based on bilinear paring technology. In this pa-
per, inspired by the recent progress of lattice identity
based encryption scheme, we achieve this access struc-
ture from lattice technology. Both of the constructions
can be viewed as an extension and generalization of the
lattice identity based encryption schemes in [1] and [2], re-
spectively. In the first construction, a uniformly random
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vector ui,j ∈ Zn
q is chosen to represent an attribute value

vi,j , where i ∈ [N ], j ∈ [Ni], and we map attribute vectors
to matrices by the encoding function with full-rank dif-
ferences (FRD) H : Zn

q → Zn×n
q described in [1]. Based

on the above, we can compute
∑

vi,j∈L H(ui,j) for some
attribute list L due to the domain of H forms an additive
group. However, the private key for a user in this con-
struction is a vector e ∈ Z2m. Furthermore, we give an-
other construction, which is based on the lattice identity
based encryption scheme in [2] and is a fix dimension lat-
tice ciphertext-policy attribute-based encryption scheme
(i.e., e ∈ Zm). Thus, this construction has short private
key. If we view the original lattice IBE in [2] as a lat-
tice ABE supporting And-gates on two-valued attributes
(i.e., 1 or 0), our construction extends it to a lattice ABE
that achieves And-gates on multi-valued attributes. In
addition, both our constructions are shown to be secure
under the learning with errors assumption in the stan-
dard model. Note that the access structure achieved in
this paper is relatively simple, and it is the future work
for achieving access structure of more complexity.

The rest of the paper is organized as follows. In Section
2 we recall some preliminaries. In Section 3 we describe
our first construction and prove its security. The second
construction and it’s proof for security are presented in
Section 4. Finally, we conclude in Section 5.

2 Preliminaries

In this section, we describe some preliminaries for our
scheme. Throughout the paper, we say i ∈ [n] means
that i ∈ {1, 2, . . . , n}. Let S = {s1, s2, . . . , sj} be a set of
vectors. The notation ‖S‖ denotes the `2 length of the
longest vector in S, S̃ denotes the Gram-Schmidt orthog-
onalization of S and ‖S̃‖ denotes the Gram-Schmidt norm
of S.

2.1 Access Structure and Ciphertext Pol-
icy Attribute based Encryption

Access structure. In our scheme, the policy that we
achieved is AND-gates on multi-valued attributes. This
access structure has been used before in [11] and is
defined as follows.

Definition 1. Let U = {att1, att2, . . . , attN} be a set of
attributes. For atti ∈ U , Si = {vi,1, vi,2, . . . , vi,Ni} is a
set of possible values, where Ni is the number of possible
values for atti. Let L = [L1, L2, . . . , LN ], Li ∈ Si be an
attribute list for a user, and W = [W1,W2, ..., WN ],Wi ∈
Si be an access structure. The notation L ² W expresses
that an attribute list L satisfies an access structure W ,
namely, Li = Wi(i = 1, 2, . . . , N).

Note that the total number of access structures is
ΠN

i=1Ni. To generate a ciphertext under some access
structure W , an encryptor has to explicitly indicate a

value vi,∗ from Si = {vi,1, vi,2, . . . , vi,Ni} for each atti ∈ U .

Ciphertext policy attribute based encryption. For-
mally, a ciphertext policy attribute based encryption
scheme consists of four polynomial-time algorithms
described as follows [16]:

• Setup: This algorithm takes as input the security
parameter κ and generates a set of domain parame-
ters consisting of a public parameter PP and a mas-
ter secret key MK. It is a randomized algorithm.

• KeyGen: Given the public parameter PP , the mas-
ter secret key MK and an attribute list L for a user,
this algorithm generates a user secret key SKL asso-
ciated with L. It could be probabilistic.

• Encrypt: On input of the public parameter PP , an
access structure W and a message M , this algorithm
outputs a ciphertext C. It should be probabilistic.

• Decrypt: On input of a user secret key SKL and a
ciphertext C for a message M encrypted under an ac-
cess structure W , this algorithm outputs the message
M if L ² W .

In our scheme, each ciphertext is encrypted for a mes-
sage bit b ∈ {0, 1}. Thus, M in the above description of
algorithms means a message bit b.

The security model of our scheme is modified from
the model in [1] and is defined by using the following
selective security game. This game captures a strong
privacy property that it is indistinguishable between
the challenge ciphertext and a random element in the
ciphertext space.

Selective security game for our lattice CP-ABE:

• Init. The adversary declares an access structure W ∗,
that he wishes to be challenged upon.

• Setup. The challenger runs the Setup algorithm of
the scheme and gives the public parameters PP to
the adversary.

• Phase 1. The adversary is allowed to issue private
key queries for any attribute list L, where L 2 W ∗.
The challenger runs algorithm KeyGen to obtain a
private key SKL and returns it to the adversary.

• Challenge. The adversary submits a message bit
b∗ ∈ {0, 1}. The challenger flips a random coin r
and chooses a random ciphertext C in the ciphertext
space. If r = 0, it sets the challenge ciphertext C∗ =
Encrypt(PP, W ∗, b∗). Otherwise (i.e., r = 1), it
sets challenge ciphertext C∗ = C. It sends C∗ to the
adversary.

• Phase 2. Phase 1 is repeated.

• Guess. The adversary outputs a guess r′ of r.



International Journal of Network Security, Vol.16, No.6, PP.444-451, Nov. 2014 446

The advantage ε of an adversary A in this game is defined
as |Pr[r′ = r] − 1

2 |. In addition, the adversary does not
declare an access structure W ∗ before the Setup stage
in the adaptive security game.

Definition 2. A lattice ciphertext policy attribute based
encryption scheme is secure in the selective model if all
polynomial-time adversaries have at most a negligible ad-
vantage in the above game.

2.2 Integer Lattices and the Gram-
Schmidt Norm of a Basis

In this section, we give some definitions that are directly
related to our construction. For further information
(such as the discrete Gaussian distribution over lattice),
the reader is referred to previous literatures [1, 2, 10, 12].

Integer lattices. Let b1, b2, . . . , bm ∈ Rm be m lin-
early independent vectors, the m-dimensional full-rank
lattice generated by those vectors is the set defined as

Λ = L(b1, b2, . . . , bm) =

{
m∑

i=1

xibi|xi ∈ Z
}

.

The set of the vectors b1, b2, . . . , bm is a basis of the lattice
Λ. In addition, if define the m ×m matrix B by letting
his columns are b1, b2, . . . , bm, we have equivalently

Λ = L(B) = L(b1, b2, . . . , bm) = {Bx|x ∈ Zm}.
Further, it is called integer lattice when Λ ⊆ Zm.

Definition 3. ([1]) For prime q, A ∈ Zn×m
q and u ∈ Zn

q ,
define:

Λq(A) = {e ∈ Zm s.t. ∃s ∈ Zn
q where A>s = e (mod)q},

Λ⊥q (A) = {e ∈ Zm s.t. Ae = 0 (mod)q},
Λu

q (A) = {e ∈ Zm s.t. Ae = u (mod)q}.
Observe that if t ∈ Λu

q (A) then Λu
q (A) = Λ⊥q (A) + t and

hence Λu
q (A) is a shift of Λ⊥q (A).

The Gram-Schmidt Norm of a basis. There exist a
probabilistic polynomial-time algorithm to sample an
uniform matrix A ∈ Zn×m

q with a basis TA of Λ⊥q (A),
where TA has low Gram-Schmidt norm [4, 5]. The
following description of the theorem is from Theorem 1
of [1], which itself follows from Theorem 3.2 of [5] by
taking δ = 1/3.

Theorem 1. Let q ≥ 3 be odd and m =
d6n log qe. There is a probabilistic polynomial-time algo-
rithm TrapGen(q, n) that outputs a pair (A ∈ Zn×m

q ,
S ∈ Zm×m) such that A is statistically close to a uniform
matrix in Zn×m

q and S is a basis for Λ⊥q (A) satisfying

‖S̃‖ ≤ O(
√

n log q) and ‖S‖ ≤ O(n log q)

with all but negligible probability in n.

2.3 Learning with Errors

We reduce the security of our constructions to the
learning with errors (LWE) problem, which is a hard
problem on lattices defined in [17]. Here, we follow the
description in [1].

Definition 4. Consider a prime q, a positive integer n,
and a distribution X over Zq, all public. An (Zq, n,X )-
LWE problem instance consists of access to an unspecified
challenge oracle O, being, either, a noisy pseudo-random
sampler Os carrying some constant random secret key s ∈
Zn

q , or, a truly random sampler O$, whose behaviors are
respectively as follows:

• Os: outputs samples of the form (ui, vi) = (ui,u>i s+
xi) ∈ Zn

q × Zq, where, s ∈ Zn
q is a uniformly dis-

tributed persistent value invariant across invocations,
xi ∈ Zq is a fresh sample from X , and ui is uniform
in Zn

q .

• O$: outputs truly uniform random samples from Zn
q×

Zq.

The (Zq, n,X )-LWE problem allows repeated queries to
the challenge oracle O. We say that an algorithm A
decides the (Zq, n,X )-LWE problem if |Pr[AOs = 1] −
Pr[AO$ = 1]| is non-negligible for a random s ∈ Zn

q .

The noise distribution Ψ̄α is defined as follows.

Definition 5. ([1]) Consider a real parameter α =
α(n) ∈ (0, 1) and a prime q. Denote by T = R/Z the
group of reals [0, 1) with addition modulo 1. Denote by
Ψα the distribution over T of a normal variable with mean
0 and standard deviation α/

√
2π then reduced modulo 1.

Denote by bxe = bx + 1
2c the nearest integer to the real

x ∈ R. We denote by Ψ̄α the discrete distribution over
Zq of the random variable bqXe mod q where the random
variable X ∈ T has distribution Ψα.

In [17], the author shows that the (Zq, n, Ψ̄α)-LWE
problem is hard for certain noise distributions Ψ̄α by us-
ing a quantum reduction.

Theorem 2. ([17]) If there exists an efficient, pos-
sibly quantum, algorithm for deciding the (Zq, n, Ψ̄α)-
LWE problem for q > 2

√
n/α then there exists an effi-

cient quantum algorithm for approximating the SIVP and
GapSVP problems, to within Õ(n/α) factors in the `2
norm, in the worst case.

3 Our Construction based on the
ABB-1 Scheme

This construction is based on the lattice IBE in [1]
and makes use of their sampling algorithms. In the
construction, the authority can generate private keys
for all user by using the algorithm SampleLeft. In
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the simulation, the simulator can use SampleRight to
respond the private key queries made by the adversary.
We refer the reader to previous literature for the concrete
definitions of those two algorithms. The inputs and
outputs of the algorithms are as follows.

Algorithm SampleLeft(A, M1, TA, u, σ):

• Inputs: A rank n matrix A in Zn×m
q , a matrix M1

in Zn×m1
q , a ”short” basis TA ∈ Zm×m

q of Λ⊥q (A), a
vector u ∈ Zn

q and a gaussian parameter σ > ‖T̃A‖ ·
ω(

√
log(m + m1)).

• Outputs: Let F1 = (A|M1). The algorithm outputs
a vector e ∈ Λu

q (F1) (i.e., F1 · e = u).

Algorithm SampleRight(A,B, R, TB , u, σ):

• Inputs: A matrix A in Zn×m
q , a rank n matrix B in

Zn×m
q , a uniform random matrix R ∈ {−1, 1}m×m, a

basis TB ∈ Zm×m
q of Λ⊥q (B), a vector u ∈ Zn

q and a
gaussian parameter σ > ‖T̃B‖ ·

√
m · ω(log m).

• Outputs: Let F2 = (A|AR + B). The algorithm out-
puts a vector e ∈ Λu

q (F2) (i.e., F2 · e = u).

The ideas behind the construction are as follows. For
each value vi,j , where i ∈ [N ], j ∈ [Ni], we will choose
a uniformly random vector ui,j ∈ Zn

q . Then, use the
encoding function with full-rank differences (FRD) H,
described as in [1], to map ui,j to a matrix H(ui,j) ∈
Zn×n

q . Thanks to the construction of H, we can com-
pute

∑
vi,j∈L H(ui,j) for some attribute list L. In addi-

tion, notice that
∑

vi,j∈L H(ui,j) 6=
∑

vi,j∈L′ H(ui,j) with
overwhelming probability for L 6= L′ due to all ui,j are
uniformly random. Thus, we get a lattice ciphertext pol-
icy attribute based encryption that the ciphertext policy
is AND-gates on multi-valued attributes.

3.1 Description

Setup(1λ): Take a security parameter λ as input, and set
the parameters q, n, m, σ, α as in [1]. The authority gener-
ates a uniformly random matrix A ∈ Zn×m

q with a short
basis TA ∈ Zm×m

q for Λ⊥q (A) by using TrapGen(q, n).
Choose uniformly random matrices B, A1 ∈ Zn×m

q and a
uniformly random vector u ∈ Zn

q . For each vi,j , where
i ∈ [N ], j ∈ [Ni], choose a uniformly random vector
ui,j ∈ Zn

q . Now, set the public parameter PP and the
master key MK as:

PP = (A, B,A1, u, {ui,j}i∈[N ],j∈[Ni]) MK = (TA).

KeyGen(PP, MK, L): Takes the the public parameter
PP , the master key MK and attribute list L as in-
puts, the authority sets FL = A|A1 + (

∑
vi,j∈L H(ui,j)) ·

B, where H is an encoding function with full-rank
differences. We assume that

∑
vi,j∈L H(ui,j) 6=

∑
vi,j∈L′ H(ui,j) for all L 6= L′. Now sample the private

key eL as:

eL ← SampleLeft(A,A1 + (
∑

vi,j∈L

H(ui,j)) ·B, TA, u, σ).

In addition, notice that we have FL · eL = u.
Encrypt(PP, b, W ): Take the public parameter PP , a
message bit b ∈ {0, 1} and a policy W as inputs, do the
following:

• Set FW = A|A1 + (
∑

vi,j∈W H(ui,j)) ·B.

• Choose a uniformly random s ∈ Zn
q and a uniformly

random matrix R ∈ {−1, 1}m×m.

• Choose noise vectors x ∈ Zq and y ∈ Zm
q according

to the distribution Ψ̄α, and set z ← R>y ∈ Zm
q .

• Set c0 ← u>s + x + bb q
2c, c1 ← F>W s +

[
y
z

]
∈ Z2m

q

and the ciphertext C = (W, c0, c1).

Decrypt(PP, C, eL): Let C be encrypted under policy
W . If L ² W , do the following:

• Compute w ← c0 − e>Lc1 ∈ Zq.

• If |w − b q
2c| < b q

4c in Z, output 1, otherwise, output
0.

Notice that the above Encrypt and Decrypt algorithms
are the same as the construction in the standard model
of [1], except that the methods that we compute FL, FW

and eL. This construction extends the original lattice
identity based encryption to a lattice ABE supporting
And-gates on multi-valued attributes.

3.2 Analysis of the Construction

When L ² W , we have the following equation

w = c0 − e>Lc1 = bbq
2
c+ x− e>L

[
y
z

]
.

For more details about the discussion of the error term (it
is bounded by Õ(qασm)) and the concrete setting of the
security parameters q,m, α, and σ, we refer the reader to
previous literature [1].

Some extensions are as follows. As mentioned in [1, 12],
the same ephemeral randomness s can be reused for en-
crypting multi message bits. This result is also hold true
in our setting. In addition, we can improve the above con-
struction to achieve adaptively secure CP-ABE. Choose
uniformly random matrices Ai,j ∈ Zn×m

q for i ∈ [N ], j ∈
[Ni] and set FL as

FL = A|C +
∑

vi,j∈L

Ai,j ,

where A, C and Ai,j for i ∈ [N ], j ∈ [Ni] are matrices in
the public parameters. In the adaptive security model, if
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we view the original lattice identity based encryption in [1]
as a lattice ABE supporting And-gates on two-valued at-
tributes (i.e., 1 or 0), this construction extends it to a
lattice ABE that achieves And-gates on multi-valued at-
tributes.

Now we show that the first construction is secure in
the standard model under the learning with errors as-
sumption.

Theorem 3. The advantage of an adversary in the se-
lective game is negligible under the (Zq, n, Ψ̄α)-LWE as-
sumption in our above construction.

Proof. We prove this theorem along the line of the proof
of theorem 6 in [1]. Suppose there exists a PPT adver-
sary, A, that can attack our scheme in the Selective model
with advantage ε. We build a simulator B that can de-
cide the (Zq, n, Ψ̄α)-LWE problem with advantage ε. The
simulator B uses the adversary A to distinguish the LWE
oracle O. First B queries the LWE oracle O for m + 1
times and receives fresh pairs (uk, vk) ∈ Zn

q × Zq, where
k ∈ {0, 1, 2, . . . , m}, then B proceeds as follows:

• Init: A announces to B the challenge access struc-
ture W ∗ = (W ∗

1 ,W ∗
2 , . . . ,W ∗

N ).

• Setup: B prepares the public parameters as follows.

– Set u to be u0 and construct A by letting the
k-th column of A to be uk for k = 1, 2, . . . ,m
from the LWE pairs.

– B chooses a uniformly random matrix R∗ ∈
{−1, 1}m×m, and let R∗ be the random matrix
used for generating the challenge ciphertext C∗.

– Generate a uniformly random matrix B by in-
voking algorithm TrapGen(q, n) and retain the
basis TB ∈ Zm×m

q for Λ⊥q (B).

– For each vi,j , where i ∈ [N ], j ∈ [Ni], choose a
uniformly random vector ui,j ∈ Zn

q .

– Set A1 = AR∗ −∑
vi,j∈W∗ H(ui,j) · B and give

the parameters (A,B,A1, u, {ui,j}i∈[N ],j∈[Ni])
to A.

Notice that these parameters have the correct distri-
butions.

• Phase 1: B can use the trapdoor TB to respond to
private key queries. Assume that A queries a pri-
vate key for L, where L 2 W ∗. B first computes
B′ = (

∑
vi,j∈L H(ui,j) −

∑
vi,j∈W∗ H(ui,j)) · B and

sets FL = A|AR∗ + B′. Then it responds as

eL ← SampleRight(A,B′, R∗, TB , u, σ).

By construction, we have

FL = A|AR∗ + B′

= A|AR∗ + (
∑

vi,j∈L

H(ui,j)−
∑

vi,j∈W∗
H(ui,j)) ·B

= A|AR∗ − (
∑

vi,j∈W∗
H(ui,j)) ·B + (

∑

vi,j∈L

H(ui,j)) ·B

= A|A1 + (
∑

vi,j∈L

H(ui,j)) ·B

Thus, the above values FL and eL have the correct
forms.

• Challenge: B receives a message bit b∗ ∈ {0, 1}
from A and generates the challenge ciphertext that
encrypted under the access structure W ∗ as follows.

– Set v∗ = [v1, v2, . . . , vm]> ∈ Zm
q , c∗0 = v0 +

b∗b q
2c ∈ Zq, and c∗1 =

[
v∗

(R∗)>v∗

]
∈ Z2m

q ,

where v0, v1, . . . , vm from the LWE instance.

– B chooses a random bit r ∈ {0, 1}. If r = 0,
return C∗ = (W ∗, c∗0, c

∗
1) to A as the challenge

ciphertext. If r = 1, choose randomly c0 ∈ Zq

and c1 ∈ Z2m
q and return (W ∗, c0, c1) to A as

the challenge ciphertext.

It is easy to see that the above challenge ciphertext
has the correct distribution. When O = Os, by the
setting of the public parameters, we have FW∗ =
A|AR∗ and v∗ = A>s + y for some random noise
vector y ∈ Zm

q with distribution Ψ̄α. Therefore, c∗0
and c∗1 have the correct forms. When O = O$, the
challenge ciphertext is uniform in Zq × Z2m

q .

• Phase 2: The simulator works as in Phase 1.

• Guess: B receives a guess r′ for r from A, and out-
puts r′ as the answer to the LWE challenge.

Thus B has advantage ε to decide the (Zq, n, Ψ̄α)-LWE
problem. This completes the proof.

4 Our Construction based on the
ABB-2 Scheme

This construction uses the technology of lattice basis
delegation in fixed dimension and is based on the Hi-
erarchical IBE [2]. The following algorithms are useful
for our construction. The reader is referred to [2, 12] for
more details about these algorithms.

Algorithm SamplePre(A, TA, u, σ):

• Inputs: A matrix A in Zn×m
q (q ≥ 2,m > n), a

basis TA ∈ Zm×m
q of Λ⊥q (A), a vector u ∈ Zn

q and a
gaussian parameter σ > ‖T̃A‖ · ω(

√
log m).
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• Outputs: A vector x ∈ Λu
q (A), which is sampled from

a distribution statistically close to DΛu
q (A),σ. The dis-

tribution DΛu
q (A),σ is a discrete Gaussian distribution

over Λu
q (A) with parameter σ.

Let Dm×m denote the distribution on matrices in
Zm×m defined as (DZm,σ)m conditioned on the re-
sulting matrix being Zq-invertible [2]. DZm,σ is the
discrete Gaussian distribution over Zm with parameter
σ =

√
n log q · ω(

√
log m).

Algorithm SampleR(1m):

• The algorithm returns a Zq-invertible matrix R ∈
Zm×m sampled from Dm×m.

Algorithm BasisDel(A,R, TA, σ):

• Inputs: A rank n matrix A in Zn×m
q , a Zq-invertible

matrix R, a basis TA ∈ Zm×m
q of Λ⊥q (A) and a gaus-

sian parameter σ ∈ R>0.

• Outputs: Let B = AR−1 ∈ Zn×m
q . The algorithm

outputs a basis TB of Λ⊥q (B).

Algorithm SampleRwithBasis(A):

• Input: A rank n matrix A in Zn×m
q .

• Outputs: A matrix R ∈ Zm×m, which is sampled
from a distribution statistically close to Dm×m, and
a basis TB where B = AR−1 ∈ Zn×m

q .

Throughout this construction, we fix the order of ma-
trices multiplication in

∏
vi,j∈L Ri,j for some attribute

list L according to the reverse order of L. We will
choose a matrix Ri,j ∈ Zm×m

q for each value vi,j , where
i ∈ [N ], j ∈ [Ni].

4.1 Description

Setup(1n): Takes a security parameter n as input, and
the authority generates a uniformly random matrix A ∈
Zn×m

q with a short basis TA ∈ Zm×m
q for Λ⊥q (A) by using

TrapGen(q, n). Choose matrices Ri,j ∈ Zm×m
q for i ∈

[N ], j ∈ [Ni] according to the distribution Dm×m by using
SampleR(1m) and a uniformly random vector u ∈ Zn

q .
Now, set the public parameter PP and the master key
MK as:

PP = (A, {Ri,j}i∈[N ],j∈[Ni], u) MK = (TA).

KeyGen(PP, MK, L): Take the the public param-
eter PP , the master key MK and a attribute list
L = (L1, L2, . . . , LN ) as inputs, where Li = vi,j

be the value for i ∈ [N ] and j ∈ Ni. The au-
thority sets FL = A(

∏
vi,j∈L Ri,j)−1. Now invoke

BasisDel(A,
∏

vi,j∈L Ri,j , TA, σ) to generate a basis TL

for lattice Λ>q (FL), and then sample the private key eL

as:
eL ← SamplePre(FL, TL, u, σ).

Encrypt(PP, b, W ): Take the public parameter PP , a
message bit b ∈ {0, 1} and a policy W = (W1, . . . , WN )
as inputs, do the following:

• Set FW = A(
∏

vi,j∈W Ri,j)−1.

• Choose a uniformly random s ∈ Zn
q .

• Choose noise vectors x ∈ Zq and y ∈ Zm
q according

to the distribution Ψ̄α.

• Set c0 ← u>s + x + bb q
2c, c1 ← F>W s + y ∈ Zm

q and
the ciphertext C = (W, c0, c1).

Decrypt(PP, C, eL): Let C be encrypted under policy
W . If L |= W , do the following:

• Compute w ← c0 − e>Lc1 ∈ Zq.

• If |w − b q
2c| < b q

4c in Z, output 1, otherwise, output
0.

If we view the lattice IBE scheme in [2] as a lattice ABE
supporting And-gates on two-valued attributes (i.e., 1 or
0), the above construction extends it to a lattice ABE
supporting And-gates on multi-valued attributes.

4.2 Analysis of the Construction

When L ² W , we have the following equation

w = c0 − e>Lc1 = bbq
2
c+ x− e>Ly.

For more details about the discussion of the error term
and the concrete setting of the security parameters, we
refer the reader to previous literature [2]. Now, we show
that the second construction is secure in the standard
model under the learning with errors assumption.

Theorem 4. The advantage of an adversary in the se-
lective game is negligible under the (Zq, n, Ψ̄α)-LWE as-
sumption in our above construction.

Proof. We prove this theorem along the line in [2]. Sup-
pose there exists a PPT adversary, A, that can attack our
scheme in the Selective model with advantage ε. We build
a simulator B that can decide the (Zq, n, Ψ̄α)-LWE prob-
lem with advantage ε. The simulator B uses the adversary
A to distinguish the LWE oracle O. First B queries the
LWE oracle O for m + 1 times and receives fresh pairs
(uk, vk) ∈ Zn

q × Zq, where k = 0, 1, 2, . . . , m, then B pro-
ceeds as follows:

• Init: A announces to B the challenge access struc-
ture W ∗ = (W ∗

1 , W ∗
2 , . . . , W ∗

N ).

• Setup: B prepares the public parameters as follows.

– Set u to be u0 and construct a matrix A0 by
letting the k-th column of A to be uk for k =
1, 2, . . . , m from the LWE pairs.



International Journal of Network Security, Vol.16, No.6, PP.444-451, Nov. 2014 450

– Let i ∈ [N ], j ∈ [Ni], for each vi,j = W ∗
i (denote

such vi,j by vi,j∗i ), sample random matrices Ri,j∗i
by using algorithm SampleR(1m). So we get
R1,j∗1 , . . . , RN,j∗N .

– Set A = A0RN,j∗N . . . R1,j∗1 . Let Fi =
A(R1,j∗1 )−1 . . . (Ri−1,j∗i−1

)−1 for i = 1, . . . , N

(F1 = A for i = 1). For each Fi, B invokes
SampleRwithBasis(Fi) for Ni−1 times to get
matrices Ri,j and basis Ti,j for Λ⊥q (Fi(Ri,j)−1),
where j ∈ [Ni], j 6= j∗i . Give the parameters
(A, u, {Ri,j}i∈[N ],j∈[Ni]) to A.

B retains Ti,j for Λ⊥q (Fi(Ri,j)−1), where i ∈ [N ], j ∈
[Ni], j 6= j∗i . Notice that these parameters have the
correct distributions.

• Phase 1: B can use the trapdoor bases Ti,j gen-
erated in the above stage to respond to private key
queries. Assume that A queries a private key for L,
where L 2 W ∗. There must exist some i such that
vi,j ∈ L and vi,j /∈ W ∗, and this means that j 6= j∗i .
We denote the smallest i by t. Then we have

FL = A(
∏

vi,j∈L

Ri,j)−1

= A0RN,j∗N . . . R1,j∗1 (
∏

vi,j∈L

Ri,j)−1

= A0RN,j∗N . . . Rt,j∗t · (
∏

vi,j∈L,i≥t

Ri,j)−1

= A0RN,j∗N . . . Rt,j∗t · (Rt,j)−1 · (
∏

vi,j∈L,i>t

Ri,j)−1

= Ft · (Rt,j)−1 · (
∏

vi,j∈L,i>t

Ri,j)−1.

By construction, B knows a basis Tt,j for
Λ⊥q (Ft(Rt,j)−1) where j ∈ [Nt], j 6= j∗t . Now B in-
vokes BasisDel(Ft ·(Rt,j)−1,

∏
vi,j∈L,i>t Ri,j , Tt,j , σ)

to generate a basis TL for lattice Λ>q (FL). B samples
the private key eL as

eL ← SamplePre(FL, TL, u, σ),

and gives it to A. Notice that the above values FL

and eL have the correct forms.

• Challenge: B receives a message bit b∗ ∈ {0, 1} from
A. By construction, we have

FW∗ = A(
∏

vi,j∈W∗
Ri,j)−1

= A0RN,j∗N . . . R1,j∗1 (
∏

vi,j∈W∗
Ri,j)−1

= A0.

B generates the challenge ciphertext that encrypted
under the access structure W ∗ as follows.

– Set v∗ = [v1, v2, . . . , vm]> ∈ Zm
q , c∗0 = v0 +

b∗b q
2c ∈ Zq, and c∗1 = v∗, where vk from the

LWE instances for k = 0, 1, . . . , m.

– B chooses a random bit r ∈ {0, 1}. If r = 0,
return C∗ = (W ∗, c∗0, c

∗
1) to A as the challenge

ciphertext. If r = 1, choose randomly c0 ∈ Zq

and c1 ∈ Zm
q and return (W ∗, c0, c1) to A as the

challenge ciphertext.

It is easy to see that the above challenge ciphertext
has the correct distribution. When O = Os, by the
setting of the public parameters, we have FW∗ = A0

and v∗ = A>0 s + y for some random noise vector
y ∈ Zm

q with distribution Ψ̄α. Therefore, c∗0 and c∗1
have the correct forms. When O = O$, the challenge
ciphertext is uniform in Zq × Z2m

q .

• Phase 2: The simulator works as in Phase 1.

• Guess: B receives a guess r′ for r from A, and out-
puts r′ as the answer to the LWE challenge.

Thus B has advantage ε to decide the (Zq, n, Ψ̄α)-LWE
problem. This completes the proof.

5 Conclusions

We present two constructions for lattice ciphertext policy
attribute based encryption scheme. The ciphertext policy
that we achieved is AND-gates on multi-valued attributes.
It is the future work for achieving access structure of more
complexity.

Acknowledgments

This study was supported by the National Natural Sci-
ence Foundation of China (No. 61202493). The authors
gratefully acknowledge the anonymous reviewers for their
valuable comments.

References

[1] S. Agrawal, D. Boneh, and X. Boyen, “Efficient lat-
tice (h) ibe in the standard model,” in Advances in
Cryptology - Eurocrypt ’10, pp. 553–572. Springer-
Verlag, 2010.

[2] S. Agrawal, D. Boneh, and X. Boyen, “Lattice basis
delegation in fixed dimension and shorter-ciphertext
hierarchical ibe,” in Advances in Cryptology - Crypto
’10, pp. 98–115. Springer-Verlag, 2010.

[3] S. Agrawal, X. Boyen, V. Vaikuntanathan, P. Voul-
garis, and H. Wee. “Fuzzy identity based encryp-
tion from lattices,”. Cryptology ePrint Archive,
http://eprint.iacr.org/2011/414, 2011.

[4] M. Ajtai, “Generating hard instances of the short
basis problem,” in Automata, Languages and Pro-
gramming, pp. 1–9. Springer-Verlag, 1999.



International Journal of Network Security, Vol.16, No.6, PP.444-451, Nov. 2014 451

[5] J. Alwen and C. Peikert, “Generating shorter bases
for hard random lattices,” in 26th International Sym-
posium on Theoretical Aspects of Computer Science
STACS 2009, pp. 75–86, 2009.

[6] N. Attrapadung and H. Imai, “Dual-policy attribute
based encryption,” in Applied Cryptography and Net-
work Security, pp. 168–185. Springer-Verlag, 2009.

[7] J. Bethencourt, A. Sahai, and B. Waters,
“Ciphertext-policy attribute-based encryption,”
in IEEE Symposium on Security and Privacy,
pp. 321–334. IEEE, 2007.

[8] D. Boneh and M. Franklin, “Identity-based encryp-
tion from the weil pairing,” in Advances in Cryptol-
ogy - Crypto ’01, pp. 213–229. Springer-Verlag, 2001.

[9] X. Boyen, “Attribute-based functional encryption on
lattices,” in Theory of Cryptography, pp. 122–142.
Springer-Verlag, 2013.

[10] D. Cash, D. Hofheinz, E. Kiltz, and C. Peikert, “Bon-
sai trees, or how to delegate a lattice basis,” in Ad-
vances in Cryptology - Eurocrypt ’10, pp. 523–552.
Springer-Verlag, 2010.

[11] K. Emura, A. Miyaji, A. Nomura, K. Omote, and
M. Soshi, “A ciphertext-policy attribute-based en-
cryption scheme with constant ciphertext length,”
in Information Security Practice and Experience,
pp. 13–23. Springer-Verlag, 2009.

[12] C. Gentry, C. Peikert, and V. Vaikuntanathan,
“Trapdoors for hard lattices and new cryptographic
constructions,” in Proceedings of the 40th annual
ACM symposium on Theory of computing, pp. 197–
206. ACM, 2008.

[13] V. Goyal, O. Pandey, A. Sahai, and B. Waters,
“Attribute-based encryption for fine-grained access
control of encrypted data,” in Proceedings of the 13th
ACM conference on Computer and communications
security, pp. 89–98. ACM, 2006.

[14] A. Lewko, T. Okamoto, A. Sahai, K. Takashima,
and B. Waters, “Fully secure functional encryption:
Attribute-based encryption and (hierarchical) inner
product encryption,” in Advances in Cryptology -
Eurocrypt ’10, pp. 62–91. Springer-Verlag, 2010.

[15] Q. Li, H. Xiong, F. Zhang, and S. Zeng, “An expres-
sive decentralizing kp-abe scheme with constant-size
ciphertext,” International Journal of Network Secu-
rity, vol. 15, no. 3, pp. 161–170, 2013.

[16] C. Ling and N. Calvin, “Provably secure ciphertext
policy abe,” in Proceedings of the 14th ACM Con-
ference on Computer and Communications Security,
pp. 456–465. ACM, 2007.

[17] O. Regev, “On lattices, learning with errors, random
linear codes, and cryptography,” in Proceedings of the
thirty-seventh annual ACM symposium on Theory of
computing, pp. 84–93. ACM, 2005.

[18] A. Sahai and B. Waters, “Fuzzy identity-based en-
cryption,” in Advances in Cryptology - Eurocrypt ’05,
pp. 457–473. Springer-Verlag, 2005.

[19] A. Shamir, “Identity-based cryptosystems and sig-
nature schemes,” in Advances in cryptology - Crypto
’84, pp. 47–53. Springer-Verlag, 1985.

[20] Y. Wang, K. Chen, Y. Long, and Z. Liu, “Account-
able authority key policy attribute-based encryp-
tion,” Science China Information Sciences, vol. 55,
no. 7, pp. 1631–1638, 2012.

[21] B. Waters, “Efficient identity-based encryption with-
out random oracles,” in Advances in Cryptology - Eu-
rocrypt ’05, pp. 114–127. Springer-Verlag, 2005.

[22] B. Waters, “Ciphertext-policy attribute-based en-
cryption: An expressive, efficient, and provably se-
cure realization,” in Public Key Cryptography- PKC
’11, pp. 53–70. Springer-Verlag, 2011.

[23] J. Zhang, Z. Zhang, and A. Ge, “Ciphertext pol-
icy attribute-based encryption from lattices,” in Pro-
ceedings of the 7th ACM Symposium on Information,
Computer and Communications Security, pp. 16–17.
ACM, 2012.

Yongtao Wang was born in 1980. He received his Ph.D.
degree in Computer Science and Engineering from Shang-
hai Jiao Tong University, Shanghai, China, in 2011. He
is currently a Research Assistant at China Information
Technology Security Evaluation Center, Beijing, China.
His research interests include information security and
modern cryptography, etc.


